1
|
Li P, Meng J, Zhang C, Wei Z, Guo Z, Yun K, Liu Y. Mass spectrometry detection of organophosphorus pesticide adducts on butyrylcholinesterase and albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124195. [PMID: 38959705 DOI: 10.1016/j.jchromb.2024.124195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 07/05/2024]
Abstract
This study established a method to prepare and detect OPs adducts on butyrylcholinesterase (BChE) and human serum albumin (HSA). OPs (methyl paraoxon, ethyl paraoxon, methyl parathion, parathion) were incubated with BChE or HSA in vitro, and the adducts of OPs-BChE or OPs-HSA were prepared and qualitatively analyzed by ultra-performance liquid chromatography data-dependent high-resolution tandem mass spectrometry (UPLC-ddHRMS/MS). The amounts of BChE and HSA in the incubating systems were varied and the resulting amounts of the adducts were determined using linear regression. OPs-BChE in the blood were isolated by immunomagnetic separation (IMS), and then digested into the OPs-nonapeptide adduct by pepsin. The proteins in the remaining blood plasma were precipitated and digested by pronase to OPs-tyrosines(OPs-Tyr), which were quantified by UPLC-ddHRMS/MS. 4 OPs-nonapeptides and 4 OPs-Tyr adducts were obtained through the process above. The relative mass deviation of incubated adducts between the actual and theoretical exact masses was less than 10 ppm, and further confirmed by fragmentation mass spectra analysis. Calibration curves were linear for all adducts with a coefficient of determination value (R2) ≥0.995. The limits of detection (LOD) and limits of quantification (LOQ) for adducts detected by MS ranged from 0.05 to 1.0 ng/mL, and from 0.1 to 2.0 ng/mL, respectively. The recovery percentages for adducts ranged from 76.1 % to 107.1 %, matrix effects ranged from 83.4 % to 102.1 %. The inter-day and intra-day precision were 6.1-10.1 % and 6.9-12.9 % for adducts. This study provides a new reference method for the detection of organophosphorus pesticide poisoning. In addition, two blood samples with organophosphorus poisoning were tested by the designed method, and the corresponding adducts were detected in both samples.
Collapse
Affiliation(s)
- Peng Li
- Forensic Science Centre of Zibo Public Security Bureau, Zibo 255000, Shandong, China; Shanxi Key Laboratory of Forensic Medicine, School of Forensic Medicine, Shanxi Medical University and Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China
| | - Junpeng Meng
- Department of General Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030405, Shanxi, China
| | - Chao Zhang
- Shanxi Key Laboratory of Forensic Medicine, School of Forensic Medicine, Shanxi Medical University and Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China
| | - Zhiwen Wei
- Shanxi Key Laboratory of Forensic Medicine, School of Forensic Medicine, Shanxi Medical University and Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China
| | - Zhongyuan Guo
- Shanxi Key Laboratory of Forensic Medicine, School of Forensic Medicine, Shanxi Medical University and Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China.
| | - Keming Yun
- Shanxi Key Laboratory of Forensic Medicine, School of Forensic Medicine, Shanxi Medical University and Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China.
| | - Yao Liu
- Shanxi Key Laboratory of Forensic Medicine, School of Forensic Medicine, Shanxi Medical University and Key Laboratory of Forensic Toxicology of Ministry of Public Security, Jinzhong 030600, Shanxi, China.
| |
Collapse
|
2
|
Li K, Liu Y, Liu Y, Li Q, Guo L, Xie J. The reactivation kinetic analysis, molecular docking, and dynamics of oximes against three V-type nerve agents inhibited four human cholinesterases. Chem Biol Interact 2024; 396:111061. [PMID: 38763347 DOI: 10.1016/j.cbi.2024.111061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Nerve agents pose significant threats to civilian and military populations. The reactivation of acetylcholinesterase (AChE) is critical in treating acute poisoning, but there is still lacking broad-spectrum reactivators, which presents a big challenge. Therefore, insights gained from the reactivation kinetic analysis and molecular docking are essential for understanding the behavior of reactivators towards intoxicated AChE. In this research, we present a systematic determination of the reactivation kinetics of three V agents-inhibited four human ChEs [(AChE and butyrylcholinesterase (BChE)) from either native or recombinant resources, namely, red blood cell (RBC) AChE, rhAChE, hBChE, rhBChE) reactivated by five standard oximes. We unveiled the effect of native and recombinant ChEs on the reactivation kinetics of V agents ex vitro, where the reactivation kinetics characteristic of Vs-inhibited BChE was reported for the first time. In terms of the inhibition type, all of the five oxime reactivators exhibited noncompetitive inhibition. The inhibition potency of these reactivators would not lead to the difference in the reactivation kinetics between native and recombinant ChE. Despite the significant differences between the native and recombinant ChEs observed in the inhibition, aging, and spontaneous reactivation kinetics, the reactivation kinetics of V agent-inhibited ChEs by oximes were less differentiated, which were supported by the ligand docking results. We also found differences in the reactivation efficiency between five reactivators and the phosphorylated enzyme, and molecular dynamic simulations can further explain from the perspectives of conformational stability, hydrogen bonding, binding free energies, and amino acid contributions. By Poisson-Boltzmann surface area (MM-PBSA) calculations, the total binding free energy trends aligned well with the experimental kr2 values.
Collapse
Affiliation(s)
- Kexin Li
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yulong Liu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yanqin Liu
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Qian Li
- Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Jianwei Xie
- Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|
3
|
Horn G, Rappenglück S, Worek F. Inhibition kinetics of acetylcholinesterase and butyrylcholinesterase from various species by 2-(2-cresyl)-4H-1,3,2-benzodioxaphosphorin-2-oxide (CBDP). Toxicol Lett 2024; 396:28-33. [PMID: 38642675 DOI: 10.1016/j.toxlet.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
The aerotoxic syndrome has been associated with exposure to tricresyl phosphate (TCP), which is used as additive in hydraulic fluids and engine lubricants. The toxic metabolite 2-(2-cresyl)-4H-1,3,2-benzodioxaphosphorin-2-oxide (CBDP) is formed from the TCP isomer tri-ortho-cresyl phosphate (TOCP) in vivo and is known to react with the active site serine in acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) resulting in the inhibition of the enzymes. Previous in vitro studies showed pronounced species differences in the inhibition kinetics of cholinesterases by organophosphorus compounds (OP), which must be considered in the development of relevant animal models for the investigation of OP poisoning and the aerotoxic syndrome. The present study was designed to investigate the inhibition kinetics of human, Cynomolgus monkey, pig, mini pig, guinea pig, mouse, and rat AChE as well as BChE by CBDP under standardized conditions. There were similar rate constants for the inhibition (ki) of human, Cynomolgus monkey and mouse AChE by CBDP. In contrast, the ki values obtained for guinea pig, mini pig, pig, and rat AChE were 2.8- to 5.9-fold lower than that of human AChE. The results of the present study confirmed CBDP as one of the most potent inhibitors of human BChE, indicating a ki value of 3.24 ± 0.33 ×108M-1min-1, which was about 1,140-fold higher than that of human AChE. Accordingly, a markedly more pronounced inhibition rate of BChE from the species guinea pig, mini pig, pig, rat, Cynomolgus monkey, and mouse by CBDP was found as compared to those of AChE from the respective sources, indicating 2.0- to 89.6-fold higher ki values.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany.
| | - Sebastian Rappenglück
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937 Munich, Germany
| |
Collapse
|
4
|
Lovins AR, Miller KA, Buck AK, Ensey DS, Homoelle RK, Murtha MC, Ward NA, Shanahan LA, Gutti G, Shriwas P, McElroy CA, Callam CS, Hadad CM. 4-Amidophenol Quinone Methide Precursors: Effective and Broad-Scope Nonoxime Reactivators of Organophosphorus-Inhibited Cholinesterases and Resurrectors of Organophosphorus-Aged Acetylcholinesterase. ACS Chem Neurosci 2024; 15:1813-1827. [PMID: 38621296 DOI: 10.1021/acschemneuro.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Acetylcholinesterase (AChE) inhibition by organophosphorus (OP) compounds poses a serious health risk to humans. While many therapeutics have been tested for treatment after OP exposure, there is still a need for efficient reactivation against all kinds of OP compounds, and current oxime therapeutics have poor blood-brain barrier penetration into the central nervous system, while offering no recovery in activity from the OP-aged forms of AChE. Herein, we report a novel library of 4-amidophenol quinone methide precursors (QMP) that provide effective reactivation against multiple OP-inhibited forms of AChE in addition to resurrecting the aged form of AChE after exposure to a pesticide or some phosphoramidates. Furthermore, these QMP compounds also reactivate OP-inhibited butyrylcholinesterase (BChE) which is an in vivo, endogenous scavenger of OP compounds. The in vitro efficacies of these QMP compounds were tested for reactivation and resurrection of soluble forms of human AChE and BChE and for reactivation of cholinesterases within human blood as well as blood and brain samples from a humanized mouse model. We identify compound 10c as a lead candidate due to its broad-scope efficacy against multiple OP compounds as well as both cholinesterases. With methylphosphonates, compound 10c (250 μM, 1 h) shows >60% recovered activity from OEt-inhibited AChE in human blood as well as mouse blood and brain, thus highlighting its potential for future in vivo analysis. For 10c, the effective concentration (EC50) is less than 25 μM for reactivation of three different methylphosphonate-inhibited forms of AChE, with a maximum reactivation yield above 80%. Similarly, for OP-inhibited BChE, 10c has EC50 values that are less than 150 μM for two different methylphosphonate compounds. Furthermore, an in vitro kinetic analysis show that 10c has a 2.2- and 92.1-fold superior reactivation efficiency against OEt-inhibited and OiBu-inhibited AChE, respectively, when compared to an oxime control. In addition to 10c being a potent reactivator of AChE and BChE, we also show that 10c is capable of resurrecting (ethyl paraoxon)-aged AChE, which is another current limitation of oximes.
Collapse
Affiliation(s)
- Alex R Lovins
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Kevin A Miller
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Anne K Buck
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - D Sophia Ensey
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Rose K Homoelle
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Megan C Murtha
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan A Ward
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Liam A Shanahan
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Gopichand Gutti
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Pratik Shriwas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Craig A McElroy
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher S Callam
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry, College of Arts and Sciences, Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
5
|
Kranawetvogl T, Siegert M, Steinritz D, Thiermann H, John H. The phosphylated butyrylcholinesterase-derived tetrapeptide GlyGluSerAla proves exposure to organophosphorus agents with enantioselectivity. Arch Toxicol 2024; 98:791-806. [PMID: 38267661 DOI: 10.1007/s00204-023-03657-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024]
Abstract
We herein present for the first time the phosphylated (*) tetrapeptide (TP)-adduct GlyGluSer198*Ala generated from butyrylcholinesterase (BChE) with proteinase K excellently suited for the verification of exposure to toxic organophosphorus nerve agents (OPNA). Verification requires bioanalytical methods mandatory for toxicological and legal reasons. OPNA react with BChE by phosphonylation of the active site serine residue (Ser198) forming one of the major target protein adducts for verification. After its enzymatic cleavage with pepsin, the nonapeptide (NP) PheGlyGluSer*AlaGlyAlaAlaSer is typically produced as biomarker. Usually OPNA occur as racemic mixtures of phosphonic acid derivatives with the stereocenter at the phosphorus atom, e.g. (±)-VX. Both enantiomers react with BChE, but the adducted NP does not allow their chromatographic distinction. In contrast, the herein introduced TP-adducts appeared as two peaks when using a stationary reversed phase (1.8 µm) in micro-liquid chromatography-electrospray ionisation tandem-mass spectrometry (µLC-ESI MS/MS) analysis. These two peaks represent diastereomers of the (+)- and (-)-OPNA adducted to the peptide that comprises chiral L-amino acids exclusively. Concentration- and time-dependent effects of adduct formation with (±)-VX and its pure enantiomers (+)- and (-)-VX as well as with (±)-cyclosarin (GF) were investigated in detail characterising enantioselective adduct formation, stability, ageing and spontaneous reactivation. The method was also successfully applied to samples from a real case of pesticide poisoning as well as to samples of biomedical proficiency tests provided by the Organisation for the Prohibition of Chemical Weapons.
Collapse
Affiliation(s)
- Tamara Kranawetvogl
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
- Walther-Straub-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
- Walther-Straub-Institut, Ludwig-Maximilians-Universität, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany.
| |
Collapse
|
6
|
Jovičić SM. Enzyme ChE, cholinergic therapy and molecular docking: Significant considerations and future perspectives. Int J Immunopathol Pharmacol 2024; 38:3946320241289013. [PMID: 39367568 PMCID: PMC11526157 DOI: 10.1177/03946320241289013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
Enzyme Che plays an essential role in cholinergic and non-cholinergic functions. It is present in the fertilized/unfertilized eggs and sperm of different species. Inclusion criteria for data collection from electronic databases NCBI and Google Scholar are enzyme AChE/BChE, cholinergic therapy, genomic organization and gene transcription, enzyme structure, biogenesis, transport, processing and localization, molecular signaling and biological function, polymorphism and influencing factors. Enzyme Che acts as a signaling receptor during hematopoiesis, protein adhesion, amyloid fiber formation, neurite outgrowth, bone development, and maturation, explaining the activity out of synaptic neurotransmission. Polymorphism in the Che genes correlates to various diseases and diverse drug responses. In particular, change accompanies cancer, neurodegenerative, and cardiovascular disease. Literature knowledge indicates the importance of Che inhibitors that influence biochemical and molecular pathways in disease treatment, genomic organization, gene transcription, structure, biogenesis, transport, processing, and localization of Che enzyme. Enzyme Che polymorphism changes indicate the possibility of efficient and new inhibitor drug target mechanisms in diverse research areas.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Li K, Liu Y, Liu Y, Li Q, Guo L, Xie J. The kinetic and molecular docking analysis of interactions between three V-type nerve agents and four human cholinesterases. Chem Biol Interact 2023; 372:110369. [PMID: 36708975 DOI: 10.1016/j.cbi.2023.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
G and V-type nerve agents represent the most toxic chemical warfare agents. Their primary toxicity was the consequence of the covalent inhibition of the pivotal acetylcholinesterase (AChE), which induces overstimulation of cholinergic receptors and overaccumulation of cholines, eventually leading to death by respiratory arrest. The inhibitory and reactivation kinetics of cholinesterase (ChE) are essential for the toxicology and countermeasures of nerve agents. Medical defensive research on V-type nerve agents (V agents) has been mainly reported on VX and VR. Here we demonstrated the first systematical kinetic analysis between the type of ChE [native or recombinant human AChE and butyrylcholinesterase (BChE)] and three V agents, including VX, VR, and Vs, another isomer of VX, and highlighted the effects of native and recombinant ChE differences. The spontaneous reactivation and aging kinetics data of Vs-inhibited BChEs were firstly reported here. The results showed that AChE was more easily inhibited by three V agent compared to BChE, regardless of whether it is native or recombinant. The increased inhibitory potency order on AChE was VX, Vs, then VR, and on BChE was VX, then Vs and VR. The difference between native and recombinant ChE could influence the inhibition, aging, and spontaneous reactivation kinetics of three V agents, whether AChE or BChE, which was systematically revealed for the first time. For inhibition kinetics, the ki of three V agents for recombinant AChE was significantly higher than native AChE, and the stronger the inhibitory potency of V agents, the more pronounced difference in ki. In terms of aging and spontaneous reactivation kinetics, recombinant ChE was found to be more prone to spontaneous reactivation, but more resistant to aging compared to native ChE, particularly for AChE. The performed covalent molecular docking results partially explained the effects of differences between native and recombinant ChE on enzyme kinetics from the perspective of binding energy and conformation.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yulong Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Yanqin Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Qian Li
- State Key Laboratory of Toxicology and Medical Countermeasures, and Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Haidian District, 100850, Beijing, China
| | - Lei Guo
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China.
| | - Jianwei Xie
- State Key Laboratory of Toxicology and Medical Countermeasures, and Laboratory of Toxicant Analysis, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, 27 Taiping Road, Haidian District, 100850, Beijing, China
| |
Collapse
|
8
|
Simultaneous measurement of six biomarkers of dichlorvos in blood by ultra performance liquid chromatography-quadrupole/electrostatic field orbitrap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123381. [DOI: 10.1016/j.jchromb.2022.123381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/08/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
|
9
|
Mosier JA, Hybart RL, Lewis AM, Alugubelly N, Mohammed AN, Carr RL. Inhibition of Serum Esterases in Juvenile Rats Repeatedly Exposed to Low Levels of Chlorpyrifos. INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENVIRONMENTAL SCIENCE AND TOXICOLOGY 2022; 5:10.15226/2572-3162/5/1/00133. [PMID: 36118291 PMCID: PMC9477121 DOI: 10.15226/2572-3162/5/1/00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphorus insecticide that has gained significant attention cue to the reported toxicity associated with developmental exposure. While the canonical mechanism of toxicity of CPF involves the inhibition of brain acetylcholinesterase (AChE), we have reported that exposure of juvenile rats to levels of CPF that do not yield any inhibition of brain AChE results in neurobehavioral alterations at later ages. However, it is unclear what effect exposure to these low levels of CPF has on blood esterase activities which are frequently used not only as biomarkers of exposure but also to set exposure levels in risk assessment. To determine this, male and female rat pups were exposed orally from postnatal day 10 to 16 to either corn oil (vehicle) or 0.5, 0.75, or 1.0 mg/kg CPF. At 12 h after the final exposure, serum cholinesterase (ChE), butyrylcholinesterase (BChE), and carboxylesterase (CES), and red blood cell (RBC) and brain AChE activities were determined. There were no differences between sexes in either the controls or individual treatments for all enzymes. Only the highest dosage of 1.0 mg/kg CPF yielded significant brain AChE inhibition (22-24%) but all dosages significantly inhibited the blood esterases with inhibition being highest with serum CES (65-85%) followed by serum BChE (57-76%), RBC AChE (35-65%), and then serum ChE (16-32%). Our data verify that blood esterases are inhibited at dosages of CPF that alter neurobehavioral performance in the absence of effects on brain AChE activity.
Collapse
Affiliation(s)
- Jenna A. Mosier
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Rachel L. Hybart
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Aubrey M. Lewis
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Navatha Alugubelly
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Afzaal N. Mohammed
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| | - Russell L. Carr
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, MS, USA
| |
Collapse
|
10
|
Sibomana I, Rohan JG, Mattie DR. 21-Day dermal exposure to aircraft engine oils: effects on esterase activities in brain and liver tissues, blood, plasma, and clinical chemistry parameters for Sprague Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:357-388. [PMID: 33380269 DOI: 10.1080/15287394.2020.1867680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This dermal study tested the potential toxicity of grade 3 (G3) and 4 (G4) organophosphate-containing aircraft engine oils in both new (G3-N, G4-N) and used states (G3-U, G4-U) to alter esterase activities in blood, brain and liver tissues, clinical chemistry parameters, and electrophysiology of hippocampal neurons. A 300 µl volume of undiluted oil was applied in Hill Top Chamber Systems®, then attached to fur-free test sites on backs of male and female Sprague Dawley rats for 6 hr/day, 5 days/week for 21 days. Recovery rats received similar treatments and kept for 14 days post-exposure to screen for reversibility, persistence, or delayed occurrence of toxicity. In brain, both versions of G3 and G4 significantly decreased (32-41%) female acetylcholinesterase (AChE) activity while in males only G3-N and G4-N reduced (33%) AChE activity. Oils did not markedly affect AChE in liver, regardless of gender. In whole blood, G3-U decreased female AChE (29%) which persisted during recovery (32%). G4-N significantly lowered (29%) butyrylcholinesterase (BChE) in male plasma, but this effect was resolved during recovery. For clinical chemistry indices, only globulin levels in female plasma significantly increased following G3-N or G4-N exposure. Preliminary electrophysiology data suggested that effects of both versions of G3 and G4 on hippocampal function may be gender dependent. Aircraft maintenance workers may be at risk if precautions are not taken to minimize long-term aircraft oil exposure.
Collapse
Affiliation(s)
- Isaie Sibomana
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Wright-Patterson Air Force Base, OH, USA
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| | - Joyce G Rohan
- Environmental Health Effects Laboratory, Naval Medical Research Unit Dayton (NAMRU-D), Wright-Patterson Air Force Base, OH, USA
| | - David R Mattie
- Air Force Research Laboratory, 711 Human Performance Wing, Wright-Patterson Air Force Base, OH, USA
| |
Collapse
|
11
|
Nichols RH, Chambers JE. Reactivation of organophosphate-inhibited serum butyrylcholinesterase by novel substituted phenoxyalkyl pyridinium oximes and traditional oximes. Toxicology 2021; 452:152719. [PMID: 33592259 DOI: 10.1016/j.tox.2021.152719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/30/2021] [Accepted: 02/09/2021] [Indexed: 10/22/2022]
Abstract
Organophosphorus compounds (OPs) include nerve agents and insecticides that potently inhibit acetylcholinesterase (AChE), an essential enzyme found throughout the nervous system. High exposure levels to OPs lead to seizures, cardiac arrest, and death if left untreated. Oximes are a critical piece to the therapeutic regimen which remove the OP from the inhibited AChE and restore normal cholinergic function. The current oximes 2-PAM, MMB-4, TMB-4, HI-6, and obidoxime (OBD) have two drawbacks: lack of broad spectrum protection against multiple OP structures and poor brain penetration to protect against OP central neurotoxicity. An alternative strategy to enhance therapy is reactivation of serum butyrylcholinesterase (BChE). BChE is stoichiometrically inhibited by OPs with no apparent toxic result. Inhibition of BChE in the serum followed by reactivation could create a pseudo-catalytic scavenger allowing numerous regenerations of BChE to detoxify circulating OP molecules before they can reach target AChE. BChE in serum from rats, guinea pigs or humans was screened for the reactivation potential of our novel substituted phenoxyalkyl pyridinium oximes, plus 2-PAM, MMB-4, TMB-4, HI-6, and OBD (100μM) in vitro after inhibition by highly relevant surrogates of sarin, VX, and cyclosarin, and also DFP, and the insecticidal active metabolites paraoxon, phorate-oxon, and phorate-oxon sulfoxide. Novel oxime 15 demonstrated significant broad spectrum reactivation of OP-inhibited rat serum BChE while novel oxime 20 demonstrated significant broad spectrum reactivation of OP-inhibited human serum BChE. All tested oximes were poor reactivators of OP-inhibited guinea pig serum BChE. The bis-pyridinium oximes were poor BChE reactivators overall. BChE reactivation may be an additional mechanism to attenuate OP toxicity and contribute to therapeutic efficacy.
Collapse
Affiliation(s)
- Royce H Nichols
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, United States
| | - Janice E Chambers
- Center for Environmental Health Sciences, College of Veterinary Medicine, Mississippi State University, MS, 39762, United States.
| |
Collapse
|
12
|
John H, Thiermann H. Poisoning by organophosphorus nerve agents and pesticides: An overview of the principle strategies and current progress of mass spectrometry-based procedures for verification. J Mass Spectrom Adv Clin Lab 2021; 19:20-31. [PMID: 34820662 PMCID: PMC8601002 DOI: 10.1016/j.jmsacl.2021.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/02/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
Evidence of poisoning with organophosphorus (OP) nerve agents requires biomedical verification. OP nerve agents undergo common biotransformation pathways producing valuable biomarkers. Internationally accepted methods target remaining poison, hydrolysis products and protein-adducts. Mass spectrometry-based methods provide optimum selectivity and sensitivity for identification. Methods, strategies, current proceedings, quality criteria and real cases of poisoning are presented.
Intoxication by organophosphorus (OP) poisons, like nerve agents and pesticides, is characterized by the life-threatening inhibition of acetylcholinesterase (AChE) caused by covalent reaction with the serine residue of the active site of the enzyme (phosphylation). Similar reactions occur with butyrylcholinesterase (BChE) and serum albumin present in blood as dissolved proteins. For forensic purposes, products (adducts) with the latter proteins are highly valuable long-lived biomarkers of exposure to OP agents that are accessible by diverse mass spectrometric procedures. In addition, the evidence of poison incorporation might also succeed by the detection of remaining traces of the agent itself, but more likely its hydrolysis and/or enzymatic degradation products. These relatively short-lived molecules are distributed in blood and tissue, and excreted via urine. This review presents the mass spectrometry-based methods targeting the different groups of biomarkers in biological samples, which are already internationally accepted by the Organisation for the Prohibition of Chemical Weapons (OPCW), introduces novel approaches in the field of biomedical verification, and outlines the strict quality criteria that must be fulfilled for unambiguous forensic analysis.
Collapse
|
13
|
Worek F, Thiermann H, Wille T. Organophosphorus compounds and oximes: a critical review. Arch Toxicol 2020; 94:2275-2292. [PMID: 32506210 PMCID: PMC7367912 DOI: 10.1007/s00204-020-02797-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Organophosphorus (OP) pesticides and nerve agents still pose a threat to the population. Treatment of OP poisoning is an ongoing challenge and burden for medical services. Standard drug treatment consists of atropine and an oxime as reactivator of OP-inhibited acetylcholinesterase and is virtually unchanged since more than six decades. Established oximes, i.e. pralidoxime, obidoxime, TMB-4, HI-6 and MMB-4, are of insufficient effectiveness in some poisonings and often cover only a limited spectrum of the different nerve agents and pesticides. Moreover, the value of oximes in human OP pesticide poisoning is still disputed. Long-lasting research efforts resulted in the preparation of countless experimental oximes, and more recently non-oxime reactivators, intended to replace or supplement the established and licensed oximes. The progress of this development is slow and none of the novel compounds appears to be suitable for transfer into advanced development or into clinical use. This situation calls for a critical analysis of the value of oximes as mainstay of treatment as well as the potential and limitations of established and novel reactivators. Requirements for a straightforward identification of superior reactivators and their development to licensed drugs need to be addressed as well as options for interim solutions as a chance to improve the therapy of OP poisoning in a foreseeable time frame.
Collapse
Affiliation(s)
- Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| | - Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstrasse 11, 80937, Munich, Germany
| |
Collapse
|
14
|
Targeting organophosphorus compounds poisoning by novel quinuclidine-3 oximes: development of butyrylcholinesterase-based bioscavengers. Arch Toxicol 2020; 94:3157-3171. [PMID: 32583098 DOI: 10.1007/s00204-020-02811-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023]
Abstract
A library of 14 mono-oxime quinuclidinium-based compounds with alkyl or benzyl substituent were synthesized and characterized in vitro as potential antidotes for organophosphorus compounds (OP) poisoning treatment. We evaluated their potency for reversible inhibition and reactivation of OP inhibited human acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) and evaluated interactions by molecular docking studies. The reactivation was notable for both AChE and BChE inhibited by VX, cyclosarin, sarin and paraoxon, if quinuclidinium compounds contained the benzyl group attached to the quinuclidinium moiety. Out of all 14, oxime Q8 [4-bromobenzyl-3-(hydroxyimino)quinuclidinium bromide] was singled out as having the highest determined overall reactivation rate of approximately 20,000 M-1 min-1 for cyclosarin-inhibited BChE. Furthermore, this oxime in combination with BChE exhibited a capability to act as a bioscavenger of cyclosarin, degrading within 2 h up to 100-fold excess of cyclosarin concentration over the enzyme. Molecular modeling revealed that the position of the cyclohexyl moiety conjugated with the active site serine of BChE directs the favorable positioning of the quinuclidinium ring and the bromophenyl moiety of Q8, which makes phosphonylated-serine easily accessible for the nucleophilic displacement by the oxime group of Q8. This result presents a novel scaffold for the development of new BChE-based bioscavengers. Furthermore, a cytotoxic effect was not observed for Q8, which also makes it promising for further in vivo reactivation studies.
Collapse
|
15
|
McGarry KG, Schill KE, Winters TP, Lemmon EE, Sabourin CL, Harvilchuck JA, Moyer RA. Characterization of Cholinesterases From Multiple Large Animal Species for Medical Countermeasure Development Against Chemical Warfare Nerve Agents. Toxicol Sci 2019; 174:124-132. [DOI: 10.1093/toxsci/kfz250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Organophosphorus (OP) compounds, which include insecticides and chemical warfare nerve agents (CWNAs) such as sarin (GB) and VX, continue to be a global threat to both civilian and military populations. It is widely accepted that cholinesterase inhibition is the primary mechanism for acute OP toxicity. Disruption of cholinergic function through the inhibition of acetylcholinesterase (AChE) leads to the accumulation of the neurotransmitter acetylcholine. Excess acetylcholine at the synapse results in an overstimulation of cholinergic neurons which manifests in the common signs and symptoms of OP intoxication (miosis, increased secretions, seizures, convulsions, and respiratory failure). The primary therapeutic strategy employed in the United States to treat OP intoxication includes reactivation of inhibited AChE with the oxime pralidoxime (2-PAM) along with the muscarinic acetylcholine receptor antagonist atropine and the benzodiazepine, diazepam. CWNAs are also known to inhibit butyrylcholinesterase (BChE) without any apparent toxic effects. Therefore, BChE may be viewed as a “bioscavenger” that stoichiometrically binds CWNAs and removes them from circulation. The degree of inhibition of AChE and BChE and the effectiveness of 2-PAM are known to vary among species. Animal models are imperative for evaluating the efficacy of CWNA medical countermeasures, and a thorough characterization of available animal models is important for translating results to humans. Thus, the objective of this study was to compare the circulating levels of each of the cholinesterases as well as multiple kinetic properties (inhibition, reactivation, and aging rates) of both AChE and BChE derived from humans to AChE and BChE derived from commonly used large animal models.
Collapse
Affiliation(s)
| | | | | | - Erin E Lemmon
- Battelle Memorial Institute, Columbus, OH 43201, Ohio
| | | | | | | |
Collapse
|
16
|
Kovarik Z, Maček Hrvat N, Kalisiak J, Katalinić M, Sit RK, Zorbaz T, Radić Z, Fokin VV, Sharpless KB, Taylor P. Counteracting tabun inhibition by reactivation by pyridinium aldoximes that interact with active center gorge mutants of acetylcholinesterase. Toxicol Appl Pharmacol 2019; 372:40-46. [PMID: 30978400 DOI: 10.1016/j.taap.2019.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
Abstract
Tabun represents the phosphoramidate class of organophosphates that are covalent inhibitors of acetylcholinesterase (AChE), an essential enzyme in neurotransmission. Currently used therapy in counteracting excessive cholinergic stimulation consists of a muscarinic antagonist (atropine) and an oxime reactivator of inhibited AChE, but the classical oximes are particularly ineffective in counteracting tabun exposure. In a recent publication (Kovarik et al., 2019), we showed that several oximes prepared by the Huisgen 1,3 dipolar cycloaddition and related precursors efficiently reactivate the tabun-AChE conjugate. Herein, we pursue the antidotal question further and examine a series of lead precursor molecules, along with triazole compounds, as reactivators of two AChE mutant enzymes. Such studies should reveal structural subtleties that reside within the architecture of the active center gorge of AChE and uncover intimate mechanisms of reactivation of alkylphosphate conjugates of AChE. The designated mutations appear to minimize steric constraints of the reactivating oximes within the impacted active center gorge. Indeed, after initial screening of the triazole oxime library and its precursors for the reactivation efficacy on Y337A and Y337A/F338A human AChE mutants, we found potentially active oxime-mutant enzyme pairs capable of degrading tabun in cycles of inhibition and reactivation. Surprisingly, the most sensitive ex vivo reactivation of mutant AChEs occurred with the alkylpyridinium aldoximes. Hence, although the use of mutant enzyme bio-scavengers in humans may be limited in practicality, bioscavenging and efficient neutralization of tabun itself or phosphoramidate mixtures of organophosphates might be achieved efficiently in vitro or ex vivo with these mutant AChE combinations.
Collapse
Affiliation(s)
- Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | | | - Jarosław Kalisiak
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rakesh K Sit
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Tamara Zorbaz
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Valery V Fokin
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - K Barry Sharpless
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, USA
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA.
| |
Collapse
|
17
|
Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations. Toxicology 2018; 406-407:104-113. [DOI: 10.1016/j.tox.2018.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 11/18/2022]
|
18
|
Post-exposure treatment with the oxime RS194B rapidly reactivates and reverses advanced symptoms of lethal inhaled paraoxon in macaques. Toxicol Lett 2017; 293:229-234. [PMID: 29129799 DOI: 10.1016/j.toxlet.2017.10.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 01/02/2023]
Abstract
Fatalities from organophosphate (OP) insecticide result from both occupational and deliberate exposure; significantly impacting human health. Like nerve agents, insecticides are neurotoxins which target and inhibit acetylcholinesterases (AChE) in central and peripheral synapses in the cholinergic nervous system. Post-exposure therapeutic countermeasures generally include administration of atropine with a pyridinium aldoxime e.g. pralidoxime, to reactivate the OP-inhibited AChE. However, commonly used oximes inefficiently cross the bloodbrain barrier and are rapidly cleared and their benefit is debated. Recent findings have demonstrated the ability of a novel zwitterionic, centrally acting, brain penetrating oxime (RS194B) to reverse severe symptoms and rapidly reactivate sarin-inhibited AChE in macaques, but it has not been tested following OP pesticide poisoning. In the present study, the symptoms following a lethal dose of inhaled paraoxon (100ug/kg), were shown to mimic those in insecticide poisoned individuals and were also rapidly reversed in macaques by post-exposure IM administration of 80mg/kg of RS194B. This occurred with a concomitant reactivation of AChE to 40-100% in<1hr and BChE (40% in 8h). These findings will be used to develop a macaque model with RS194B as a post-exposure treatment for insecticide poisoning and generate efficacy data for approval under the FDA Animal rule.
Collapse
|
19
|
Dafferner AJ, Schopfer LM, Xiao G, Cashman JR, Yerramalla U, Johnson RC, Blake TA, Lockridge O. Immunopurification of Acetylcholinesterase from Red Blood Cells for Detection of Nerve Agent Exposure. Chem Res Toxicol 2017; 30:1897-1910. [PMID: 28892361 PMCID: PMC5646370 DOI: 10.1021/acs.chemrestox.7b00209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Nerve agents and
organophosphorus pesticides make a covalent bond
with the active site serine of acetylcholinesterase (AChE), resulting
in inhibition of AChE activity and toxic symptoms. AChE in red blood
cells (RBCs) serves as a surrogate for AChE in the nervous system.
Mass spectrometry analysis of adducts on RBC AChE could provide evidence
of exposure. Our goal was to develop a method of immunopurifying human
RBC AChE in quantities adequate for detecting exposure by mass spectrometry.
For this purpose, we immobilized 3 commercially available anti-human
acetylcholinesterase monoclonal antibodies (AE-1, AE-2, and HR2) plus
3 new monoclonal antibodies. The monoclonal antibodies were characterized
for binding affinity, epitope mapping by pairing analysis, and nucleotide
and amino acid sequences. AChE was solubilized from frozen RBCs with
1% (v/v) Triton X-100. A 16 mL sample containing 5.8 μg of RBC
AChE was treated with a quantity of soman model compound that inhibited
50% of the AChE activity. Native and soman-inhibited RBC AChE samples
were immunopurified on antibody–Sepharose beads. The immunopurified
RBC AChE was digested with pepsin and analyzed by liquid chromatography
tandem mass spectrometry on a 6600 Triple-TOF mass spectrometer. The
aged soman-modified PheGlyGluSerAlaGlyAlaAlaSer (FGESAGAAS) peptide
was detected using a targeted analysis method. It was concluded that
all 6 monoclonal antibodies could be used to immunopurify RBC AChE
and that exposure to nerve agents could be detected as adducts on
the active site serine of RBC AChE.
Collapse
Affiliation(s)
- Alicia J Dafferner
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Lawrence M Schopfer
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| | - Gaoping Xiao
- Syd Labs, Inc , Natick, Massachusetts 01760, United States
| | - John R Cashman
- Human BioMolecular Research Institute , 5310 Eastgate Mall, San Diego, California 92121, United States
| | - Udaya Yerramalla
- Precision Antibody , 91330 Red Branch Rd, Columbia, Maryland 21045, United States
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , 4770 Buford Highway, Chamblee, Georgia 30341, United States
| | - Thomas A Blake
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , 4770 Buford Highway, Chamblee, Georgia 30341, United States
| | - Oksana Lockridge
- Eppley Institute, University of Nebraska Medical Center , Omaha, Nebraska 68198, United States
| |
Collapse
|
20
|
Bao HX, Tong PJ, Li CX, Du J, Chen BY, Huang ZH, Wang Y. Efficacy of fresh packed red blood transfusion in organophosphate poisoning. Medicine (Baltimore) 2017; 96:e6375. [PMID: 28296779 PMCID: PMC5369934 DOI: 10.1097/md.0000000000006375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mortality rate caused by organophosphate (OP) poisoning is still high, even the standard treatment such as atropine and oxime improves a lot. To search for alternative therapies, this study was aimed to investigate the effects of packed red blood cell (RBC) transfusion in acute OP poisoning, and compare the therapeutic effects of RBCs at different storage times.Patients diagnosed with OP poisoning were included in this prospective study. Fresh RBCs (packed RBCs stored less than 10 days) and longer-storage RBCs (stored more than 10 days but less than 35 days) were randomly transfused or not into OP poisoning patients. Cholinesterase (ChE) levels in blood, atropine usage and durations, pralidoxime durations were measured.We found that both fresh and longer-storage RBCs (200-400 mL) significantly increased blood ChE levels 6 hours after transfusion, shortened the duration for ChE recovery and length of hospital stay, and reduced the usage of atropine and pralidoxime. In addition, fresh RBCs demonstrated stronger therapeutic effects than longer-storage RBCs.Packed RBCs might be an alternative approach in patients with OP poisoning, especially during early stages.
Collapse
Affiliation(s)
- Hang-xing Bao
- First Clinical Medical College of Zhejiang Chinese Medical University
- Zhejiang Provincial Hospital of TCM
| | - Pei-jian Tong
- First Clinical Medical College of Zhejiang Chinese Medical University
- Zhejiang Provincial Hospital of TCM
| | - Cai-xia Li
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
| | - Jing Du
- Department of Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou
| | - Bing-yu Chen
- Institute of Neuroscience and Institute of Hypoxia Medicine, Wenzhou Medical University, Wenzhou
| | - Zhi-hui Huang
- Department of Transfusion, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Ying Wang
- First Clinical Medical College of Zhejiang Chinese Medical University
- Department of Laboratory Medicine, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College
- Department of Transfusion, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou
| |
Collapse
|
21
|
Lin CC, Hung DZ, Chen HY, Hsu KH. The effectiveness of patient-tailored treatment for acute organophosphate poisoning. Biomed J 2016; 39:391-399. [PMID: 28043418 PMCID: PMC6138500 DOI: 10.1016/j.bj.2016.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/13/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To determine a new pralidoxime (PAM) treatment guideline based on the severity of acute organophosphate intoxication patients, APACHE II score, and dynamic changes in serum butyrylcholinesterase (BuChE) activity. METHODS This is a randomization trial. All patients received supportive care measurements and atropinization. Each enrolled patient was treated with 2 gm PAM intravenously as the loading dose. The control group was treated according to the WHO's recommended PAM regimen, and the experimental group was treated according to their APACHE II scores and dynamic changes in BuChE activity. If a patient's APACHE II score was ≧26 or there was no elevation in BuChE activity at the 12th hour when compared to the 6th, doses of 1 g/h PAM (i.e., doubled WHO's recommended PAM regimen) were given. The levels of the serum BuChE and red blood cells acetylcholinesterase and the serum PAM levels were also measured. RESULTS Forty-six organophosphate poisoning patients were enrolled in this study. There were 24 patients in the control group and 22 patients in the experimental group. The hazard ratio of death in the control group to that of the experimental group was 111.51 (95% CI: 1.17-1.613.45; p = 0.04). The RBC acetylcholinesterase level was elevated in the experimental group but was not in the control group. The experimental group did not exhibit a higher PAM blood level than did the control group. CONCLUSION The use of PAM can be guided by patient severity. Thus, may help to improve the outcomes of organophosphate poisoning patients.
Collapse
Affiliation(s)
- Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Dong-Zong Hung
- Department of Emergency Medicine, Toxicology Center, China Medical University Hospital, Taichung, Taiwan
| | - Hsien-Yi Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Kuang-Hung Hsu
- Laboratory for Epidemiology, Department of Health Care Management, and Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Urology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
22
|
Graham LA, Johnson D, Carter MD, Stout EG, Erol HA, Isenberg SL, Mathews TP, Thomas JD, Johnson RC. A high-throughput UHPLC-MS/MS method for the quantification of five aged butyrylcholinesterase biomarkers from human exposure to organophosphorus nerve agents. Biomed Chromatogr 2016; 31. [PMID: 27572107 DOI: 10.1002/bmc.3830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/04/2016] [Accepted: 08/24/2016] [Indexed: 11/11/2022]
Abstract
Organophosphorus nerve agents (OPNAs) are toxic compounds that are classified as prohibited Schedule 1 chemical weapons. In the body, OPNAs bind to butyrylcholinesterase (BChE) to form nerve agent adducts (OPNA-BChE). OPNA-BChE adducts can provide a reliable, long-term protein biomarker for assessing human exposure. A major challenge facing OPNA-BChE detection is hydrolysis (aging), which can continue to occur after a clinical specimen has been collected. During aging, the o-alkyl phosphoester bond hydrolyzes, and the specific identity of the nerve agent is lost. To better identify OPNA exposure events, a high-throughput method for the detection of five aged OPNA-BChE adducts was developed. This is the first diagnostic panel to allow for the simultaneous quantification of any Chemical Weapons Convention Schedule 1 OPNA by measuring the aged adducts methyl phosphonate, ethyl phosphonate, propyl phosphonate, ethyl phosphoryl, phosphoryl and unadducted BChE. The calibration range for all analytes is 2.00-250. ng/mL, which is consistent with similar methodologies used to detect unaged OPNA-BChE adducts. Each analytical run is 3 min, making the time to first unknown results, including calibration curve and quality controls, less than 1 h. Analysis of commercially purchased individual serum samples demonstrated no potential interferences with detection of aged OPNA-BChE adducts, and quantitative measurements of endogenous levels of BChE were similar to those previously reported in other OPNA-BChE adduct assays.
Collapse
Affiliation(s)
- Leigh Ann Graham
- Battelle at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Darryl Johnson
- Oak Ridge Institute for Science and Education Fellow at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Melissa D Carter
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Emily G Stout
- Oak Ridge Institute for Science and Education Fellow at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Huseyin A Erol
- Oak Ridge Institute for Science and Education Fellow at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Samantha L Isenberg
- Battelle at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Thomas P Mathews
- Battelle at the Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jerry D Thomas
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Rudolph C Johnson
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
23
|
Liu CC, Huang GL, Xi HL, Liu SL, Liu JQ, Yu HL, Zhou SK, Liang LH, Yuan L. Simultaneous quantification of soman and VX adducts to butyrylcholinesterase, their aged methylphosphonic acid adduct and butyrylcholinesterase in plasma using an off-column procainamide-gel separation method combined with UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1036-1037:57-65. [PMID: 27718463 DOI: 10.1016/j.jchromb.2016.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
This work describes a novel and sensitive non-isotope dilution method for simultaneous quantification of organophosphorus nerve agents (OPNAs) soman (GD) and VX adducts to butyrylcholinesterase (BChE), their aged methylphosphonic acid (MeP) adduct and unadducted BChE in plasma exposed to OPNA. OPNA-BChE adducts were isolated with an off-column procainamide-gel separation (PGS) from plasma, and then digested with pepsin into specific adducted FGES*AGAAS nonapeptide (NP) biomarkers. The resulting NPs were detected by UHPLC-MS/MS MRM. The off-column PGS method can capture over 90% of BChE, MeP-BChE, VX-BChE and GD-BChE from their respective plasma materials. One newly designed and easily synthesized phosphorylated BChE nonapeptide with one Gly-to-Ala mutation was successfully reported to serve as internal standard instead of traditional isotopically labeled BChE nonapeptide. The linear range of calibration curves were from 1.00-200ngmL-1 for VX-NP, 2.00-200ngmL-1 for GD-NP and MeP-NP (R2≥0.995), and 3.00-200ngmL-1 for BChE NP (R2≥0.990). The inter-day precision had relative standard deviation (%RSD) of <8.89%, and the accuracy ranged between 88.9-120%. The limit of detection was calculated to be 0.411, 0.750, 0.800 and 1.43ngmL-1 for VX-NP, GD-NP, MeP-NP and BChE NP, respectively. OPNA-exposed quality control plasma samples were characterized as part of method validation. Investigation of plasma samples unexposed to OPNA revealed no baseline values or interferences. Using the off-column PGS method combined with UHPLC-MS/MS, VX-NP and GD-NP adducts can be unambiguously detected with high confidence in 0.10ngmL-1 and 0.50ngmL-1 of exposed human plasma respectively, only requiring 0.1mL of plasma sample and taking about four hours without special sample preparation equipment. These improvements make it a simple, sensitive and robust PGS-UHPLC-MS/MS method, and this method will become an attractive alternative to immunomagnetic separation (IMS) method and a useful diagnostic tool for retrospective detection of OPNA exposure with high confidence. Furthermore, using the developed method, the adducted BChE levels from VX and GD-exposed (0.10-100ngmL-1) plasma samples were completely characterized, and the fact that VX being more active and specific to BChE than GD was re-confirmed.
Collapse
Affiliation(s)
- Chang-Cai Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Gui-Lan Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Shi-Lei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China.
| | - Jing-Quan Liu
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Hui-Lan Yu
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Shi-Kun Zhou
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Long-Hui Liang
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| | - Ling Yuan
- Laboratory of Analytical Chemistry, Research Institute of Chemical Defence, Beijing 102205, China
| |
Collapse
|
24
|
Makhaeva GF, Rudakova EV, Serebryakova OG, Aksinenko AY, Richardson RJ, Bachurin SO. Esterase profiles of hexafluoropropan-2-ol-based dialkyl phosphates as a major determinant of their effects in mouse brain in vivo. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1139-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Horáková E, Drabina P, Brož B, Štěpánková Š, Vorčáková K, Královec K, Havelek R, Sedlák M. Synthesis, characterization and in vitro evaluation of substituted N-(2-phenylcyclopropyl)carbamates as acetyl- and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2016; 31:173-179. [PMID: 27476673 DOI: 10.1080/14756366.2016.1212193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A serie of O-substituted N-2-phenylcyclopropylcarbamates was prepared and characterized. These carbamates were tested as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). It was found, that these compounds exhibit moderate inhibition activity with values of IC50 in the range of 54.8-94.4 μM (for AChE) and up to 5.8 μM (for BChE). The AChE/BChE selectivity for each carbamate was calculated. These values varied from 0.50 to 9.46, two carbamate derivatives inhibited only AChE selectively. The most promising derivative was prepared in all optically pure forms (four isomers). It was found that individual stereoisomers differed only slightly in the inhibition ability. The cytotoxicity of all carbamates was evaluated using the standard in vitro test with Jurkat cells. With regard to their inhibition activity and cytotoxicity as well as easy preparation, O-substituted N-2-phenylcyclopropylcarbamates can be considered as promising compounds for potential medicinal applications.
Collapse
Affiliation(s)
- Eva Horáková
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Pavel Drabina
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Břetislav Brož
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Šárka Štěpánková
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Katarína Vorčáková
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Karel Královec
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Radim Havelek
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Miloš Sedlák
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| |
Collapse
|
26
|
Wille T, von der Wellen J, Thiermann H, Worek F. Pseudocatalytic scavenging of the nerve agent VX with human blood components and the oximes obidoxime and HI-6. Arch Toxicol 2016; 91:1309-1318. [PMID: 27358236 DOI: 10.1007/s00204-016-1776-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/20/2016] [Indexed: 01/04/2023]
Abstract
Despite six decades of extensive research in medical countermeasures against nerve agent poisoning, a broad spectrum acetylcholinesterase (AChE) reactivator is not yet available. One current approach is directed toward synthesizing oximes with high affinity and reactivatability toward butyrylcholinesterase (BChE) in plasma to generate an effective pseudocatalytic scavenger. An interim solution could be the administration of external AChE or BChE from blood products to augment pseudocatalytic scavenging with slower but clinically approved oximes to decrease nerve agent concentrations in the body. We here semiquantitatively investigate the ability of obidoxime and HI-6 to decrease the inhibitory activity of VX with human AChE and BChE from whole blood, erythrocyte membranes, erythrocytes, plasma, clinically available fresh frozen plasma and packed red blood cells. The main findings are that whole blood showed a VX concentration-dependent decrease in inhibitory activity with HI-6 being more potent than obidoxime. Using erythrocytes and erythrocyte membranes again, HI-6 was more potent compared to obidoxime. With freshly prepared plasma, obidoxime and HI-6 showed comparable results for the decrease in VX. The use of the clinically available blood products revealed that packed red blood cells showed similar kinetics as fresh erythrocytes. Fresh frozen plasma resulted in a slower and incomplete decrease in inhibitory plasma compared to freshly prepared plasma. In conclusion, the administration of blood products in combination with available oximes augments pseudocatalytic scavenging and might be useful to decrease the body load of persistent, highly toxic nerve agents.
Collapse
Affiliation(s)
- Timo Wille
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany.
| | - Jens von der Wellen
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937, Munich, Germany
| |
Collapse
|
27
|
Bierwisch A, Wille T, Thiermann H, Worek F. Kinetic analysis of interactions of amodiaquine with human cholinesterases and organophosphorus compounds. Toxicol Lett 2016; 246:49-56. [PMID: 26851641 DOI: 10.1016/j.toxlet.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
Abstract
Standard therapy of poisoning by organophosphorus compounds (OP) is a combined administration of an anti-muscarinic drug (e.g. atropine) and an oxime as reactivator of inhibited acetylcholinesterase (AChE). Limited efficacy of clinically used oximes against a variety of OPs was shown in numerous studies, calling for research on novel reactivators of OP-inhibited AChE. Recently, reactivation of OP-inhibited AChE by the antimalarial drug amodiaquine was reported. In the present study, amodiaquine and its interactions with human cholinesterases in presence or absence of OP nerve agents was investigated in vitro. Thereby, reversible inhibition of human cholinesterases by amodiaquine (AChE ≫ BChE) was observed. Additionally, a mixed competitive-non-competitive inhibition type of amodiaquine with human AChE was determined. Slow and partial reactivation of sarin-, cyclosarin- and VX-inhibited cholinesterases by amodiaquine was recorded, amodiaquine failed to reactivate tabun-inhibited human cholinesterases. Amodiaquine, being a potent, reversible AChE inhibitor, was tested for its potential benefit as a pretreatment to prevent complete irreversible AChE inhibition by the nerve agent soman. Hereby, amodiaquine failed to prevent phosphonylation and resulted only in a slight increase of AChE activity after removal of amodiaquine and soman. At present the molecular mechanism of amodiaquine-induced reactivation of OP-inhibited AChE is not known, nevertheless amodiaquine could be considered as a template for the design of more potent non-oxime reactivators.
Collapse
Affiliation(s)
- Anne Bierwisch
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Timo Wille
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Horst Thiermann
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany
| | - Franz Worek
- Institut für Pharmakologie und Toxikologie der Bundeswehr, Neuherbergstraße 11, 80937 München, Germany.
| |
Collapse
|
28
|
Atsmon J, Brill-Almon E, Nadri-Shay C, Chertkoff R, Alon S, Shaikevich D, Volokhov I, Haim KY, Bartfeld D, Shulman A, Ruderfer I, Ben-Moshe T, Shilovitzky O, Soreq H, Shaaltiel Y. Preclinical and first-in-human evaluation of PRX-105, a PEGylated, plant-derived, recombinant human acetylcholinesterase-R. Toxicol Appl Pharmacol 2015; 287:202-9. [PMID: 26051873 DOI: 10.1016/j.taap.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 12/18/2022]
Abstract
PRX-105 is a plant-derived recombinant version of the human 'read-through' acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50nmol/kg PRX-105, 2min before being exposed to 1.33×LD50 and 1.5×LD50 of toxin and 10min after exposure to 1.5×LD50 survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t½) in mice was 994 (±173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t½ in humans was substantially longer than in mice (average 26.7h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation.
Collapse
Affiliation(s)
- Jacob Atsmon
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | | | | - Sari Alon
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | - Dimitri Shaikevich
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Inna Volokhov
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Kirsten Y Haim
- Clinical Research Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | - Avidor Shulman
- Protalix Biotherapeutics, Science Park, Carmiel, Israel.
| | - Ilya Ruderfer
- Protalix Biotherapeutics, Science Park, Carmiel, Israel
| | | | | | - Hermona Soreq
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
29
|
Moon J, Chun B, Lee S. Variable response of cholinesterase activities following human exposure to different types of organophosphates. Hum Exp Toxicol 2015; 34:698-706. [DOI: 10.1177/0960327114558890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the red blood cell (RBC) acetylcholinesterase (AChE) activities and butyrylcholinesterase (BChE) activities at presentation to the emergency department (ED) and at 24 h after presentation following poisoning by dichlorvos, fenitrothion, or ethyl p-nitrophenol thio-benzene phosphonate (EPN). Although the patients from different groups had similar characteristics at presentation such as time interval from ingestion to presentation to the ED and the amount of organophosphate ingested, the dichlorvos group had significantly lower BChE levels than the fenitrothion group and lower RBC cholinesterase activity than the EPN group. Patients poisoned with EPN or dichlorvos had significantly higher inhibition of BChE activities from baseline than RBC AChE activities at presentation. Twenty four hours after administration of pralidoxime, RBC AChE activities had increased in patients in the dichlorvos and EPN groups, while RBC AChE activities had slightly decreased in the fenitrothion group. BChE activities increased significantly in the dichlorvos group but decreased in the EPN group. The recovery patterns of RBC AChE and BChE activities did not match in any particular individual. This study showed that the patterns of inhibition and recovery of the activities of two cholinesterases after treatment are highly variable according to the organophosphate and in different individuals.
Collapse
Affiliation(s)
- J Moon
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - B Chun
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - S Lee
- Department of Emergency Medicine, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
30
|
Worek F, Horn G, Wille T, Thiermann H. Adaptation of a dynamic in vitro model with real-time determination of butyrylcholinesterase activity in the presence of cyclosarin and an oxime. Toxicol In Vitro 2015; 29:162-7. [DOI: 10.1016/j.tiv.2014.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 02/03/2023]
|
31
|
Cuquel AC, Dorandeu F, Ceppa F, Renard C, Burnat P. [The VR, the Russian version of the nerve agent VX]. ANNALES PHARMACEUTIQUES FRANÇAISES 2015; 73:180-9. [PMID: 25592653 DOI: 10.1016/j.pharma.2014.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
Abstract
A product of the arms race during the Cold War, the Russian VX, or VR, is an organophosphorus compound that is a structural isomer of the western VX compound (or A4), with which it shares a very high toxicity. It is much less studied and known than VX because the knowledge of its existence is relatively recent. A very low volatility and high resistance in the environment make it a persistent agent. Poisoning occurs mainly following penetration through skin and mucosa but vapour inhalation is a credible risk in some circumstances. The clinical presentation may be differed by several hours and despite the absence of signs and symptoms, the casualty should not be considered as contamination or intoxication-free. This agent has a long residence time in blood, a characteristics that clearly differentiates it from other compounds such as sarin. The protocols for antidote administration may thus have to be changed accordingly. The fact that VR poisoned individuals will less respond to the current oxime therapy used in France, the 2-PAM and that VR represents a higher threat than VX, being probably possessed by some proliferating states, justify the interest for this toxic product.
Collapse
Affiliation(s)
- A-C Cuquel
- Fédération de pharmacie-biologie médicale, HIA Val-de-Grâce, 74, boulevard de Port-Royal 75230 Paris cedex, France
| | - F Dorandeu
- Département de toxicologie et risques chimiques, institut de recherche biomédicale des armées, BP 73, 91223 Brétigny-sur-Orge, France
| | - F Ceppa
- Fédération de biologie médicale, hôpital d'instruction des armées Bégin, 94163 Saint-Mandé cedex, France
| | - C Renard
- Fédération de pharmacie-biologie médicale, HIA Val-de-Grâce, 74, boulevard de Port-Royal 75230 Paris cedex, France
| | - P Burnat
- Fédération de biologie médicale, hôpital d'instruction des armées Bégin, 94163 Saint-Mandé cedex, France.
| |
Collapse
|
32
|
Nemet AY, Kaiserman I, Mimouni M, Segal O, Vinker S. High prevalence of myasthenia gravis among rural adult populations. J Clin Neuromuscul Dis 2014; 16:47-50. [PMID: 25415514 DOI: 10.1097/cnd.0000000000000054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVE There is no evidence of an increased prevalence of myasthenia gravis (MG) in rural agricultural communities. We conducted a prevalence study to examine the prevalence of MG in populations living in rural versus urban areas. METHODS We retrieved the electronic medical records of all members of the Health Maintenance Organization to detect patients who had the diagnosis of MG of the district in the year 2012. Main outcome measured the relative risk (RR) of patients with MG compared with controls. RESULTS A total of 248 total MG cases were found in the 527,258 individuals in the region, with a male to female ratio of 118 (47.6%) to 130 (52.4%). Two hundred twenty-three of these patients with MG (89.9%) lived in urban settlements, whereas 25 (10.1%) came from rural areas. A borderline RR was found in rural areas of 1.61 (95% confidence interval, 0.98-2.66) for men, and a significantly RR in patients aged 55 years and older (RR = 2.85; 95% confidence interval, 1.68-4.84). CONCLUSIONS There is an increased prevalence of MG among rural male adults. A possible association of MG with agricultural pesticides exposure is discussed.
Collapse
Affiliation(s)
- Arie Y Nemet
- *Department of Ophthalmology, Meir Medical Center, Kfar Saba, Israel; †Department of Ophthalmology, Barzilai Medical Center, Ashkelon, Israel; ‡Department of Family Medicine, Clalit Health Services, Central District, Rehovot, Israel; and §Department of Family Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | |
Collapse
|
33
|
Crow BS, Pantazides BG, Quiñones-González J, Garton JW, Carter MD, Perez JW, Watson CM, Tomcik DJ, Crenshaw MD, Brewer BN, Riches JR, Stubbs SJ, Read RW, Evans RA, Thomas JD, Blake TA, Johnson RC. Simultaneous measurement of tabun, sarin, soman, cyclosarin, VR, VX, and VM adducts to tyrosine in blood products by isotope dilution UHPLC-MS/MS. Anal Chem 2014; 86:10397-405. [PMID: 25286390 DOI: 10.1021/ac502886c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work describes a new specific, sensitive, and rapid stable isotope dilution method for the simultaneous detection of the organophosphorus nerve agents (OPNAs) tabun (GA), sarin (GB), soman (GD), cyclosarin (GF), VR, VX, and VM adducts to tyrosine (Tyr). Serum, plasma, and lysed whole blood samples (50 μL) were prepared by protein precipitation followed by digestion with Pronase. Specific Tyr adducts were isolated from the digest by a single solid phase extraction (SPE) step, and the analytes were separated by reversed-phase ultra high performance liquid chromatography (UHPLC) gradient elution in less than 2 min. Detection was performed on a triple quadrupole tandem mass spectrometer using time-triggered selected reaction monitoring (SRM) in positive electrospray ionization (ESI) mode. The calibration range was characterized from 0.100-50.0 ng/mL for GB- and VR-Tyr and 0.250-50.0 ng/mL for GA-, GD-, GF-, and VX/VM-Tyr (R(2) ≥ 0.995). Inter- and intra-assay precision had coefficients of variation of ≤17 and ≤10%, respectively, and the measured concentration accuracies of spiked samples were within 15% of the targeted value for multiple spiking levels. The limit of detection was calculated to be 0.097, 0.027, 0.018, 0.074, 0.023, and 0.083 ng/mL for GA-, GB-, GD-, GF-, VR-, and VX/VM-Tyr, respectively. A convenience set of 96 serum samples with no known nerve agent exposure was screened and revealed no baseline values or potential interferences. This method provides a simple and highly specific diagnostic tool that may extend the time postevent that a confirmation of nerve agent exposure can be made with confidence.
Collapse
Affiliation(s)
- Brian S Crow
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia 30341, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Reactivation kinetics of 31 structurally different bispyridinium oximes with organophosphate-inhibited human butyrylcholinesterase. Arch Toxicol 2014; 89:405-14. [DOI: 10.1007/s00204-014-1288-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/28/2014] [Indexed: 02/02/2023]
|
35
|
Dmitryjuk M, Żołtowska K, Frączek R, Lipiński Z. Esterases of Varroa destructor (Acari: Varroidae), parasitic mite of the honeybee. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 62:499-510. [PMID: 24233156 DOI: 10.1007/s10493-013-9754-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
Varroa destructor is an ectoparasite that causes serious damage to the population of the honeybee. Increasing resistance of the parasite to acaricides is related, among others, to metabolic adaptations of its esterases to facilitate decomposition of the chemicals used. Esterases are a large heterogeneous group of enzymes that metabolize a number of endogenous and exogenous substrates with ester binding. The aim of the present study was to determine the activity of esterases in the body extracts (BE) and excretion/secretion products (E/SP) of the mite. The enzymes contained in the E/SP should originate mainly from the salivary glands and the alimentary system and they may play a particularly important role in the first line of defence of the mite against acaricides. Activity of cholinesterases (ChEs) [acetylcholinesterase (AChE) and butyrylcholinesterase], carboxylesterases (CEs) and phosphatases [alkaline phosphatase (AP) and acid phosphatase (AcP)] was investigated. The activity of all the enzymes except AChE was higher in the E/SP than in the BE. ChEs from the BE and from the E/SP reacted differently on eserine, a ChE inhibitor. Eserine inhibited both enzymes from the BE, increased decomposition of acetylcholine, but did not influence hydrolysis of butyrylcholine by the E/SP. Activity of the CEs from the BE in relation to the esters of carboxylic acids can be presented in the following series: C10 > C12 > C14 > C8 > C2 > C4 = C16, while activity of the CEs from the E/SP was: C4 > C8 > C2 > C14 > C10 > C12 > C16. The inhibitor of CEs, triphenyl phosphate, reduced the activity of esterases C2–C8 and C14–C16; however, it acted in the opposite way to CEs C10 and C12. The activity of both phosphatases was higher in the E/SP than in the BE (AcP about twofold and AP about 2.6-fold); the activities of AP and AcP in the same material were similar. Given the role of esterases in resistance to pesticides, further studies are necessary to obtain complete biochemical characteristics of the enzymes currently present in V. destructor.
Collapse
|
36
|
An enhanced butyrylcholinesterase method to measure organophosphorus nerve agent exposure in humans. Anal Bioanal Chem 2014; 406:5187-94. [PMID: 24604326 DOI: 10.1007/s00216-014-7718-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 10/25/2022]
Abstract
Organophosphorus nerve agent (OPNA) adducts to butyrylcholinesterase (BChE) can be used to confirm exposure in humans. A highly accurate method to detect G- and V-series OPNA adducts to BChE in 75 μL of filtered blood, serum, or plasma has been developed using immunomagnetic separation (IMS) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS). The reported IMS method captures > 88 % of the BChE in a specimen and corrects for matrix effects on peptide calibrators. The optimized method has been used to quantify baseline BChE levels (unadducted and OPNA-adducted) in a matched-set of serum, plasma, and whole blood (later processed in-house for plasma content) from 192 unexposed individuals to determine the interchangeability of the tested matrices. The results of these measurements demonstrate the ability to accurately measure BChE regardless of the format of the blood specimen received. Criteria for accepting or denying specimens were established through a series of sample stability and processing experiments. The results of these efforts are an optimized and rugged method that is transferrable to other laboratories and an increased understanding of the BChE biomarker in matrix.
Collapse
|
37
|
Renou J, Loiodice M, Arboléas M, Baati R, Jean L, Nachon F, Renard PY. Tryptoline-3-hydroxypyridinaldoxime conjugates as efficient reactivators of phosphylated human acetyl and butyrylcholinesterases. Chem Commun (Camb) 2014; 50:3947-50. [DOI: 10.1039/c4cc00561a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncharged reactivators able to efficiently reactivate human butyrylcholinesterase and human acetylcholinesterase inhibited by organophosphorus nerve agents.
Collapse
Affiliation(s)
- Julien Renou
- Normandie Univ; COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- 76821 Mont-Saint-Aignan Cedex, France
| | - Mélanie Loiodice
- Département NRBC
- Institut de Recherche Biomédicale des Armées BP73
- 91993 Brétigny/s/Orge, France
| | - Mélanie Arboléas
- Département NRBC
- Institut de Recherche Biomédicale des Armées BP73
- 91993 Brétigny/s/Orge, France
| | - Rachid Baati
- Faculté de Pharmacie
- Université de Strasbourg
- BP 24, 67401 Illkirch, France
| | - Ludovic Jean
- Normandie Univ; COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- 76821 Mont-Saint-Aignan Cedex, France
| | - Florian Nachon
- Département NRBC
- Institut de Recherche Biomédicale des Armées BP73
- 91993 Brétigny/s/Orge, France
| | - Pierre-Yves Renard
- Normandie Univ; COBRA
- UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS
- 76821 Mont-Saint-Aignan Cedex, France
| |
Collapse
|
38
|
Jalady AM, Dorandeu F. [Interest of the cholinesterase assay during organophosphate poisonings]. ACTA ACUST UNITED AC 2013; 32:856-62. [PMID: 24209986 DOI: 10.1016/j.annfar.2013.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
Cholinesterases are the main targets of organophosphorus compounds. The two enzymes present in the blood (butyrylcholinesterase, BChE; acetylcholinesterase, AChE) are biomarkers of their systemic toxicity. Activity of the plasma BChE is very often determined as it allows a rapid diagnostic of poisoning and is a marker of the persistence of the toxicant in the blood. The activity of the red blood cell AChE gives a better picture of the synaptic inhibition in the nervous system but the assay is less commonly available in routine laboratories. Better biomarker of the exposure, it allows a diagnosis of the severity of the poisoning and helps to assess the efficacy of oxime therapy. Besides the practical aspects of blood collection and sample processing, and the interpretation of the assays, this review stresses the complementarity of both enzyme assays and recalls their crucial interest for the confirmation of poisoning with an organophosphorus in a situation of war or terrorist attack and for the monitoring of occupational exposures.
Collapse
Affiliation(s)
- A-M Jalady
- Antenne médicale des armées (AMA) de Vert-Le-Petit, centre médical des armées (CMA) de Montlhéry, site de DGA Maîtrise NRBC-Lieu dit « Le Bouchet », 5, rue Lavoisier, BP n(o) 3, 91710 Vert-Le-Petit, France.
| | | |
Collapse
|
39
|
Thiermann H, Worek F, Kehe K. Limitations and challenges in treatment of acute chemical warfare agent poisoning. Chem Biol Interact 2013; 206:435-43. [PMID: 24091052 DOI: 10.1016/j.cbi.2013.09.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 02/02/2023]
Abstract
Recent news from Syria on a possible use of chemical warfare agents made the headlines. Furthermore, the motivation of terrorists to cause maximal harm shifts these agents into the public focus. For incidents with mass casualties appropriate medical countermeasures must be available. At present, the most important threats arise from nerve agents and sulfur mustard. At first, self-protection and protection of medical units from contamination is of utmost importance. Volatile nerve agent exposure, e.g. sarin, results in fast development of cholinergic crisis. Immediate clinical diagnosis can be confirmed on-site by assessment of acetylcholinesterase activity. Treatment with autoinjectors that are filled with 2mg atropine and an oxime (at present obidoxime, pralidoxime, TMB-4 or HI-6) are not effective against all nerve agents. A more aggressive atropinisation has to be considered and more effective oximes (if possible with a broad spectrum or a combination of different oximes) as well as alternative strategies to cope with high acetylcholine levels at synaptic sites should be developed. A further gap exists for the treatment of patients with sustained cholinergic crisis that has to be expected after exposure to persistent nerve agents, e.g. VX. The requirement for long-lasting artificial ventilation can be reduced with an oxime therapy that is optimized by using the cholinesterase status for guidance or by measures (e.g. scavengers) that are able to reduce the poison load substantially in the patients. For sulfur mustard poisoning no specific antidote is available until now. Symptomatic measures as used for treatment of burns are recommended together with surgical or laser debridement. Thus, huge amounts of resources are expected to be consumed as wound healing is impaired. Possible depots of sulfur mustard in tissues may aggravate the situation. More basic knowledge is necessary to improve substantially therapeutic options. The use of stem cells may provide a new and promising option.
Collapse
Affiliation(s)
- Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany.
| | | | | |
Collapse
|
40
|
In vitro kinetics of nerve agent degradation by fresh frozen plasma (FFP). Arch Toxicol 2013; 88:301-7. [DOI: 10.1007/s00204-013-1130-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 09/11/2013] [Indexed: 01/19/2023]
|
41
|
Konickx LA, Worek F, Jayamanne S, Thiermann H, Buckley NA, Eddleston M. Reactivation of plasma butyrylcholinesterase by pralidoxime chloride in patients poisoned by WHO class II toxicity organophosphorus insecticides. Toxicol Sci 2013; 136:274-83. [PMID: 24052565 PMCID: PMC3858199 DOI: 10.1093/toxsci/kft217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Some clinicians assess the efficacy of pralidoxime in organophosphorus (OP) poisoned patients by measuring reactivation of butyrylcholinesterase (BuChE). However, the degree of BuChE inhibition varies by OP insecticide, and it is unclear how well oximes reactivate BuChE in vivo. We aimed to assess the usefulness of BuChE activity to monitor pralidoxime treatment by studying its reactivation after pralidoxime administration to patients with laboratory-proven World Health Organization (WHO) class II OP insecticide poisoning. Patient data were derived from 2 studies, a cohort study (using a bolus treatment of 1g pralidoxime chloride) and a randomized controlled trial (RCT) (comparing 2g pralidoxime over 20min, followed by an infusion of 0.5g/h, with placebo). Two grams of pralidoxime variably reactivated BuChE in patients poisoned by 2 diethyl OP insecticides, chlorpyrifos and quinalphos; however, unlike acetylcholinesterase reactivation, this reactivation was not sustained. It did not reactivate BuChE inhibited by the dimethyl OPs dimethoate or fenthion. The 1-g dose produced no reactivation. Pralidoxime produced variable reactivation of BuChE in WHO class II OP-poisoned patients according to the pralidoxime dose administered, OP ingested, and individual patient. The use of BuChE assays for monitoring the effect of pralidoxime treatment is unlikely to be clinically useful.
Collapse
Affiliation(s)
- Lisa A Konickx
- * Department of Pharmacology, Toxicology, and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | | | | | | | | |
Collapse
|
42
|
Nachon F, Brazzolotto X, Trovaslet M, Masson P. Progress in the development of enzyme-based nerve agent bioscavengers. Chem Biol Interact 2013; 206:536-44. [PMID: 23811386 DOI: 10.1016/j.cbi.2013.06.012] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/18/2013] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.
Collapse
Affiliation(s)
- Florian Nachon
- Institut de Recherche Biomédicale des Armées, BP87, 38702 La Tronche Cédex, France.
| | | | | | | |
Collapse
|
43
|
Abney CW, Knaack JLS, Ali AAI, Johnson RC. Novel Dual-Mode Immunomagnetic Method for Studying Reactivation of Nerve Agent-Inhibited Butyrylcholinesterase. Chem Res Toxicol 2013; 26:775-82. [DOI: 10.1021/tx4000717] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Carter W. Abney
- Oak Ridge Institute for Science
and Education Fellow at the Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee,
Georgia 30341, United States
| | - Jennifer L. S. Knaack
- Division of Laboratory Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway,
MS F44, Chamblee, Georgia 30341, United States
| | - Ahmed A. I. Ali
- Oak Ridge Institute for Science
and Education Fellow at the Centers for Disease Control and Prevention, 4770 Buford Highway, MS F44, Chamblee,
Georgia 30341, United States
| | - Rudolph C. Johnson
- Division of Laboratory Sciences,
National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway,
MS F44, Chamblee, Georgia 30341, United States
| |
Collapse
|
44
|
Chaou CH, Lin CC, Chen HY, Lee CH, Chen THH. Chlorpyrifos is associated with slower serum cholinesterase recovery in acute organophosphate-poisoned patients. Clin Toxicol (Phila) 2013; 51:402-8. [PMID: 23590812 DOI: 10.3109/15563650.2013.782035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Organophosphate poisoning (OPP) accounts for 200,000 deaths annually in developing countries. Serum cholinesterase (SChE) is of diagnostic value in patients with OPP and is checked repeatedly during the course of treatment. This study aimed to investigate the recovery pattern in patients with OPP using linear mixed models. METHODS Using a retrospective cohort study design, we included 212 adult OPP patients who had visited the emergency department (ED) in a tertiary medical center between 2000 and 2010. One hundred and thirty-one patients were available for analysis, as 81 patients did not meet the criteria and were excluded. Information regarding basic personal characteristics, initial vital signs and severity scores, laboratory data, type and amount of organophosphate ingested, treatment, and serial SChE values was collected. A random coefficient model with a random intercept and a random slope of time were added to address the dynamic relationships of SChE with time and other associated factors. RESULTS The initial SChE activity and recovery rates varied among patients with OPP. The type of organophosphate, the first SChE activity, and the initial APACHE II score were significantly related to the SChE recovery trend. Chlorpyrifos and methamidophos had significantly slower and faster SChE recovery rates, respectively, than other organophosphates. Sex, dose of Pralidoxim (2-PAM), and delay in obtaining medical assistance did not significantly affect SChE recovery. CONCLUSIONS This study demonstrated the pattern and associated correlates of SChE activity recovery in patients with acute OPP. Chlorpyrifos appeared to have a slower SChE activity recovery rate than other organophosphates.
Collapse
Affiliation(s)
- C H Chaou
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan
| | | | | | | | | |
Collapse
|
45
|
New tools in diagnosis and biomonitoring of intoxications with organophosphorothioates: case studies with chlorpyrifos and diazinon. Chem Biol Interact 2012; 203:96-102. [PMID: 23123253 DOI: 10.1016/j.cbi.2012.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 11/20/2022]
Abstract
Organophosphate (OP) pesticides are neurotoxic compounds that are widely used in agriculture. Classical methods for monitoring OP exposure comprise the measurement of intact OP, its metabolites or cholinesterase activity. Newly developed methods focus on the analysis of the OP adduct bound to proteins such as butyrylcholinesterase (BuChE) and albumin. These adducts can be analyzed by means of fluoride reactivation or by analysis with LC-MS/MS of the pepsin or pronase digest of butyrylcholinesterase and albumin, respectively. The utility of these methods is illustrated through the analysis of plasma samples obtained from patients taken 1-49 days after ingestion of the organophosphate pesticides chlorpyrifos and/or diazinon. Thus, in this particular case several independent methodologies were applied to the biomedical samples, all pointing to the same exposure.
Collapse
|
46
|
Ryniak S, Harbut P, Goździk W, Sokołowski J, Paciorek P, Hałas J. Whole blood transfusion in the treatment of an acute organophosphorus poisoning--a case report. Med Sci Monit 2011; 17:CS109-11. [PMID: 21873952 PMCID: PMC3560512 DOI: 10.12659/msm.881922] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Organophosphorus compounds (OP) are a group of substances used in agriculture as pesticides and are also used as military poisoning agents (MPA). Intoxication by these agents may cause severe systemic disturbances related to both the exposure time and lethal agent concentration. Toxic effects result from an excess of the endogenous neurotransmitter, acetylcholine (ACh), because decomposition of Ach by cholinesterases is blocked by OP. CASE REPORT The authors describe a case in which an acute OP poisoning was managed both conventionally and with cholinesterase substitution by blood transfusion. CONCLUSIONS Whole blood transfusion could be beneficial in the treatment of these life-threatening medical conditions.
Collapse
Affiliation(s)
- Stan Ryniak
- Department of Anaesthesiology and Intensive Therapy, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
47
|
Atropine maintenance dosage in patients with severe organophosphate pesticide poisoning. Toxicol Lett 2011; 206:77-83. [DOI: 10.1016/j.toxlet.2011.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 06/29/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
|
48
|
Trovaslet-Leroy M, Musilova L, Renault F, Brazzolotto X, Misik J, Novotny L, Froment MT, Gillon E, Loiodice M, Verdier L, Masson P, Rochu D, Jun D, Nachon F. Organophosphate hydrolases as catalytic bioscavengers of organophosphorus nerve agents. Toxicol Lett 2011; 206:14-23. [PMID: 21683774 DOI: 10.1016/j.toxlet.2011.05.1041] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 01/30/2023]
Abstract
Bioscavengers are molecules able to neutralize neurotoxic organophosphorus compounds (OP) before they can reach their biological target. Human butyrylcholinesterase (hBChE) is a natural bioscavenger each molecule of enzyme neutralizing one molecule of OP. The amount of natural enzyme is insufficient to achieve good protection. Thus, different strategies have been envisioned. The most straightforward consists in injecting a large dose of highly purified natural hBChE to increase the amount of bioscavenger in the bloodstream. This proved to be successful for protection against lethal doses of soman and VX but remains expensive. An improved strategy is to regenerate prophylactic cholinesterases (ChE) by administration of reactivators after exposure. But broad-spectrum efficient reactivators are still lacking, especially for inhibited hBChE. Cholinesterase mutants capable of reactivating spontaneously are another option. The G117H hBChE mutant has been a prototype. We present here the Y124H/Y72D mutant of human acetylcholinesterase; its spontaneous reactivation rate after V-agent inhibition is increased up to 110 fold. Catalytic bioscavengers, enzymes capable of hydrolyzing OP, present the best alternative. Mesophilic bacterial phosphotriesterase (PTE) is a candidate with good catalytic efficiency. Its enantioselectivity has been enhanced against the most potent OP isomers by rational design. We show that PEGylation of this enzyme improves its mean residence time in the rat blood stream 24-fold and its bioavailability 120-fold. Immunogenic issues remain to be solved. Human paraoxonase 1 (hPON1) is another promising candidate. However, its main drawback is that its phosphotriesterase activity is highly dependent on its environment. Recent progress has been made using a mammalian chimera of PON1, but we provide here additional data showing that this chimera is biochemically different from hPON1. Besides, the chimera is expected to suffer from immunogenic issues. Thus, we stress that interest for hPON1 must not fade away, and in particular, the 3D structure of the hPON1 eventually in complex with OP has to be solved.
Collapse
Affiliation(s)
- Marie Trovaslet-Leroy
- Département de Toxicologie, Institut de Recherches Biomédicales des Armées, 38700 La Tronche, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Farahat FM, Ellison CA, Bonner MR, McGarrigle BP, Crane AL, Fenske RA, Lasarev MR, Rohlman DS, Anger WK, Lein PJ, Olson JR. Biomarkers of chlorpyrifos exposure and effect in Egyptian cotton field workers. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:801-6. [PMID: 21224175 PMCID: PMC3114814 DOI: 10.1289/ehp.1002873] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 01/11/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chlorpyrifos (CPF), a widely used organophosphorus pesticide (OP), is metabolized to CPF-oxon, a potent cholinesterase (ChE) inhibitor, and trichloro-2-pyridinol (TCPy). Urinary TCPy is often used as a biomarker for CPF exposure, whereas blood ChE activity is considered an indicator of CPF toxicity. However, whether these biomarkers are dose related has not been studied extensively in populations with repeated daily OP exposures. OBJECTIVE We sought to determine the relationship between blood ChE and urinary TCPy during repeated occupational exposures to CPF. METHODS Daily urine samples and weekly blood samples were collected from pesticide workers (n=38) in Menoufia Governorate, Egypt, before, during, and after 9-17 consecutive days of CPF application to cotton fields. We compared blood butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE) activities with the respective urinary TCPy concentrations in each worker. RESULTS Average TCPy levels during the middle of a 1- to 2-week CPF application period were significantly higher in pesticide applicators (6,437 µg/g creatinine) than in technicians (184 µg/g) and engineers (157 µg/g), both of whom are involved in supervising the application process. We observed a statistically significant inverse correlation between urinary TCPy and blood BuChE and AChE activities. The no-effect level (or inflection point) of the exposure-effect relationships has an average urinary TCPy level of 114 µg/g creatinine for BuChE and 3,161 µg/g creatinine for AChE. CONCLUSIONS Our findings demonstrate a dose-effect relationship between urinary TCPy and both plasma BuChE and red blood cell AChE in humans exposed occupationally to CPF. These findings will contribute to future risk assessment efforts for CPF exposure.
Collapse
Affiliation(s)
- Fayssal M. Farahat
- Department of Community Medicine and Public Health, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | | | - Matthew R. Bonner
- Department of Social and Preventive Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | | | | | - Richard A. Fenske
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Michael R. Lasarev
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, USA
| | - Diane S. Rohlman
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, USA
| | - W. Kent Anger
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, USA
| | - Pamela J. Lein
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, Portland, Oregon, USA
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, California, USA
| | - James R. Olson
- Department of Pharmacology and Toxicology and
- Department of Social and Preventive Medicine, State University of New York at Buffalo, Buffalo, New York, USA
- Address correspondence to J.R. Olson, University at Buffalo, Department of Pharmacology and Toxicology, 3435 Main St., 102 Farber Hall, Buffalo, NY 14214 USA. Telephone: (716) 829-2319. Fax: (716) 829-2801. E-mail:
| |
Collapse
|
50
|
Wandhammer M, Carletti E, Van der Schans M, Gillon E, Nicolet Y, Masson P, Goeldner M, Noort D, Nachon F. Structural study of the complex stereoselectivity of human butyrylcholinesterase for the neurotoxic V-agents. J Biol Chem 2011; 286:16783-9. [PMID: 21454498 PMCID: PMC3089521 DOI: 10.1074/jbc.m110.209569] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/28/2011] [Indexed: 11/06/2022] Open
Abstract
Nerve agents are chiral organophosphate compounds (OPs) that exert their acute toxicity by phosphorylating the catalytic serine of acetylcholinesterase (AChE). The inhibited cholinesterases can be reactivated using oximes, but a spontaneous time-dependent process called aging alters the adduct, leading to resistance toward oxime reactivation. Human butyrylcholinesterase (BChE) functions as a bioscavenger, protecting the cholinergic system against OPs. The stereoselectivity of BChE is an important parameter for its efficiency at scavenging the most toxic OPs enantiomer for AChE. Crystals of BChE inhibited in solution or in cristallo with racemic V-agents (VX, Russian VX, and Chinese VX) systematically show the formation of the P(S) adduct. In this configuration, no catalysis of aging seems possible as confirmed by the three-dimensional structures of the three conjugates incubated over a period exceeding a week. Crystals of BChE soaked in optically pure VX(R)-(+) and VX(S)-(-) solutions lead to the formation of the P(S) and P(R) adduct, respectively. These structural data support an in-line phosphonylation mechanism. Additionally, they show that BChE reacts with VX(R)-(+) in the presence of racemic mixture of V-agents, at odds with earlier kinetic results showing a moderate higher inhibition rate for VX(S)-(-). These combined results suggest that the simultaneous presence of both enantiomers alters the enzyme stereoselectivity. In summary, the three-dimensional data show that BChE reacts preferentially with P(R) enantiomer of V-agents and does not age, in complete contrast to AChE, which is selectively inhibited by the P(S) enantiomer and ages.
Collapse
Affiliation(s)
- Marielle Wandhammer
- From the Département de Toxicologie, Institut de Recherche Biomédicale des Armées-CRSSA, 38700 La Tronche, France
- the Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 67400 Illkirch, France
| | - Eugénie Carletti
- From the Département de Toxicologie, Institut de Recherche Biomédicale des Armées-CRSSA, 38700 La Tronche, France
| | - Marcel Van der Schans
- the Research Group Diagnosis and Therapy, Business Unit Biological and Chemical Protection, TNO Defence, Security and Safety, 2288 GJ Rijswijk, The Netherlands, and
| | - Emilie Gillon
- From the Département de Toxicologie, Institut de Recherche Biomédicale des Armées-CRSSA, 38700 La Tronche, France
| | - Yvain Nicolet
- the Laboratoire de Cristallographie et Cristallogenèse des Protéines, Institut de Biologie Structurale, 38027 Grenoble, France
| | - Patrick Masson
- From the Département de Toxicologie, Institut de Recherche Biomédicale des Armées-CRSSA, 38700 La Tronche, France
| | - Maurice Goeldner
- the Laboratoire de Conception et Application de Molécules Bioactives, UMR 7199, Faculté de Pharmacie, 67400 Illkirch, France
| | - Daan Noort
- the Research Group Diagnosis and Therapy, Business Unit Biological and Chemical Protection, TNO Defence, Security and Safety, 2288 GJ Rijswijk, The Netherlands, and
| | - Florian Nachon
- From the Département de Toxicologie, Institut de Recherche Biomédicale des Armées-CRSSA, 38700 La Tronche, France
| |
Collapse
|