1
|
Wu X, Ciminieri C, Bos IST, Woest ME, D'Ambrosi A, Wardenaar R, Spierings DCJ, Königshoff M, Schmidt M, Kistemaker LEM, Gosens R. Diesel exhaust particles distort lung epithelial progenitors and their fibroblast niche. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119292. [PMID: 35439594 PMCID: PMC11251497 DOI: 10.1016/j.envpol.2022.119292] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease characterized by inflammation and impaired tissue regeneration, and is reported as the fourth leading cause of death worldwide by the Centers for Disease Control and Prevention (CDC). Environmental pollution and specifically motor vehicle emissions are known to play a role in the pathogenesis of COPD, but little is still known about the molecular mechanisms that are altered following diesel exhaust particles (DEP) exposure. Here we used lung organoids derived from co-culture of alveolar epithelial progenitors and fibroblasts to investigate the effect of DEP on the epithelial-mesenchymal signaling niche in the distal lung, which is essential for tissue repair. We found that DEP treatment impaired the number as well as the average diameter of both airway and alveolar type of lung organoids. Bulk RNA-sequencing of re-sorted epithelial cells and fibroblasts following organoid co-culture shows that the Nrf2 pathway, which regulates antioxidants' activity, was upregulated in both cell populations in response to DEP; and WNT/β-catenin signaling, which is essential to promote epithelial repair, was downregulated in DEP-exposed epithelial cells. We show that pharmacological treatment with anti-oxidant agents such as N-acetyl cysteine (NAC) or Mitoquinone mesylate (MitoQ) reversed the effect of DEP on organoids growth. Additionally, a WNT/β-catenin activator (CHIR99021) successfully restored WNT signaling and promoted organoid growth upon DEP exposure. We propose that targeting oxidative stress and specific signaling pathways affected by DEP in the distal lung may represent a strategy to restore tissue repair in COPD.
Collapse
Affiliation(s)
- Xinhui Wu
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chiara Ciminieri
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Manon E Woest
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Angela D'Ambrosi
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - René Wardenaar
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713AV, Groningen, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713AV, Groningen, the Netherlands
| | - Melanie Königshoff
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Martina Schmidt
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Aquilo BV, Antonius Deusinglaan 1, 9713AV, Groningen, the Netherlands.
| |
Collapse
|
2
|
Cattani-Cavalieri I, da Maia Valença H, Moraes JA, Brito-Gitirana L, Romana-Souza B, Schmidt M, Valença SS. Dimethyl Fumarate Attenuates Lung Inflammation and Oxidative Stress Induced by Chronic Exposure to Diesel Exhaust Particles in Mice. Int J Mol Sci 2020; 21:ijms21249658. [PMID: 33352854 PMCID: PMC7767202 DOI: 10.3390/ijms21249658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022] Open
Abstract
Air pollution is mainly caused by burning of fossil fuels, such as diesel, and is associated with increased morbidity and mortality due to adverse health effects induced by inflammation and oxidative stress. Dimethyl fumarate (DMF) is a fumaric acid ester and acts as an antioxidant and anti-inflammatory agent. We investigated the potential therapeutic effects of DMF on pulmonary damage caused by chronic exposure to diesel exhaust particles (DEPs). Mice were challenged with DEPs (30 μg per mice) by intranasal instillation for 60 consecutive days. After the first 30 days, the animals were treated daily with 30 mg/kg of DMF by gavage for the remainder of the experimental period. We demonstrated a reduction in total inflammatory cell number in the bronchoalveolar lavage (BAL) of mice subjected to DEP + DMF as compared to those exposed to DEPs alone. Importantly, DMF treatment was able to reduce lung injury caused by DEP exposure. Intracellular total reactive oxygen species (ROS), peroxynitrite (OONO), and nitric oxide (NO) levels were significantly lower in the DEP + DMF than in the DEP group. In addition, DMF treatment reduced the protein expression of kelch-like ECH-associated protein 1 (Keap-1) in lung lysates from DEP-exposed mice, whereas total nuclear factor κB (NF-κB) p65 expression was decreased below baseline in the DEP + DMF group compared to both the control and DEP groups. Lastly, DMF markedly reduced DEP-induced expression of nitrotyrosine, glutathione peroxidase-1/2 (Gpx-1/2), and catalase in mouse lungs. In summary, DMF treatment effectively reduced lung injury, inflammation, and oxidative and nitrosative stress induced by chronic DEP exposure. Consequently, it may lead to new therapies to diminish lung injury caused by air pollutants.
Collapse
Affiliation(s)
- Isabella Cattani-Cavalieri
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
- Department of Molecular Pharmacology, University of Groningen, 9700 Groningen, The Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, 9700 Groningen, The Netherlands
| | - Helber da Maia Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
| | - João Alfredo Moraes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
| | - Lycia Brito-Gitirana
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Rio de Janeiro 20943-000, Brazil;
| | - Martina Schmidt
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, 9700 Groningen, The Netherlands
- Correspondence: ; Tel.: +31-50-363-3322
| | - Samuel Santos Valença
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro 21044-020, Brazil; (I.C.-C.); (H.d.M.V.); (J.A.M.); (L.B.-G.); (S.S.V.)
| |
Collapse
|
3
|
Hadei M, Naddafi K. Cardiovascular effects of airborne particulate matter: A review of rodent model studies. CHEMOSPHERE 2020; 242:125204. [PMID: 31675579 DOI: 10.1016/j.chemosphere.2019.125204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/20/2023]
Abstract
In recent year, animal models have been growingly used to increase our knowledge about the toxicity of PM and underlying mechanisms leading to cardiovascular diseases. In this article, we review the current state of knowledge and findings of studies investigating the cardiovascular effects of PM in rats and mice. The six main areas covered in this review include: I) nature of particulate matter and toxicity mechanisms, II) systemic inflammation, III) heart rate and heart rate variability, IV) histopathological effects, V) atherosclerosis, VI) thrombosis, and VI) myocardial infarction. This review showed that animal model studies have been successful to bring new insights into the mechanisms underlying PM-induced cardiovascular diseases. However, there are some areas that the exact mechanisms are still unclear. In conclusion, investigating the cardiovascular effects of PM in vivo or interpreting the results should attempt to justify the role of different PM compositions, which may vastly affect the overall cytotoxicity of particles.
Collapse
Affiliation(s)
- Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Multi-walled carbon nanotubes exacerbate doxorubicin-induced cardiotoxicity by altering gut microbiota and pulmonary and colonic macrophage phenotype in mice. Toxicology 2020; 435:152410. [PMID: 32068018 DOI: 10.1016/j.tox.2020.152410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Epidemiologic studies show that the levels of air pollutants and particulate matter are positively associated with the morbidity and mortality of cardiovascular diseases. Here we demonstrate that the intratracheal instillation of multi-walled carbon nanotubes (MWCNTs), a standard fine particle, exacerbate doxorubicin (DOX)-induced cardiotoxicity in mice through altering gut microbiota and pulmonary and colonic macrophage phenotype. MWCNTs (25 μg/kg per day, 5 days a week for 3 weeks) promoted cardiotoxicity and apoptosis in the DOX (2 mg/kg, twice a week for 5 weeks)-treated C57BL/6 mice. MWCNTs exaggerated DOX-induced gut microbiota dysbiosis characterized by the increased abundances of Helicobacteraceae and Coriobacteriaceae. In addition, MWCNTs promoted DOX-induced M1-like polarization of colonic macrophages with an increase in TNF-α, IL-1β and CC chemokine ligand 2 in peripheral blood. Importantly, treatment with the antibiotics attenuated MWCNTs plus DOX-induced apoptosis of cardiomyocytes and M1-like polarization of colonic macrophages. The fecal microbiota transplantation demonstrated that MWCNTs exaggerated DOX-induced cardiotoxicity with M1-like polarization of colonic macrophages. The conditioned medium from MWCNTs-treated pulmonary macrophages promoted DOX-induced gut microbiota dysbiosis and colonic macrophage polarization. Furthermore, the co-culture of macrophages and fecal bacteria promoted M1-like macrophage polarization and their production of TNF-α and IL-1β, and thereby exacerbated the effects of MWCNTs. Moreover, IL-1β and TNF-α blockade, either alone or in combination attenuated MWCNTs-exacerbated cardiotoxicity. In summary, MWCNTs exacerbate DOX-induced cardiotoxicity in mice through gut microbiota and pulmonary and colonic macrophage interaction. Our findings identify a novel mechanism of action of inhaled particle-driven cardiotoxicity.
Collapse
|
5
|
Acute Exposure to Diesel-Biodiesel Particulate Matter Promotes Murine Lung Oxidative Stress by Nrf2/HO-1 and Inflammation Through the NF-kB/TNF-α Pathways. Inflammation 2019; 42:526-537. [PMID: 30411213 DOI: 10.1007/s10753-018-0910-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Air pollution caused by fuel burning contributes to respiratory impairments that may lead to death. We aimed to investigate the effects of biodiesel (DB) burning in mouse lungs. DB particulate matter was collected from the exhaust pipes of a bus engine. Mice were treated with 250 μg or 1000 μg of DB particulate matter by intranasal instillation over 5 consecutive days. We demonstrated that DB particulate matter penetrated the lung in the 250-μg and 1000-μg groups. In addition, the DB particulate matter number in pulmonary parenchyma was 175-fold higher in the 250-μg group and 300-fold higher in the 1000-μg group compared to control mice. The instillation of DB particulate matter increased the macrophage number and protein levels of TNF-alpha in murine lungs. DB particulate matter enhanced ROS production in both exposed groups and the malondialdehyde levels compared to the control group. The protein expression levels of Nrf2, p-NF-kB, and HO-1 were higher in the 250-μg group and lower in the 1000-μg group than in control mice and the 250-μg group. In conclusion, DB particulate matter instillation promotes oxidative stress by activating the Nrf2/HO-1 and inflammation by p-NF-kB/TNF-alpha pathways.
Collapse
|
6
|
Waterpipe Smoke Exposure Triggers Lung Injury and Functional Decline in Mice: Protective Effect of Gum Arabic. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8526083. [PMID: 31178975 PMCID: PMC6501418 DOI: 10.1155/2019/8526083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/08/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of waterpipe (shisha) tobacco smoking has recently seen a substantial increase worldwide and is becoming a public health problem. Both human and animal studies have established that waterpipe smoke (WPS) increases airway reactivity and inflammation. Gum Arabic (GA) is a prebiotic agent that possesses antioxidant and anti-inflammatory properties. However, its effects on lung toxicity induced by WPS exposure are unknown. Thus, the aim of this study was to investigate the possible salutary effects and underlying mechanisms of GA on WPS-induced pulmonary pathophysiologic effects. C57BL/6 mice were exposed to air or WPS (30 minutes/day for one month) with or without GA treatment in drinking water (15%, w/v). Exposure to WPS induced an influx of neutrophil polymorphs in the peribronchiolar and interstitial spaces and an increase of tumor necrosis factor-α and 8-isoprostane, a marker of lipid peroxidation, concentrations in lung homogenates. The latter effects were significantly mitigated by GA treatment. Likewise, the lung DNA damage induced by WPS exposure was prevented by GA administration. Western blot analysis of the lung showed that GA inhibited nuclear factor kappa-B (NF-κB) expression caused by WPS and augmented that of nuclear factor erythroid 2-related factor 2 (Nrf2). Similarly, immunohistochemical analysis of bronchial epithelial cells and alveolar cells showed a parallel and significant increase in the nuclear expression of Nrf2 and cytoplasmic expression of glutathione in mice treated with GA and exposed to WPS. Moreover, GA administration has significantly prevented airway hyperreactivity to methacholine induced by WPS. We conclude that GA administration significantly declined the physiological, histological, biochemical, and molecular indices of lung toxicity caused by WPS exposure, indicating its beneficial respiratory impact. Considering that GA is a safe agent with health benefits in humans, our data suggest its potential usage in waterpipe smokers.
Collapse
|
7
|
Santana FPR, Pinheiro NM, Bittencourt-Mernak MI, Perini A, Yoshizaki K, Macchione M, Saldiva PHN, Martins MA, Tibério IFLC, Prado MAM, Prado VF, Prado CM. Vesicular acetylcholine transport deficiency potentiates some inflammatory responses induced by diesel exhaust particles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:494-504. [PMID: 30368143 DOI: 10.1016/j.ecoenv.2018.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
Endogenous acetylcholine (ACh), which depends of the levels of vesicular ACh transport (VAChT) to be released, is the central mediator of the cholinergic anti-inflammatory system. ACh controls the release of cytokine in different models of inflammation. Diesel exhaust particles (DEP) are one of the major environmental pollutants produced in large quantity by automotive engines in urban center. DEP bind the lung parenchyma and induce inflammation. We evaluated whether cholinergic dysfunction worsens DEP-induced lung inflammation. Male mice with decreased ACh release due to reduced expression of VAChT (VAChT-KD mice) were submitted to DEP exposure for 30 days (3 mg/mL of DEP, once a day, five days a week) or saline. Pulmonary function and inflammation as well as extracellular matrix fiber deposition were evaluated. Additionally, airway and nasal epithelial mucus production were quantified. We found that DEP instillation worsened lung function and increased lung inflammation. Higher levels of mononuclear cells were observed in the peripheral blood of both wild-type (WT) and VAChT-KD mice. Also, both wild-type (WT) and VAChT-KD mice showed an increase in macrophages in bronchoalveolar lavage fluid (BALF) as well as increased expression of IL-4, IL-6, IL-13, TNF-α, and NF-κB in lung cells. The collagen fiber content in alveolar septa was also increased in both genotypes. On the other hand, we observed that granulocytes were increased only in VAChT-KD peripheral blood. Likewise, increased BALF lymphocytes and neutrophils as well as increased elastic fibers in alveolar septa, airway neutral mucus, and nasal epithelia acid mucus were observed only in VAChT-KD mice. The cytokines IL-4 and TNF-α were also higher in VAChT-KD mice compared with WT mice. In conclusion, decreased ability to release ACh exacerbates some of the lung alterations induced by DEP in mice, suggesting that VAChT-KD animals are more vulnerable to the effects of DEP in the lung.
Collapse
Affiliation(s)
- Fernanda P R Santana
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil; Department of Biological Science, Universidade Federal de São Paulo, Diadema, Brazil
| | - Nathalia M Pinheiro
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | | | - Adenir Perini
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | - Kelly Yoshizaki
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Mariângela Macchione
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Paulo H N Saldiva
- Department of Pathology, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Milton A Martins
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil
| | | | - Marco Antônio M Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Vânia F Prado
- Department of Physiology & Pharmacology, University of Western Ontario, London, Canada; Department of Anatomy & Cell Biology, University of Western Ontario, London, Canada
| | - Carla M Prado
- Department of Medicine, School of Medicine, Universidade de São Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, Santos, Brazil.
| |
Collapse
|
8
|
Exercise Training Mitigates Water Pipe Smoke Exposure-Induced Pulmonary Impairment via Inhibiting NF- κB and Activating Nrf2 Signalling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7459612. [PMID: 29692875 PMCID: PMC5859847 DOI: 10.1155/2018/7459612] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 01/16/2018] [Indexed: 12/29/2022]
Abstract
Water pipe smoking is a tobacco smoking method commonly used in Eastern countries and is gaining popularity in Europe and North America, in particular among adolescents and young adults. Several clinical and experimental studies have reported that exposure to water pipe smoke (WPS) induces lung inflammation and impairment of pulmonary function. However, the mechanisms of such effects are not understood, as are data on the possible palliative effect of exercise training. The present study evaluated the effects of regular aerobic exercise training (treadmill: 5 days/week, 40 min/day) on subchronic exposure to WPS (30 minutes/day, 5 days/week for 2 months). C57BL/6 mice were exposed to air or WPS with or without exercise training. Airway resistance measured using forced oscillation technique was significantly and dose-dependently increased in the WPS-exposed group when compared with the air-exposed one. Exercise training significantly prevented the effect of WPS on airway resistance. Histologically, the lungs of WPS-exposed mice had focal moderate interstitial inflammatory cell infiltration consisting of neutrophil polymorphs, plasma cells, and lymphocytes. There was a mild increase in intra-alveolar macrophages and a focal damage to alveolar septae in some foci. Exercise training significantly alleviated these effects and also decreased the WPS-induced increase of tumor necrosis factor α and interleukin 6 concentrations and attenuated the increase of 8-isoprostane in lung homogenates. Likewise, the lung DNA damage induced by WPS was significantly inhibited by exercise training. Moreover, exercise training inhibited nuclear factor kappa-B (NF-κB) expression induced by WPS and increased that of nuclear factor erythroid 2-related factor 2 (Nrf2). Our findings suggest that exercise training significantly mitigated WPS-induced increase in airway resistance, inflammation, oxidative stress, and DNA damage via mechanisms that include inhibiting NF-κB and activating Nrf2 signalling pathways.
Collapse
|
9
|
In Vivo Protective Effects of Nootkatone against Particles-Induced Lung Injury Caused by Diesel Exhaust Is Mediated via the NF-κB Pathway. Nutrients 2018; 10:nu10030263. [PMID: 29495362 PMCID: PMC5872681 DOI: 10.3390/nu10030263] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022] Open
Abstract
Numerous studies have shown that acute particulate air pollution exposure is linked with pulmonary adverse effects, including alterations of pulmonary function, inflammation, and oxidative stress. Nootkatone, a constituent of grapefruit, has antioxidant and anti-inflammatory effects. However, the effect of nootkatone on lung toxicity has not been reported so far. In this study we evaluated the possible protective effects of nootkatone on diesel exhaust particles (DEP)-induced lung toxicity, and the possible mechanisms underlying these effects. Mice were intratracheally (i.t.) instilled with either DEP (30 µg/mouse) or saline (control). Nootkatone was given to mice by gavage, 1 h before i.t. instillation, with either DEP or saline. Twenty-four hours following DEP exposure, several physiological and biochemical endpoints were assessed. Nootkatone pretreatment significantly prevented the DEP-induced increase in airway resistance in vivo, decreased neutrophil infiltration in bronchoalveolar lavage fluid, and abated macrophage and neutrophil infiltration in the lung interstitium, assessed by histolopathology. Moreover, DEP caused a significant increase in lung concentrations of 8-isoprostane and tumor necrosis factor α, and decreased the reduced glutathione concentration and total nitric oxide activity. These actions were all significantly alleviated by nootkatone pretreatment. Similarly, nootkatone prevented DEP-induced DNA damage and prevented the proteolytic cleavage of caspase-3. Moreover, nootkatone inhibited nuclear factor-kappaB (NF-κB) induced by DEP. We conclude that nootkatone prevented the DEP-induced increase in airway resistance, lung inflammation, oxidative stress, and the subsequent DNA damage and apoptosis through a mechanism involving inhibition of NF-κB activation. Nootkatone could possibly be considered a beneficial protective agent against air pollution-induced respiratory adverse effects.
Collapse
|
10
|
Lu X, Ye Z, Zheng S, Ren H, Zeng J, Wang X, Jose PA, Chen K, Zeng C. Long-Term Exposure of Fine Particulate Matter Causes Hypertension by Impaired Renal D 1 Receptor-Mediated Sodium Excretion via Upregulation of G-Protein-Coupled Receptor Kinase Type 4 Expression in Sprague-Dawley Rats. J Am Heart Assoc 2018; 7:e007185. [PMID: 29307864 PMCID: PMC5778966 DOI: 10.1161/jaha.117.007185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/20/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Epidemiological evidence supports an important association between air pollution exposure and hypertension. However, the mechanisms are not clear. METHODS AND RESULTS Our present study found that long-term exposure to fine particulate matter (PM2.5) causes hypertension and impairs renal sodium excretion, which might be ascribed to lower D1 receptor expression and higher D1 receptor phosphorylation, accompanied with a higher G-protein-coupled receptor kinase type 4 (GRK4) expression. The in vivo results were confirmed in in vitro studies (ie, PM2.5 increased basal and decreased D1 receptor mediated inhibitory effect on Na+-K+ ATPase activity, decreased D1 receptor expression, and increased D1 receptor phosphorylation in renal proximal tubule cells). The downregulation of D1 receptor expression and function might be attributable to a higher GRK4 expression after the exposure of renal proximal tubule cells to PM2.5, because downregulation of GRK4 by small-interfering RNA reversed the D1 receptor expression and function. Because of the role of reactive oxygen species on D1 receptor dysfunction and its relationship with air pollution exposure, we determined plasma reactive oxygen species and found the levels higher in PM2.5-treated Sprague-Dawley rats. Inhibition of reactive oxygen species by tempol (4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl) reduced blood pressure and increased sodium excretion in PM2.5-treated Sprague-Dawley rats, accompanied by an increase in the low D1 receptor expression, and decreased the hyperphosphorylated D1 receptor and GRK4 expression. CONCLUSIONS Our present study indicated that long-term exposure of PM2.5 increases blood pressure by decreasing D1 receptor expression and function; reactive oxygen species, via regulation of GRK4 expression, plays an important role in the pathogenesis of PM2.5-induced hypertension.
Collapse
Affiliation(s)
- Xi Lu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Zhengmeng Ye
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Jing Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Xinquan Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
- Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, China
| |
Collapse
|
11
|
Nemmar A, Karaca T, Beegam S, Yuvaraju P, Yasin J, Ali BH. Lung Oxidative Stress, DNA Damage, Apoptosis, and Fibrosis in Adenine-Induced Chronic Kidney Disease in Mice. Front Physiol 2017; 8:896. [PMID: 29218013 PMCID: PMC5703828 DOI: 10.3389/fphys.2017.00896] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
It is well-established that there is a crosstalk between the lung and the kidney, and several studies have reported association between chronic kidney disease (CKD) and pulmonary pathophysiological changes. Experimentally, CKD can be caused in mice by dietary intake of adenine. Nevertheless, the consequence of such intervention on the lung received only scant attention. Here, we assessed the pulmonary effects of adenine (0.2% w/w in feed for 4 weeks)-induced CKD in mice by assessing various physiological histological and biochemical endpoints. Adenine treatment induced a significant increase in urine output, urea and creatinine concentrations, and it decreased the body weight and creatinine clearance. It also increased proteinuria and the urinary levels of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin. Compared with control group, the histopathological evaluation of lungs from adenine-treated mice showed polymorphonuclear leukocytes infiltration in alveolar and bronchial walls, injury, and fibrosis. Moreover, adenine caused a significant increase in lung lipid peroxidation and reactive oxygen species and decreased the antioxidant catalase. Adenine also induced DNA damage assessed by COMET assay. Similarly, adenine caused apoptosis in the lung characterized by a significant increase of cleaved caspase-3. Moreover, adenine induced a significant increase in the expression of nuclear factor erythroid 2–related factor 2 (Nrf2) in the lung. We conclude that administration of adenine in mice induced CKD is accompanied by lung oxidative stress, DNA damage, apoptosis, and Nrf2 expression and fibrosis.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Turan Karaca
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
12
|
Larcombe AN, Kicic A, Mullins BJ. Comment on "Long-Term Effects of Diesel Exhaust Particles on Airway Inflammation and Remodeling in a Mouse Model" by Kim et al. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2017; 9:185-186. [PMID: 28102065 PMCID: PMC5266117 DOI: 10.4168/aair.2017.9.2.185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/05/2016] [Indexed: 11/20/2022]
Affiliation(s)
- Alexander N Larcombe
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia.
| | - Anthony Kicic
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Subiaco, Western Australia, Australia.,Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Crawley, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation and Environment, School of Public Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
13
|
Bin P, Shen M, Li H, Sun X, Niu Y, Meng T, Yu T, Zhang X, Dai Y, Gao W, Gu G, Yu S, Zheng Y. Increased levels of urinary biomarkers of lipid peroxidation products among workers occupationally exposed to diesel engine exhaust. Free Radic Res 2016; 50:820-30. [PMID: 27087348 DOI: 10.1080/10715762.2016.1178738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Diesel engine exhaust (DEE) was found to induce lipid peroxidation (LPO) in animal exposure studies. LPO is a class of oxidative stress and can be reflected by detecting the levels of its production, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and etheno-DNA adducts including 1,N(6)-etheno-2'-deoxyadenosine (ɛdA) and 3,N(4)-etheno-2'-deoxycytidine (ɛdC). However, the impact of DEE exposure on LPO has not been explored in humans. In this study, we evaluated urinary MDA, 4-HNE, ɛdA, and ɛdC levels as biomarkers of LPO among 108 workers with exclusive exposure to DEE and 109 non-DEE-exposed workers. Results showed that increased levels of urinary MDA and ɛdA were observed in subjects occupationally exposed to DEE before and after age, body mass index (BMI), smoking status, and alcohol use were adjusted (all p < 0.001). There was a statistically significant relationship between the internal exposure dose (urinary ΣOH-PAHs) and MDA, 4-HNE, and ɛdA (all p < 0.001). Furthermore, significant increased relations between urinary etheno-DNA adduct and MDA, 4-HNE were observed (all p < 0.05). The findings of this study suggested that the level of LPO products (MDA and ɛdA) was increased in DEE-exposed workers, and urinary MDA and ɛdA might be feasible biomarkers for DEE exposure. LPO induced DNA damage might be involved and further motivated the genomic instability could be one of the pathogeneses of cancer induced by DEE-exposure. However, additional investigations should be performed to understand these observations.
Collapse
Affiliation(s)
- Ping Bin
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Meili Shen
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Haibin Li
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Xin Sun
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Yong Niu
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Tao Meng
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Tao Yu
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Xiao Zhang
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Yufei Dai
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Weimin Gao
- b Department of Environmental Toxicology , The Institute of Environmental and Human Health, Texas Tech University , Lubbock , TX , USA
| | - Guizhen Gu
- c Henan Provincial Institute of Occupational Health , Zhengzhou , Henan , China
| | - Shanfa Yu
- c Henan Provincial Institute of Occupational Health , Zhengzhou , Henan , China
| | - Yuxin Zheng
- a Key Laboratory of Chemical Safety and Health , National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention , Beijing , China
| |
Collapse
|
14
|
Tseng CY, Chang JF, Wang JS, Chang YJ, Gordon MK, Chao MW. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes. PLoS One 2015; 10:e0131911. [PMID: 26148005 PMCID: PMC4492618 DOI: 10.1371/journal.pone.0131911] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/08/2015] [Indexed: 01/01/2023] Open
Abstract
Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.
Collapse
Affiliation(s)
- Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
- Center of Nanotechnology, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
| | - Jing-Fen Chang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
| | - Jhih-Syuan Wang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
| | - Yu-Jung Chang
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
| | - Marion K. Gordon
- Joint program of Toxicology, Rutgers University, Piscataway, New Jersey, United States of America
| | - Ming-Wei Chao
- Center of Nanotechnology, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
- Department of Bioscience Technology, College of Science, Chung Yuan Christian University, Zhongli district, Taoyuan city, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Nemmar A, Al-Salam S, Yuvaraju P, Beegam S, Ali BH. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice. Respir Physiol Neurobiol 2015; 215:51-7. [PMID: 26001677 DOI: 10.1016/j.resp.2015.05.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/11/2015] [Accepted: 05/13/2015] [Indexed: 01/16/2023]
Abstract
Clinical and experimental studies have reported that short-term exposure to particulate air pollution is associated with inflammation, oxidative stress and impairment of lung function. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has a strong antioxidant and anti-inflammatory actions. Therefore, in the present study, we evaluated the possible ameliorative effect of emodin on diesel exhaust particles (DEP)-induced impairment of lung function, inflammation and oxidative stress in mice. Mice were intratracheally instilled with DEP (20 μg/mouse) or saline (control). Emodin was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty-four hours following DEP exposure, we evaluated airway resistance measured by forced oscillation technique, lung inflammation and oxidative stress. Emodin treatment abated the DEP-induced increase in airway resistance, and prevented the influx of neutrophils in bronchoalveolar lavage fluid. Similarly, lung histopathology confirmed the protective effect of emodin on DEP-induced lung inflammation. DEP induced a significant increase of proinflammatory cytokines in the lung including tumor necrosis factor α, interleukin 6 and interleukin 1β. The latter effect was significantly ameliorated by emodin. DEP caused a significant increase in lung lipid peroxidation, reactive oxygen species and a significant decrease of reduced glutathione concentration. These effects were significantly mitigated by emodin. We conclude that emodin significantly mitigated DEP-induced increase of airway resistance, lung inflammation and oxidative stress. Pending further pharmacological and toxicological studies, emodin may be considered a potentially useful pulmonary protective agent against particulate air pollution-induced lung toxicity.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, P.O. Box 35, Muscat 123, Al-Khod, Oman
| |
Collapse
|
16
|
Nemmar A, Al Hemeiri A, Al Hammadi N, Yuvaraju P, Beegam S, Yasin J, Elwasila M, Ali BH, Adeghate E. Early pulmonary events of nose-only water pipe (shisha) smoking exposure in mice. Physiol Rep 2015; 3:e12258. [PMID: 25780090 PMCID: PMC4393146 DOI: 10.14814/phy2.12258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/24/2022] Open
Abstract
Water pipe smoking (WPS) is increasing in popularity and prevalence worldwide. Convincing data suggest that the toxicants in WPS are similar to that of cigarette smoke. However, the underlying pathophysiologic mechanisms related to the early pulmonary events of WPS exposure are not understood. Here, we evaluated the early pulmonary events of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. BALB/c mice were exposed to WPS 30 min/day for 5 days. Control mice were exposed using the same protocol to atmospheric air only. We measured airway resistance using forced oscillation technique, and pulmonary inflammation was evaluated histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid and lung tissue. Lung oxidative stress was evaluated biochemically by measuring the level of reactive oxygen species (ROS), lipid peroxidation (LPO), reduced glutathione (GSH), catalase, and superoxide dismutase (SOD). Mice exposed to WPS showed a significant increase in the number of neutrophils (P < 0.05) and lymphocytes (P < 0.001). Moreover, total protein (P < 0.05), lactate dehydrogenase (P < 0.005), and endothelin (P < 0.05) levels were augmented in bronchoalveolar lavage fluid. Tumor necrosis factor α (P < 0.005) and interleukin 6 (P < 0.05) concentrations were significantly increased in lung following the exposure to WPS. Both ROS (P < 0.05) and LPO (P < 0.005) in lung tissue were significantly increased, whereas the level and activity of antioxidants including GSH (P < 0.0001), catalase (P < 0.005), and SOD (P < 0.0001) were significantly decreased after WPS exposure, indicating the occurrence of oxidative stress. In contrast, airway resistance was not increased in WPS exposure. We conclude that subacute, nose-only exposure to WPS causes lung inflammation and oxidative stress without affecting pulmonary function suggesting that inflammation and oxidative stress are early markers of WPS exposure that precede airway dysfunction. Our data provide information on the initial steps involved in the respiratory effects of WPS, which constitute the underlying causal chain of reactions leading to the long-term effects of WPS.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmed Al Hemeiri
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Naser Al Hammadi
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed Elwasila
- Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine & Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
17
|
Ulvestad B, Lund MB, Bakke B, Thomassen Y, Ellingsen DG. Short-term lung function decline in tunnel construction workers. Occup Environ Med 2014; 72:108-13. [DOI: 10.1136/oemed-2014-102262] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
18
|
Larcombe AN, Phan JA, Kicic A, Perks KL, Mead-Hunter R, Mullins BJ. Route of exposure alters inflammation and lung function responses to diesel exhaust. Inhal Toxicol 2014; 26:409-18. [DOI: 10.3109/08958378.2014.909910] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Nemmar A, Raza H, Yuvaraju P, Beegam S, John A, Yasin J, Hameed RS, Adeghate E, Ali BH. Nose-only water-pipe smoking effects on airway resistance, inflammation, and oxidative stress in mice. J Appl Physiol (1985) 2013; 115:1316-23. [PMID: 23869065 DOI: 10.1152/japplphysiol.00194.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Water-pipe smoking (WPS) is a common practice in the Middle East and is now gaining popularity in Europe and the United States. However, there is a limited number of studies on the respiratory effects of WPS. More specifically, the underlying pulmonary pathophysiological mechanisms related to WPS exposure are not understood. Presently, we assessed the respiratory effects of nose-only exposure to mainstream WPS generated by commercially available honey flavored "moasel" tobacco. The duration of the session was 30 min/day and 5 days/wk for 1 mo. Control mice were exposed to air only. Here, we measured in BALB/c mice the airway resistance using forced-oscillation technique. Lung inflammation was assessed histopathologically and by biochemical analysis of bronchoalveolar lavage (BAL) fluid, and oxidative stress was evaluated biochemically by measuring lipid peroxidation, reduced glutathione and several antioxidant enzymes. Pulmonary inflammation assessment showed an increase in neutrophil and lymphocyte numbers. Likewise, airway resistance was significantly increased in the WPS group compared with controls. Tumor necrosis factor α and interleukin 6 concentrations were significantly increased in BAL fluid. Lipid peroxidation in lung tissue was significantly increased whereas the level and activity of antioxidants including reduced glutathione, glutathione S transferase, and superoxide dismutase were all significantly decreased following WPS exposure, indicating the occurrence of oxidative stress. Moreover, carboxyhemoglobin levels were significantly increased in the WPS group. We conclude that 1-mo nose-only exposure to WPS significantly increased airway resistance, inflammation, and oxidative stress. Our results provide a mechanistic explanation for the limited clinical studies that reported the detrimental respiratory effects of WPS.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:279371. [PMID: 23865044 PMCID: PMC3705851 DOI: 10.1155/2013/279371] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/08/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques.
Collapse
|
21
|
Nemmar A, Al-salam S, Subramaniyan D, Yasin J, Yuvaraju P, Beegam S, Ali BH. Influence of experimental type 1 diabetes on the pulmonary effects of diesel exhaust particles in mice. Toxicol Lett 2013; 217:170-6. [DOI: 10.1016/j.toxlet.2012.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/01/2012] [Accepted: 11/02/2012] [Indexed: 12/17/2022]
|
22
|
Nemmar A, Raza H, Subramaniyan D, John A, Elwasila M, Ali BH, Adeghate E. Evaluation of the pulmonary effects of short-term nose-only cigarette smoke exposure in mice. Exp Biol Med (Maywood) 2012; 237:1449-56. [DOI: 10.1258/ebm.2012.012103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Much is known about the chronic effects of cigarette smoke (CS) on lung function and inflammation and development of chronic obstructive pulmonary disease. However, the underlying pathophysiological mechanisms related to the short-term exposure to CS are not fully understood. Here, we assessed the effect of CS generated by nine consecutive cigarettes per day for four days in a nose-only exposure system on airway resistance measured using forced oscillation technique, lung inflammation and oxidative stress in BALB/c mice. Control mice were exposed to air. Mice exposed to CS showed a significant increase of neutrophils and lymphocytes numbers in bronchoalveolar lavage (BAL). The total protein and endothelin levels in BAL fluid were significantly augmented suggesting an increase of alveolar-capillary barrier permeability. Similarly, airway resistance was significantly increased in the CS group compared with controls. Furthermore, reactive oxygen species and lipid peroxidation levels in lung tissue were significantly increased. The antioxidant activities of reduced glutathione, glutathione S transferase and superoxide dismutase were all significantly increased following CS exposure, indicating that CS could trigger adaptive responses that counterbalance the potentially damaging activity of oxygen radicals induced by CS exposure. In conclusion, our data indicate that short-term nose-only exposure to CS causes lung inflammation and increase of airway resistance mediated at least partly through the oxidative stress.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Haider Raza
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Deepa Subramaniyan
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Annie John
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Mohamed Elwasila
- Department of Pharmacology, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, PO Box 35, Muscat 123, Al-Khod, Sultanate of Oman
| | - Ernest Adeghate
- Department of Anatomy, Faculty of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al Ain, UAE
| |
Collapse
|