1
|
Luangmonkong T, Parichatikanond W, Olinga P. Targeting collagen homeostasis for the treatment of liver fibrosis: Opportunities and challenges. Biochem Pharmacol 2023; 215:115740. [PMID: 37567319 DOI: 10.1016/j.bcp.2023.115740] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Liver fibrosis is an excessive production, aberrant deposition, and deficit degradation of extracellular matrix (ECM). Patients with unresolved fibrosis ultimately undergo end-stage liver diseases. To date, the effective and safe strategy to cease fibrosis progression remains an unmet clinical need. Since collagens are the most abundant ECM protein which play an essential role in fibrogenesis, the suitable regulation of collagen homeostasis could be an effective strategy for the treatment of liver fibrosis. Therefore, this review provides a brief overview on the dysregulation of ECM homeostasis, focusing on collagens, in the pathogenesis of liver fibrosis. Most importantly, promising therapeutic mechanisms related to biosynthesis, deposition and extracellular interactions, and degradation of collagens, together with preclinical and clinical antifibrotic evidence of drugs affecting each target are orderly criticized. In addition, challenges for targeting collagen homeostasis in the treatment of liver fibrosis are discussed.
Collapse
Affiliation(s)
- Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand.
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Thailand; Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, The Netherlands
| |
Collapse
|
2
|
Guo T, Wantono C, Tan Y, Deng F, Duan T, Liu D. Regulators, functions, and mechanotransduction pathways of matrix stiffness in hepatic disease. Front Physiol 2023; 14:1098129. [PMID: 36711017 PMCID: PMC9878334 DOI: 10.3389/fphys.2023.1098129] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
The extracellular matrix (ECM) provides physical support and imparts significant biochemical and mechanical cues to cells. Matrix stiffening is a hallmark of liver fibrosis and is associated with many hepatic diseases, especially liver cirrhosis and carcinoma. Increased matrix stiffness is not only a consequence of liver fibrosis but is also recognized as an active driver in the progression of fibrotic hepatic disease. In this article, we provide a comprehensive view of the role of matrix stiffness in the pathological progression of hepatic disease. The regulators that modulate matrix stiffness including ECM components, MMPs, and crosslinking modifications are discussed. The latest advances of the research on the matrix mechanics in regulating intercellular signaling and cell phenotype are classified, especially for hepatic stellate cells, hepatocytes, and immunocytes. The molecular mechanism that sensing and transducing mechanical signaling is highlighted. The current progress of ECM stiffness's role in hepatic cirrhosis and liver cancer is introduced and summarized. Finally, the recent trials targeting ECM stiffness for the treatment of liver disease are detailed.
Collapse
Affiliation(s)
- Ting Guo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Cindy Wantono
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Tianying Duan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China,Research Center of Digestive Disease, Central South University, Changsha, China,*Correspondence: Deliang Liu,
| |
Collapse
|
3
|
Tatsukawa H, Hitomi K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021; 10:cells10071842. [PMID: 34360011 PMCID: PMC8307792 DOI: 10.3390/cells10071842] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles of TG2, focusing on cell death/survival and fibrosis.
Collapse
|
4
|
Ye M, Xu M, Fan S, Zhang M, Zhou B, Yang S, Wei W, Ji C, Ji J, Ji F. Protective effects of three propolis-abundant flavonoids against ethanol-induced injuries in HepG2 cells involving the inhibition of ERK1/2-AHR-CYP1A1 signaling pathways. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
5
|
Antifibrotic effect of curcumin, N-acetyl cysteine and propolis extract against bisphenol A-induced hepatotoxicity in rats: Prophylaxis versus co-treatment. Life Sci 2020; 260:118245. [PMID: 32791144 DOI: 10.1016/j.lfs.2020.118245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022]
Abstract
AIMS Bisphenol A (BPA) has been shown to induce liver fibrosis in rodents. Therefore, this study examined the protective effect of a triple combination of curcumin (Cur), N-acetyl cysteine (NAC) and propolis (Prp) extract against BPA-induced hepatic fibrosis. METHODS 100 Wistar male rats were equally assigned into 10 groups; one group was designated as control. 10 rats were gavaged with BPA (50 mg/kg/day) for 8 wk and left un-treated (BPA group). The remaining 80 rats were divided into 8 groups, distributed in 2 models. Protective model: rats were daily co-treated with BPA and Cur (100 mg/kg, p.o) or NAC (150 mg/kg, p.o) or Prp (200 mg/kg, p.o) or their combination for 8 wk. Preventive model: rats were daily treated with Cur or NAC or Prp or their combination for 4 wk before BPA administration and then in the same manner as protective model. KEY FINDINGS Current treatment interventions significantly alleviated BPA-induced hepatic damage and fibrosis. They also restored pro-oxidant/antioxidant balance, shifted cytokine balance towards the anti-inflammatory side, decreasing interleukin-1β/interleukin-10 ratio. Moreover, these compounds seem to exert anti-apoptotic effects by increasing the immunoexpression of B-cell lymphoma 2 in hepatocytes and decreasing hepatic caspase-3 content. Finally, they ameliorated extracellular matrix turn over through down-regulation of matrix metalloproteinase-9 and up-regulation of tissue inhibitor of matrix metalloproteinase-2 genetic expression. SIGNIFICANCE Current treatments guarded against BPA-induced hepatic fibrosis due to their antioxidant, anti-inflammatory and anti-apoptotic properties, decreasing extracellular matrix turnover. Interestingly, the triple therapy provided hepatoprotection superior to monotherapy. Besides, prophylactic and concurrent treatments seem to be more effective than concurrent treatments.
Collapse
|
6
|
Chen G, Xia B, Fu Q, Huang X, Wang F, Chen Z, Lv Y. Matrix Mechanics as Regulatory Factors and Therapeutic Targets in Hepatic Fibrosis. Int J Biol Sci 2019; 15:2509-2521. [PMID: 31754325 PMCID: PMC6854372 DOI: 10.7150/ijbs.37500] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
The hallmark of liver fibrosis is excessive extracellular matrix (ECM) synthesis and deposition that improve liver matrix remodeling and stiffening. Increased matrix stiffness is not only a pathological consequence of liver fibrosis in traditional view, but also recognized as a key driver in pathological progression of hepatic fibrosis. Cells can perceive changes in the mechanical characteristics of hepatic matrix and respond by means of mechanical signal transduction pathways to regulate cell behavior. In this review, the authors first classify causes of liver matrix stiffening during fibrotic progression, such as higher degree of collagen cross-linking. The latest advances of the research on the matrix mechanics in regulating activation of HSCs or fibroblasts under two-dimensional (2D) and three-dimensional (3D) microenvironment is also classified and summarized. The mechanical signaling pathways involved in the process of hepatic matrix stiffening, such as YAP-TAZ signaling pathway, are further summarized. Finally, some potential therapeutic concepts and strategies based on matrix mechanics will be detailed. Collectively, these findings reinforce the importance of matrix mechanics in hepatic fibrosis, and underscore the value of clarifying its modulation in hopes of advancing the development of novel therapeutic targets and strategies for hepatic fibrosis.
Collapse
Affiliation(s)
- Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Bin Xia
- Chongqing Technology and Business University, Chongqing 400067, P. R. China
| | - Qiang Fu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Xiang Huang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Fuping Wang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Zhongmin Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, P. R. China
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
7
|
Ye M, Xu M, Ji C, Ji J, Ji F, Wei W, Yang S, Zhou B. Alterations in the Transcriptional Profile of the Liver Tissue and the Therapeutic Effects of Propolis Extracts in Alcohol-induced Steatosis in Rats. AN ACAD BRAS CIENC 2019; 91:e20180646. [PMID: 31411259 DOI: 10.1590/0001-3765201920180646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
The hepatoprotective effects of the ethanolic extracts of propolis (EEP) on alcohol-induced liver steatosis were investigated in Wistar rats. Chronic alcoholic fatty liver was induced by administration of 52% alcohol to male Wistar rats at the dose of 1% body weight for 7 weeks. Then animals were simultaneously treated with 50% ethanol solutions of EEP or normal saline at the dose of 0.1% body weight for 4 further weeks. Serological analyses and liver histopathology studies were performed to investigate the development of steatosis. Microarray analysis was conducted to investigate the alterations of hepatic gene expression profiling. Our results showed that 4-week treatment of EEP helped to restore the levels of various blood indices, liver function enzymes and the histopathology of liver tissue to normal levels. Results from the microarray analysis revealed that the hepatic expressions of genes involved in lipogenesis were significantly down-regulated by EEP treatment, while the transcriptional expressions of functional genes participating in fatty acids oxidation were markedly increased. The ability of EEP to reduce the negative effects of alcohol on liver makes propolis a potential natural product for the alternative treatment of alcoholic fatty liver.
Collapse
Affiliation(s)
- Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Mengting Xu
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Chao Ji
- Fubiao Biotech Co., Ltd., Huai-an 211799, Jiangsu Province, China
| | - Jian Ji
- Fubiao Biotech Co., Ltd., Huai-an 211799, Jiangsu Province, China
| | - Fubiao Ji
- Fubiao Biotech Co., Ltd., Huai-an 211799, Jiangsu Province, China
| | - Wanhong Wei
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Shengmei Yang
- Joint International Research Laboratory of Agricultural & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| |
Collapse
|
8
|
Lee WH, Chen LC, Lee CJ, Huang CC, Ho YS, Yang PS, Ho CT, Chang HL, Lin IH, Chang HW, Liu YR, Wu CH, Tu SH. DNA primase polypeptide 1 (PRIM1) involves in estrogen-induced breast cancer formation through activation of the G2/M cell cycle checkpoint. Int J Cancer 2018; 144:615-630. [PMID: 30097999 DOI: 10.1002/ijc.31788] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/24/2018] [Indexed: 12/22/2022]
Abstract
The DNA primase polypeptide 1 (PRIM1) is responsible for synthesizing small RNA primers for Okazaki fragments generated during discontinuous DNA replication. PRIM1 mRNA expression levels in breast tumor samples were detected by real-time PCR analysis. Xenografted tumor model was established to study the carcinogenic role of PRIM1 and its potential therapeutic applications. The average PRIM1 mRNA (copy number × 103 /μg) expression was 4.7-fold higher in tumors than in normal tissue (*p = 0.005, n = 254). PRIM1 was detected preferentially at a higher level (>40-fold) in poorly differentiated tumor tissues (n = 46) compared with more highly differentiated tumors tissues (n = 10) (*p = 0.005). Poor overall survival rate was correlated to the estrogen receptor positive (ER+, n = 20) patients with higher PRIM1 expression when compare to the ER- (n = 10) patients (Chi Square test, p = 0.03). Stable expression of PRIM1-siRNA in the ER+ BT-474 cells-xenograft tumors significantly reduced tumor volume in SCID mice (*p = 0.005). The anti-tumoral effects of inotilone isolated from Phellinus linteus was tested and had significant effects on the inhibition of PRIM1 protein expression in ER+ breast cancer cells. In vivo study was performed by administering inotilone (10 mg/kg, twice a week for 6 weeks), which resulted in significantly reduced BT-474-xenografted tumor growth volume compared with control (n =5 per group, *p < 0.05). This study provides evidences for the prognostic effects of PRIM1 with poor overall survival rate in the ER+ patients and will be valuable to test for therapeutic purpose.
Collapse
Affiliation(s)
- Wei-Hwa Lee
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Li-Ching Chen
- Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Jung Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Cheng Huang
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.,Department of Surgery, Fu-Jen Catholic University Hospital, New Taipei City, Taiwan
| | - Yuan-Soon Ho
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Po-Sheng Yang
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Hang-Lung Chang
- Department of General Surgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - I-Hsuan Lin
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Wen Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yun-Ru Liu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Chih-Hsiung Wu
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of General Surgery, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Shih-Hsin Tu
- Breast Medical Center, Taipei Medical University Hospital, Taipei, Taiwan.,Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
Vega-Magaña N, Delgado-Rizo V, García-Benavides L, Del Toro-Arreola S, Segura-Ortega J, Morales ASMZ, Zepeda-Nuño JS, Escarra-Senmarti M, Gutiérrez-Franco J, Haramati J, Bueno-Topete MR. Bacterial Translocation Is Linked to Increased Intestinal IFN-γ, IL-4, IL-17, and mucin-2 in Cholestatic Rats. Ann Hepatol 2018; 17:318-329. [PMID: 29469038 DOI: 10.5604/01.3001.0010.8662] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Background and rationale for the study. Bacterial translocation is an important triggering factor of infection and mortality in cirrhosis. In a rat model using bile duct ligation (BDL), bacterial translocation appears within 24 h after ligation. The dynamic between TH1/TH2/TH17 cytokines and the integrity of the colonic mucosa in the context of cirrhosis is little known. This study aims to determine the link between bacterial translocation and intestinal inflammation in a cholestasis model. Additionally, alterations of the colonic mucus layer and the bacterial load were also addressed. RESULTS Bacterial translocation detected by microbiological cultures and MALDI-TOF showed that Escherichia coli predominates in mesenteric lymph nodes of BDL rats. Intestinal bacterial load analyzed by qPCR indicates a dramatic Escherichia/Shigella overgrowth at 8 and 30 days post-BDL. IFN-γ, IL-4, and IL-17 evaluated by Western blotting were increased at 8 and 30 days in the small intestine. In the colon, in contrast, only IFN-γ was significantly increased. The colonic mucus layer and mucin-2 expression determined by Alcian blue staining and immunohistochemistry surprisingly showed an increase in the mucus layer thickness related to increased mucin-2 expression during the entire process of liver damage. Hepatic enzymes, as well as collagen I, collagen III, TNF-α, and IL-6 liver gene expression were increased. In conclusion, bacterial overgrowth associated with bacterial translocation is linked to the over-expression of IFN-γ, IL-4, IL-17 and mucin-2. These molecules might facilitate the intestinal permeability through exacerbating the inflammatory process and disturbing tight junctions, leading to the perpetuation of the liver damage.
Collapse
Affiliation(s)
- Natali Vega-Magaña
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Vidal Delgado-Rizo
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Laboratorio de Inmunología, Departamento de Fisiología
| | - Leonel García-Benavides
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología
| | - Susana Del Toro-Arreola
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jorge Segura-Ortega
- OPD Hospital Civil de Guadalajara "Juan I. Menchaca". Guadalajara, Jalisco, México. Servicio de Gastroenterología
| | - Adelaida Sara M Zepeda Morales
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - José Sergio Zepeda-Nuño
- Centro Universitario de Ciencias de la Salud. Laboratorio de Patología, Departamento de Microbiología y Patología
| | - Marta Escarra-Senmarti
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jorge Gutiérrez-Franco
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| | - Jesse Haramati
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. Guadalajara, Jalisco, México. Laboratorio de Inmunología, Departamento de Biología Celular y Molecular
| | - Miriam R Bueno-Topete
- Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Guadalajara, Jalisco, México. Instituto de Investigación en Enfermedades Crónico-Degenerativas, Departamento de Biología Molecular y Genómica
| |
Collapse
|
10
|
Zhou F, Wang A, Li D, Wang Y, Lin L. Pinocembrin from Penthorum chinense Pursh suppresses hepatic stellate cells activation through a unified SIRT3-TGF-β-Smad signaling pathway. Toxicol Appl Pharmacol 2018; 341:38-50. [DOI: 10.1016/j.taap.2018.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/03/2018] [Accepted: 01/13/2018] [Indexed: 01/18/2023]
|
11
|
Tatsukawa H, Tani Y, Otsu R, Nakagawa H, Hitomi K. Global identification and analysis of isozyme-specific possible substrates crosslinked by transglutaminases using substrate peptides in mouse liver fibrosis. Sci Rep 2017; 7:45049. [PMID: 28327670 PMCID: PMC5361200 DOI: 10.1038/srep45049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/17/2017] [Indexed: 12/16/2022] Open
Abstract
The transglutaminase (TG) family comprises eight isozymes that form the isopeptide bonds between glutamine and lysine residues and contribute to the fibrotic diseases via crosslinking-mediated stabilization of ECM and the activation of TGF-β in several tissues. However, despite a growing body of evidence implicating TG2 as a key enzyme in fibrosis, the causative role of TG2 and the involvement of the other isozymes have not yet been fully elucidated. Therefore, here we clarified the distributions of TG isozymes and their in situ activities and identified the isozyme-specific possible substrates for both TG1 and TG2 using their substrate peptides in mouse fibrotic liver. We found that TG1 activity was markedly enhanced intracellularly over a widespread area, whereas TG2 activity increased in the extracellular space. In total, 43 and 42 possible substrates were identified for TG1 and TG2, respectively, as involved in chromatin organization and cellular component morphogenesis. These included keratin 18, a biomarker for hepatic injury, which was accumulated in the fibrotic liver and showed the partly similar distribution with TG1 activity. These findings suggest that TG1 activity may be involved in the functional modification of intracellular proteins, whereas TG2 activity contributes to the stabilization of extracellular proteins during liver fibrosis.
Collapse
Affiliation(s)
- Hideki Tatsukawa
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Yuji Tani
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Risa Otsu
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Haruka Nakagawa
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| | - Kiyotaka Hitomi
- Cellular Biochemistry Lab., Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
12
|
Tatsukawa H, Furutani Y, Hitomi K, Kojima S. Transglutaminase 2 has opposing roles in the regulation of cellular functions as well as cell growth and death. Cell Death Dis 2016; 7:e2244. [PMID: 27253408 PMCID: PMC5143380 DOI: 10.1038/cddis.2016.150] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 01/27/2023]
Abstract
Transglutaminase 2 (TG2) is primarily known as the most ubiquitously expressed member of the transglutaminase family with Ca2+-dependent protein crosslinking activity; however, this enzyme exhibits multiple additional functions through GTPase, cell adhesion, protein disulfide isomerase, kinase, and scaffold activities and is associated with cell growth, differentiation, and apoptosis. TG2 is found in the extracellular matrix, plasma membrane, cytosol, mitochondria, recycling endosomes, and nucleus, and its subcellular localization is an important determinant of its function. Depending upon the cell type and stimuli, TG2 changes its subcellular localization and biological activities, playing both anti- and pro-apoptotic roles. Increasing evidence indicates that the GTP-bound form of the enzyme (in its closed form) protects cells from apoptosis but that the transamidation activity of TG2 (in its open form) participates in both facilitating and inhibiting apoptosis. A difficulty in the study and understanding of this enigmatic protein is that opposing effects have been reported regarding its roles in the same physiological and/or pathological systems. These include neuroprotective or neurodegenerative effects, hepatic cell growth-promoting or hepatic cell death-inducing effects, exacerbating or having no effect on liver fibrosis, and anti- and pro-apoptotic effects on cancer cells. The reasons for these discrepancies have been ascribed to TG2's multifunctional activities, genetic variants, conformational changes induced by the immediate environment, and differences in the genetic background of the mice used in each of the experiments. In this article, we first report that TG2 has opposing roles like the protagonist in the novel Dr. Jekyll and Mr. Hyde, followed by a summary of the controversies reported, and finally discuss the possible reasons for these discrepancies.
Collapse
Affiliation(s)
- H Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Y Furutani
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| | - K Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - S Kojima
- Micro-Signaling Regulation Technology Unit, RIKEN Center for Life Science Technologies, 2-1 Hirosawa, Saitama 351-0198, Japan
| |
Collapse
|
13
|
Zhou X, Gao T, Jiang XG, Xie ML. Protective effect of apigenin on bleomycin-induced pulmonary fibrosis in mice by increments of lung antioxidant ability and PPARγ expression. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
14
|
Strategies to prevent and reverse liver fibrosis in humans and laboratory animals. Arch Toxicol 2015; 89:1727-50. [PMID: 25963329 DOI: 10.1007/s00204-015-1525-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/28/2015] [Indexed: 02/07/2023]
Abstract
Liver fibrosis results from chronic damage to the liver in conjunction with various pathways and is mediated by a complex microenvironment. Based on clinical observations, it is now evident that fibrosis is a dynamic, bidirectional process with an inherent capacity for recovery and remodeling. The major mechanisms involved in liver fibrosis include the repetitive injury of hepatocytes, the activation of the inflammatory response after injury stimulation, and the activation and proliferation of hepatic stellate cells (HSCs), which represents the major extracellular matrix (ECM)-producing cells, stimulated by hepatocyte injury and inflammation. The microenvironment in the liver is synergistically regulated abnormal ECM deposition, scar formation, angiogenesis, and fibrogenesis. Moreover, recent studies have clarified novel mechanism in fibrosis such as epigenetic regulation of HSCs, the leptin and PPARγ pathways, the coagulation system, and even autophagy. Uncovering the mechanisms of liver fibrogenesis provides a basis to develop potential therapies to reverse and treat the fibrotic response, thereby improving the outcomes of patients with chronic liver disease. Although both scientific and clinical challenges remain, emerging studies attempt to reveal the ideal anti-fibrotic drug that could be easily delivered to the liver with high specificity and low toxicity. This review highlights the mechanisms, including novel pathways underlying fibrogenesis that may be translated into preventive and treatment strategies, reviews both current and novel agents that target specific pathways or multiple targets, and discusses novel drug delivery systems such as nanotechnology that can be applied in the treatment of liver fibrosis. In addition, we also discuss some current treatment strategies that are being applied in animal models and in clinical trials.
Collapse
|
15
|
Moore LB, Sawyer AJ, Charokopos A, Skokos EA, Kyriakides TR. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response. Acta Biomater 2015; 11:37-47. [PMID: 25242651 PMCID: PMC4278755 DOI: 10.1016/j.actbio.2014.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/26/2014] [Accepted: 09/11/2014] [Indexed: 12/22/2022]
Abstract
Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway.
Collapse
Affiliation(s)
- Laura Beth Moore
- Department of Genetics, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Andrew J Sawyer
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Antonios Charokopos
- Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Eleni A Skokos
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA
| | - Themis R Kyriakides
- Department of Pathology, Yale University, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Interdepartmental Program in Vascular Biology and Therapeutics, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
16
|
Chen KS, Shi MD, Chien CS, Shih YW. Pinocembrin suppresses TGF-β1-induced epithelial-mesenchymal transition and metastasis of human Y-79 retinoblastoma cells through inactivating αvβ3 integrin/FAK/p38α signaling pathway. Cell Biosci 2014; 4:41. [PMID: 25949790 PMCID: PMC4422197 DOI: 10.1186/2045-3701-4-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/21/2014] [Indexed: 01/18/2023] Open
Abstract
Background Pinocembrin is the most abundant flavonoid in propolis. In this study, we investigated the antimetastatic effect of pinocembrin on TGF-β1-induced epithelial-mesenchymal transition (EMT) and metastasis of human Y-79 retinoblastoma cells. Results Firstly, the results showed that pinocembrin significantly suppresses the TGF-β1-induced abilities of the invasion and migration of Y-79 cells under non-cytotoxic concentration. Pinocembrin decreased TGF-β1-induced expression of vimentin, N-cadherin, αv and β3 integrin in Y-79 cells. Molecular data also showed pinocembrin inhibits the activation of focal adhesion kinase (FAK) and p38α signal involved in the downregulation of enzyme activities, protein and messenger RNA levels of matrix metalloproteinase-2/9 (MMP-2/-9) induced by TGF-β1. Next, pinocembrin also strongly inhibited the degradation of inhibitor of kappaBα (IκBα) and the nuclear levels of nuclear factor kappa B (NF-κB). Also, a dose-dependent inhibition on the binding ability of NF-κB was further observed under pinocembrin treatment. Conclusions Presented results indicated that pinocembrin inhibits TGF-β1-induced epithelial-mesenchymal transition (EMT) and metastasis of Y-79 cells by inactivating the αvβ3 integrin/FAK/p38α signaling pathway. Thus, our findings point to the anticancer potential of pinocembrin against retinoblastoma cells.
Collapse
Affiliation(s)
- Kun-Shiang Chen
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Ming-Der Shi
- Department of Medical Technology, Kaohsiung Veterans General Hospital Tainan Branch, Tainan 71051, Taiwan ; Department of Medical Laboratory Science and Biotechnology and Graduate Institute of Biological Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| | - Chi-Sheng Chien
- Department of Orthopaedic Surgery, Chi Mei Medical Center, Tainan 71067, Taiwan
| | - Yuan-Wei Shih
- Department of Food Nutrition, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan ; Department of Biological Science and Technology and Graduate Institute of Biomedical Science, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
| |
Collapse
|
17
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 312] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
18
|
Huang CS, Ho CT, Tu SH, Pan MH, Chuang CH, Chang HW, Chang CH, Wu CH, Ho YS. Long-term ethanol exposure-induced hepatocellular carcinoma cell migration and invasion through lysyl oxidase activation are attenuated by combined treatment with pterostilbene and curcumin analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4326-4335. [PMID: 23560895 DOI: 10.1021/jf4004175] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ethanol consumption induces hepatocellular carcinoma (HCC) cell metastasis by changing the extracellular matrix (ECM). Lysyl oxidase (LOX) catalyzes the cross-linkage of collagen or elastin in the ECM. LOX protein and mRNA overexpression (>21-fold compared with controls, n = 6) was detected in cirrhotic HCC patients with a history of alcoholism. LOX protein expression was induced in HCC cells after long-term treatment with ethanol (10 mM) for 20-40 passages (denoted E20-E40 cells). Pterostilbene (PSB, 1 μM) displayed significant potency to reduce LOX-mediated activity in E40 cells when combined with curcumin and its analogues. The ability of E40 cells to form colonies in soft agar was reduced by both genetic depletion of LOX and by chemical inhibitors of LOX expression. This study suggests that targeting LOX expression with food components such as PSB and curcumin may be a novel strategy to overcome ethanol-induced HCC cell metastasis in liver cancer patients.
Collapse
Affiliation(s)
- Ching-Shui Huang
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kao HF, Chang-Chien PW, Chang WT, Yeh TM, Wang JY. Propolis inhibits TGF-β1-induced epithelial-mesenchymal transition in human alveolar epithelial cells via PPARγ activation. Int Immunopharmacol 2013; 15:565-74. [PMID: 23328619 DOI: 10.1016/j.intimp.2012.12.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/13/2012] [Accepted: 12/27/2012] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggests that the transforming growth factor (TGF)-β1-induced epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) may contribute to airway remodeling in severe asthma and fibrotic lung diseases. Studies have shown that extracts from propolis protect chemical-induced cardiac and liver fibrosis in animals. This study assesses the inhibitory effect of propolis on TGF-β1-induced EMT in serum-deprived A549 cells (human AECs). Experimental results show progressive cell morphological changes, decreased E-cadherin, increased N-cadherin production, intracellular F-actin rearrangement, increased reactive oxygen species (ROS) production, and increased cell motility with increasing TGF-β1 concentration. A549 cells pretreated with propolis and then treated with TGF-β1 for 24 h regained epithelial cell morphology, decreased the production of N-cadherin and ROS, and had reduced motility. Propolis prevents the effects of TGF-β1-induced Smad2 and AKT activation pathways and Snail expression. Moreover, propolis pretreatment may prevent the TGF-β1-induced down-regulation of nuclear hormone receptors and peroxisome proliferator-activated receptor gamma (PPARγ) protein in A549 cells, whose effect was blocked by adding PPARγ antagonist, GW9662. Two active components of propolis, caffeic acid phenethyl ester (CAPE) and pinocembrin (PIN), only had partial effects on TGF-β1-induced EMT in A549 cells. The results of this study suggest that natural propolis extracts may prevent TGF-β1-induced EMT in immortalized type II AECs via multiple inhibitory pathways, which may be clinically applied in the prevention and/or treatment of EMT-related fibrotic diseases as well as airway remodeling in chronic asthma.
Collapse
Affiliation(s)
- Hui-Fang Kao
- Institute of Basic Medical Sciences, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
20
|
Kuo TF, Tatsukawa H, Matsuura T, Nagatsuma K, Hirose S, Kojima S. Free fatty acids induce transglutaminase 2-dependent apoptosis in hepatocytes via ER stress-stimulated PERK pathways. J Cell Physiol 2012; 227:1130-7. [PMID: 21567402 DOI: 10.1002/jcp.22833] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Non-alcoholic steatohepatitis (NASH), a progressive form of fatty liver, shares histological similarities with alcoholic steatohepatitis (ASH), including accumulated fat, hepatic apoptosis, and fibrous tissues in the liver, but the molecular mechanisms responsible for hepatic apoptosis remain unclear. We previously reported that transglutaminase 2 (TG2), induced in the nuclei of ethanol-treated hepatocytes, crosslinks and inactivates the transcription factor Sp1, leading to hepatic apoptosis. In this study, we investigated whether a similar change is involved in NASH, and if so, how TG2 and crosslinked Sp1 (CLSp1) are induced. Elevated nuclear TG2 and CLSp1 formation was demonstrated in NASH patients, as well as increased activation of apoptosis inducing factor (AIF) and release of cytochrome c. In Hc human normal hepatocytes treated with free fatty acids (FFAs), biochemical analyses revealed that ethanol and FFAs provoked fat accumulation, endoplasmic reticulum (ER) stress, increased nuclear factor kappa B (NFκB), and nuclear TG2. Salubrinal, a selective inhibitor of the ER stress-induced pancreatic ER kinase (PERK) signaling pathway, inhibited NFκB activation, nuclear TG2 expression, and apoptosis only if it was induced by FFAs, but not by ethanol. These results suggest that FFAs could increase ER stress and lead to nuclear NFκB activation and TG2 induction through PERK-dependent pathways, resulting in TG2-mediated apoptosis accompanying crosslinking and inactivation of Sp1, activation of AIF, and release of cytochrome c.
Collapse
Affiliation(s)
- Ting-Fang Kuo
- Chemical Biology Department, RIKEN Advanced Science Institute, Wako, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Kojima S, Kuo TF, Tatsukawa H. Regulation of transglutaminase-mediated hepatic cell death in alcoholic steatohepatitis and non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2012; 27 Suppl 2:52-7. [PMID: 22320917 DOI: 10.1111/j.1440-1746.2011.07009.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND AND AIM Transglutaminase 2 (TG2), catalyzing crosslinking between lysine and glutamine residues, is involved in many liver diseases. We previously reported that TG2, induced in the nucleus of ethanol- or free fatty acids (FFAs)-treated hepatic cells, crosslinks and inactivates a transcription factor Sp1, leading to reduced expression of c-Met and thereby caspase independent hepatic apoptosis in culture systems, animal models, and both alcoholic steatohepatitis (ASH) and non-alcoholic steatohepatitis (NASH) patients. FFAs increase endoplasmic reticulum (ER) stress, NFkB activation and nuclear TG2 (nTG2) through pancreatic ER kinase (PERK)-dependent pathway, whereas ethanol induces nTG2 via retinoid signaling. However, the molecular mechanism by which ethanol/FFAs induce nuclear localization of TG2 has been unclear. METHOD A similar nTG2-mediated cell death is induced in acyclic retinoid (ACR)-treated hepatocellular carcinoma. Using cultured cells, we investigated how to control this novel apoptotic pathway by regulating nuclear localization of TG2. RESULTS TG2 is composed of N-terminal b-sandwich, catalytic core, b-barrel 1, and C-terminal b-barrel 2 domains. In a previous work, we identified a 14 amino acid nuclear localization signal (NLS) within the b-barrel 1 domain and a putative leucine-rich nuclear export signal (NES) at position 657 to 664 (LHMGLHKL) near the C-terminus in the b-barrel 2 domain, and found that ACR downregulated exportin-1 levels, thereby accumulation of TG2 in the nucleus. Here, we found that both ethanol and FFAs provoked generation of truncated short form of TG2 (TG2-S) defects in the putative NES at least in part through alternative splicing, thereby causing accumulation of TG2-S in the nucleus. CONCLUSION The generation of TG2-S in ethanol or FFAs-treated hepatic cells is a novel therapeutic target for prevention of hepatic cell death associated with ASH/NASH.
Collapse
Affiliation(s)
- Soichi Kojima
- Molecular Ligand Biology Research Team, Chemical Genomics Research Group, Chemical Biology Department, RIKEN Advanced Science Institute, Saitama, Japan.
| | | | | |
Collapse
|
22
|
Kim SY. Transglutaminase 2: a new paradigm for NF-kappaB involvement in disease. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:161-95. [PMID: 22220474 DOI: 10.1002/9781118105771.ch4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Soo-Youl Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Kyonggi-do, Republic of Korea
| |
Collapse
|
23
|
Shleikin AG, Danilov NP. Evolutionary-biological peculiarities of transglutaminase. Structure, physiological functions, application. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093011010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Foo NP, Lin SH, Lee YH, Wu MJ, Wang YJ. α-Lipoic acid inhibits liver fibrosis through the attenuation of ROS-triggered signaling in hepatic stellate cells activated by PDGF and TGF-β. Toxicology 2011; 282:39-46. [PMID: 21251946 DOI: 10.1016/j.tox.2011.01.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/03/2011] [Accepted: 01/10/2011] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) have been implicated in hepatic stellate cell activation and liver fibrosis. We previously reported that α-lipoic acid (LA) and its reduced form dihydrolipoic acid (DHLA) inhibited toxicant-induced inflammation and ROS generation. In the present study, we further examined the effects of LA/DHLA on thioacetamide (TAA)-induced liver fibrosis in rats and the possible underlying mechanisms in hepatic stellate cells in vitro. We found that co-administration of LA to rats chronically treated with TAA inhibited the development of liver cirrhosis, as indicated by reductions in cirrhosis incidence, hepatic fibrosis, and AST/ALT activities. We also found that DHLA inhibited TGF-β/PDGF-stimulated HSC-T6 activation and ROS generation. These effects could be mediated by the MAPK and PI3K/Akt pathways. According to our current results, LA may have a beneficial role in the treatment of chronic liver diseases caused by ongoing hepatic damage.
Collapse
Affiliation(s)
- Ning-Ping Foo
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | |
Collapse
|
25
|
Zhu W, Li YH, Chen ML, Hu FL. Protective effects of Chinese and Brazilian propolis treatment against hepatorenal lesion in diabetic rats. Hum Exp Toxicol 2010; 30:1246-55. [PMID: 20956460 DOI: 10.1177/0960327110387456] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diabetes mellitus promoted an overproduction of free radicals and an increased incidence of both diabetic nephropathy and liver disease. In this report, we evaluated the effects of Chinese and Brazilian propolis on streptozotocin-induced hepatorenal injury in rats. The results demonstrated that Chinese propolis-treated rats had a 7.4% reduction in the glycated hemoglobin (HbAlc) level compared with untreated diabetic rats. Additionally, Chinese propolis induced an increase in the serum superoxide dismutase (SOD) level significantly while Brazilian propolis raised serum SOD and reduced level of malonaldehyde (MDA) and nitric synthetase (NOS). Of the measurable decrease in serum alanine transaminase (ALT), aspartate transaminase (AST) and microalbuminuria demonstrated the propolis-mediated improvement of hepatorenal function, which was further confirmed by histological examination. We also observed that Chinese and Brazilian propolis increased hepatorenal glutathione peroxidase (GSH-px) level and inhibited MDA production significantly. These results suggested that propolis may prevent hepatorenal injury by inhibiting lipid peroxidation and enhancing the activities of antioxidant enzymes.
Collapse
Affiliation(s)
- Wei Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
26
|
González-Puertos VY, Hernández-Pérez E, Nuño-Lámbarri N, Ventura-Gallegos JL, López-Diázguerrero NE, Robles-Díaz G, Gutiérrez-Ruiz MC, Konigsberg M. Bcl-2 overexpression in hepatic stellate cell line CFSC-2G, induces a pro-fibrotic state. J Gastroenterol Hepatol 2010; 25:1306-14. [PMID: 20594261 DOI: 10.1111/j.1440-1746.2009.06175.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AND AIM Development of hepatic fibrosis is a complex process that involves oxidative stress (OS) and an altered balance between pro- and anti-apoptotic molecules. Since Bcl-2 overexpression preserves viability against OS, our objective was to address the effect of Bcl-2 overexpression in the hepatic stellate cells (HSC) cell-line CFSC-2G under acetaldehyde and H(2)O(2) challenge, and explore if it protects these cells against OS, induces replicative senescence and/or modify extracellular matrix (ECM) remodeling potential. METHODS To induce Bcl-2 overexpression, HSC cell line CFSC-2G was transfected by lipofection technique. Green fluorescent protein-only CFSC-2G cells were used as a control. Cell survival after H(2)O(2) treatment and total protein oxidation were assessed. To determine cell cycle arrest, proliferation-rate, DNA synthesis and senescence were assessed. Matrix metalloproteinases (MMP), tissue-inhibitor of MMP (TIMP), transglutaminases (TG) and smooth muscle a-actin (alpha-SMA) were evaluated by western blot in response to acetaldehyde treatment as markers of ECM remodeling capacity in addition to transforming growth factor-beta (TGF-beta) mRNA. RESULTS Cells overexpressing Bcl-2 survived approximately 20% more than control cells when exposed to H(2)O(2) and approximately 35% proteins were protected from oxidation, but Bcl-2 did not slow proliferation or induced senescence. Bcl-2 overexpression did not change alpha-SMA levels, but it increased TIMP-1 (55%), tissue transglutaminases (tTG) (25%) and TGF-beta mRNA (49%), when exposed to acetaldehyde, while MMP-13 content decreased (47%). CONCLUSIONS Bcl-2 overexpression protected HSC against oxidative stress but it did not induce replicative senescence. It increased TIMP-1, tTG and TGF-beta mRNA levels and decreased MMP-13 content, suggesting that Bcl-2 overexpression may play a key role in the progression of fibrosis in chronic liver diseases.
Collapse
Affiliation(s)
- Viridiana Y González-Puertos
- Health and Sciences Department, Biological and Health Sciences Division, Metropolitan Independent University, México, DF, México
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Huang CS, Lee YR, Chen CS, Tu SH, Wang YJ, Lee CH, Chen LC, Chang HW, Chang CH, Chih-Ming S, Wu CH, Ho YS. Long-term ethanol exposure causes human liver cancer cells to become resistant to mitomycin C treatment through the inactivation of bad-mediated apoptosis. Mol Carcinog 2010; 49:728-38. [DOI: 10.1002/mc.20648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Recent advances in understanding the roles of transglutaminase 2 in alcoholic steatohepatitis. Cell Biol Int 2010; 34:325-34. [DOI: 10.1042/cbi20090130] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Kim Y, Eom S, Kim K, Lee YS, Choe J, Hahn JH, Lee H, Kim YM, Ha KS, Ro JY, Jeoung D. Transglutaminase II interacts with rac1, regulates production of reactive oxygen species, expression of snail, secretion of Th2 cytokines and mediates in vitro and in vivo allergic inflammation. Mol Immunol 2009; 47:1010-22. [PMID: 20004474 DOI: 10.1016/j.molimm.2009.11.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 11/13/2009] [Indexed: 12/22/2022]
Abstract
Transglutaminase II (TGase II) is a protein cross-linking enzyme with diverse biological functions. Here we report the role of TGase II in allergic inflammation. Antigen stimulation induced expression and activity of TGase II by activation of NF-kappaB in rat basophilic leukemia (RBL2H3) cells. This induction of TGase II was dependent on FcepsilonRI and EGFR. Interaction between TGase II and rac1 was induced following antigen stimulation. TGase II was responsible for the increased production of reactive oxygen species, expression of prostaglandin E2 synthase (PGE2 synthase) and was responsible for increased secretion of prostaglandin E2. ChIP assay showed that TGase II, through interaction with NF-kappaB, was responsible for the induction of histone deacetylase-3 (HDAC3) and snail by direct binding to promoter sequences. HDAC3 and snail induced by TGase II, exerted transcriptional repression on E-cadherin. Snail exerted negative effect on expression of MMP-2, and secretion of Th2 cytokines. Inhibition of matrix metalloproteinase-2 (MMP-2) inhibited secretion of Th2 cytokines. In vivo induction of TGase II was observed in Balb/c mouse model of IgE antibody-induced passive cutaneous anaphylaxis. Chemical inhibition of TGase II exerted negative effect on IgE-dependent passive cutaneous anaphylaxis. Chemical inhibition of TGase II by cystamine exerted negative effect on Balb/c mouse model of phorbol myristate acetate (PMA)-induced atopic dermatitis. These results suggest novel role of TGase II in allergic inflammation and TGase II can be developed as target for the development of allergy therapeutics.
Collapse
Affiliation(s)
- Youngmi Kim
- School of Biological Sciences, College of Natural Sciences, Kangwon National University, Chunchon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tu SH, Chang CC, Chen CS, Tam KW, Wang YJ, Lee CH, Lin HW, Cheng TC, Huang CS, Chu JS, Shih NY, Chen LC, Leu SJ, Ho YS, Wu CH. Increased expression of enolase alpha in human breast cancer confers tamoxifen resistance in human breast cancer cells. Breast Cancer Res Treat 2009; 121:539-53. [PMID: 19655245 DOI: 10.1007/s10549-009-0492-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Accepted: 07/18/2009] [Indexed: 01/22/2023]
Abstract
Enolase-alpha (ENO-1) is a key glycolytic enzyme that has been used as a diagnostic marker to identify human lung cancers. To investigate the role of ENO-1 in breast cancer diagnosis and therapy, the mRNA levels of ENO-1 in 244 tumor and normal paired tissue samples and 20 laser capture-microdissected cell clusters were examined by quantitative real-time PCR analysis. Increased ENO-1 mRNA expression was preferentially detected in estrogen receptor-positive (ER+) tumors (tumor/normal ratio >90-fold) when compared to ER-negative (tumor/normal ratio >20-fold) tumor tissues. The data presented here demonstrate that those patients whose tumors highly expressed ENO-1 had a poor prognosis with greater tumor size (>2 cm, *P = .017), poor nodal status (N > 3, *P = .018), and a shorter disease-free interval (<==1 year, *P < .009). We also found that higher-expressing ENO-1 tumors confer longer distance relapse (tumor/normal ratio = 82.8-92.4-fold) when compared to locoregional relapse (tumor/normal ratio = 43.4-fold) in postsurgical 4-hydroxy-tamoxifen (4-OHT)-treated ER+ patients (*P = .014). These data imply that changes in tumor ENO-1 levels are related to clinical 4-OHT therapeutic outcome. In vitro studies demonstrated that decreasing ENO-1 expression using small interfering RNA (siRNA) significantly augmented 4-OHT (100 nM)-induced cytotoxicity in tamoxifen-resistant (Tam-R) breast cancer cells. These results suggest that downregulation of ENO-1 could be utilized as a novel pharmacological approach for overcoming 4-OHT resistance in breast cancer therapy.
Collapse
Affiliation(s)
- Shih-Hsin Tu
- Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Mansour SZ, El-Kabany H. Effects of Fructus Piperis Longi extract on fibrotic liver of gamma-irradiated rats. Chin Med 2009; 4:2. [PMID: 19183455 PMCID: PMC2657146 DOI: 10.1186/1749-8546-4-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 01/30/2009] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND A major biomarker for liver fibrosis is transglutaminase which catalyzes cross-linking of epsilon-amines and alpha-glutamyl residues among amino acids leading to fibrosis. Fructus Piperis Longi is a common herb used in Chinese medicine. The present study evaluates the role of the ethanol extract of Fructus Piperis Longi in the modulation of liver function in liver fibrosis. METHODS Plf extract (50 mg/kg) was force-fed to rats every other day 7 days before administration of thioacetamide and/or gamma irradiation. Thioacetamid 200 mg/kg was intraperitoneally administered to rats twice per week for four weeks. Rats were gamma irradiated (2 Gy/week up to a total dose of 8 Gy). Administration of Plf ext was extended during thioacetamid and/or irradiation treatment. Animals were sacrificed. Biochemical parameters in homogenised liver were tested. RESULTS A significant increase in transglutaminase activity and collagen content was recorded in the liver of thioacetamid-treated and/or irradiated rats. Significant increases in lipid peroxides, lipid hydroperoxides and conjugated dienes associated to significant decreases of reduced glutathione content, superoxide dismutase and catalase activities were also recorded. Administration of Plf ext treatment reduced the severity of liver fibrosis and oxidative damage which was substantiated by amelioration of liver function detected by a decrease in serum aspartate aminotransaminase, alanine aminotransferase, alkaline phosphatase, gamma glutamyltransferase activities and bilirubin (total, direct and indirect) content. CONCLUSION Treatment of the ethanolic extract of Fructus Piperis Longi ameliorated the increase of the activity of tTG enzyme and enhanced antioxidant activities in fibrotic liver.
Collapse
Affiliation(s)
- Somaya Zakaria Mansour
- Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Authority, Cairo, Egypt
| | - Hanan El-Kabany
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Authority, Cairo, Egypt
| |
Collapse
|