1
|
Gordon T, Saleh MA, Pasmanik-Chor M, Vatine GD, Ashkenazi A. Proteomic analysis of human iPSC-derived sympathetic neurons identifies proteostasis collapse as a molecular signature following subtoxic rotenone exposure. Toxicology 2025; 510:154015. [PMID: 39603559 DOI: 10.1016/j.tox.2024.154015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Rotenone is a toxic isoflavone and an inhibitor of the mitochondrial respiratory chain. Rotenone is commonly used due to its piscicidal and pesticidal properties. The peripheral nervous system (PNS) lacks protective barriers and is exposed to many environmental substances due to its long-reaching structure. A causal association between rotenone and human PNS dysfunction is currently a subject of investigation. Here, we treated human induced pluripotent stem cell (iPSC)-derived peripheral sympathetic neurons with a subtoxic dose of rotenone (10 µg/L) that is considered safe for human health and is permitted for environmental use. Indeed, no overt toxicity was observed in the human peripheral neurons and neurite morphology was intact in the treated neurons. Surprisingly, we detected significant changes in the proteome of rotenone-exposed sympathetic neurons with a signature of protein homeostasis (proteostasis) collapse. Screening the proteostasis modules of protein translation, proteolysis, and chaperones, revealed severe perturbations in clusters of autophagy regulators. Our proteomic profiling reveals compromised proteostasis as a consequence of low-dose non-toxic exposure to rotenone, which can disrupt the ability of the PNS to cope with proteotoxic stress. Exposed individuals may have varying degrees of tolerance to such vulnerabilities but they may eventually progress into peripheral neuropathies.
Collapse
Affiliation(s)
- Tamar Gordon
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mahmood Ali Saleh
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gad D Vatine
- The Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel; The Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Avraham Ashkenazi
- The Department of Cell and Developmental Biology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
2
|
Hemdan M, Abdel Mageed SS, Abulsoud AI, Faraag AHI, Zaki MB, Mansour RM, Raouf AA, Ali MA, Mohammed OA, Salman A, Salah AN, Abdel-Reheim MA, Doghish AS. Approaches based on miRNAs in Behçet's Disease: Unveiling pathogenic mechanisms, diagnostic strategies, and therapeutic applications. Life Sci 2024; 354:122950. [PMID: 39128821 DOI: 10.1016/j.lfs.2024.122950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Behçet's Disease (BD) is an intricate medical puzzle, captivating researchers with its enigmatic pathogenesis. This complex ailment, distinguished by recurrent mouth and genital lesions, eye irritation, and skin injuries, presents a substantial obstacle to therapeutic research. This review explores the complex interaction of microRNAs (miRNAs) with BD, highlighting their crucial involvement in the disease's pathophysiology. miRNAs, recognized for regulatory influence in diverse biological processes, hold a pivotal position in the molecular mechanisms of autoimmune diseases, such as BD. The exploration begins with examining miRNA biogenic pathways and functions, establishing a foundational understanding of their regulatory mechanisms. Shifting to the molecular landscape governing BD, the review highlights miRNA-mediated impacts on critical signaling pathways like Notch, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and protein kinase B (AKT)/mammalian target of rapamycin (mTOR), offering insights into intricate pathophysiological mechanisms. Dissecting the immunological landscape reveals the profound influence of miRNAs on BD, shedding light on the intricate modulation of immune responses and offering novel perspectives on disease etiology and progression. Beyond molecular intricacies, the review explores the clinical relevance of miRNAs in BD, emphasizing their potential as diagnostic and prognostic indicators. The discussion extends to the promising realm of miRNA-based therapeutic interventions, highlighting their potential in alleviating symptoms and altering disease progression. This comprehensive review, serving as a valuable resource for researchers, clinicians, and stakeholders, aims to decipher the intricate molecular tapestry of BD and explore the therapeutic potential of miRNAs.
Collapse
Affiliation(s)
- Mohamed Hemdan
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
| | - Ahmed H I Faraag
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; Biology Department, School of Biotechnology, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Ahmed Amr Raouf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed A Ali
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Akram N Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt.
| |
Collapse
|
3
|
Sevim C, Tsatsakis A, Taghizadehghalehjoughi A, Ozkaraca M, Kara M, Genc S, Mendil AS, Yeni Y, Nikolouzakis TK, Ozcagli E. Investigation of the miRNA levels changes to acceptable daily intake dose pesticide mixture exposure on rat mesentery and pancreas. CHEMOSPHERE 2024; 349:140712. [PMID: 38036224 DOI: 10.1016/j.chemosphere.2023.140712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/12/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023]
Abstract
Consumers are constantly exposed to a variety of chemical mixtures as part of their everyday activities and lifestyle. Food, water and commercial products are only some examples of the possible ways people get exposed to these mixtures. However, following federal and local guidelines for risk assessment related to chemical exposure, risk analysis focuses on a single substance exposure scenario and not on a mixture, as in real life. Realizing the pronounced gap of this methodology, the real-life risk simulation scenario approach tries to address this problem by investigating the possible effect of long-term exposure to chemical mixtures closely resembling the actual circumstances of modern life. As part of this effort, this study aimed to identify the cumulative effects of pesticides belonging to different classes and commonly used commercial products on long-term exposure with realistic doses. Sprague Dawley rats were given a pesticide mix of active ingredients and formulation chemicals in a daily acceptable dose (ADI) and 10xADI for 90 days. Following thorough everyday documentation of possible side-effects, after 90 days all animals were sacrificed and their organs were examined. Exposure to pesticides particularly affects the miRNA levels at that point will provide us with more information about whether they can be potential biomarkers.
Collapse
Affiliation(s)
- Cigdem Sevim
- Deparment of Medical Pharmacology, Faculty of Medicine, Kastamonu University , 37200, Kastamonu, Turkey.
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, Crete University, 71003, Heraklion, Greece.
| | - Ali Taghizadehghalehjoughi
- Deparment of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Mustafa Ozkaraca
- Deparment of Pathology, Faculty of Veterinary, Cumhuriyet University , 58070, Sivas, Turkey.
| | - Mehtap Kara
- Deparment of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , 34116, Istanbul, Turkey.
| | - Sidika Genc
- Deparment of Medical Pharmacology, Faculty of Medicine, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| | - Ali Sefa Mendil
- Deparment of Pathology, Faculty of Veterinary, Erciyes University , 38280, Kayseri, Turkey.
| | - Yesim Yeni
- Deparment of Medical Pharmacology, Faculty of Medicine, Turgut Özal University, 44210, Malatya, Turkey.
| | | | - Eren Ozcagli
- Deparment of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University , 34116, Istanbul, Turkey.
| |
Collapse
|
4
|
Georgoula M, Ntavaroukas P, Androutsopoulou A, Xiromerisiou G, Kalala F, Speletas M, Asprodini E, Vasilaki A, Papoutsopoulou S. Sortilin Expression Levels and Peripheral Immunity: A Potential Biomarker for Segregation between Parkinson's Disease Patients and Healthy Controls. Int J Mol Sci 2024; 25:1791. [PMID: 38339069 PMCID: PMC10855941 DOI: 10.3390/ijms25031791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Parkinson's disease (PD) is characterized by substantial phenotypic heterogeneity that limits the disease prognosis and patient's counseling, and complicates the design of further clinical trials. There is an unmet need for the development and validation of biomarkers for the prediction of the disease course. In this study, we utilized flow cytometry and in vitro approaches on peripheral blood cells and isolated peripheral blood mononuclear cell (PBMC)-derived macrophages to characterize specific innate immune populations in PD patients versus healthy donors. We found a significantly lower percentage of B lymphocytes and monocyte populations in PD patients. Monocytes in PD patients were characterized by a higher CD40 expression and on-surface expression of the type I membrane glycoprotein sortilin, which showed a trend of negative correlation with the age of the patients. These results were further investigated in vitro on PBMC-derived macrophages, which, in PD patients, showed higher sortilin expression levels compared to cells from healthy donors. The treatment of PD-derived macrophages with oxLDL led to higher foam cell formation compared to healthy donors. In conclusion, our results support the hypothesis that surface sortilin expression levels on human peripheral monocytes may potentially be utilized as a marker of Parkinson's disease and may segregate the sporadic versus the genetically induced forms of the disease.
Collapse
Affiliation(s)
- Maria Georgoula
- Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.G.); (P.N.); (A.A.)
| | - Panagiotis Ntavaroukas
- Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.G.); (P.N.); (A.A.)
| | - Anastasia Androutsopoulou
- Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.G.); (P.N.); (A.A.)
| | | | - Fani Kalala
- Laboratory of of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (F.K.); (M.S.)
| | - Matthaios Speletas
- Laboratory of of Immunology & Histocompatibility, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (F.K.); (M.S.)
| | - Eftihia Asprodini
- Laboratory of Clinical Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| | - Anna Vasilaki
- Laboratory of Pharmacology, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
| | - Stamatia Papoutsopoulou
- Department of Biochemistry & Biotechnology, University of Thessaly, 41500 Larissa, Greece; (M.G.); (P.N.); (A.A.)
| |
Collapse
|
5
|
Dorsey ER, De Miranda BR, Horsager J, Borghammer P. The Body, the Brain, the Environment, and Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:363-381. [PMID: 38607765 DOI: 10.3233/jpd-240019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
The brain- and body-first models of Lewy body disorders predict that aggregated alpha-synuclein pathology usually begins in either the olfactory system or the enteric nervous system. In both scenarios the pathology seems to arise in structures that are closely connected to the outside world. Environmental toxicants, including certain pesticides, industrial chemicals, and air pollution are therefore plausible trigger mechanisms for Parkinson's disease and dementia with Lewy bodies. Here, we propose that toxicants inhaled through the nose can lead to pathological changes in alpha-synuclein in the olfactory system that subsequently spread and give rise to a brain-first subtype of Lewy body disease. Similarly, ingested toxicants can pass through the gut and cause alpha-synuclein pathology that then extends via parasympathetic and sympathetic pathways to ultimately produce a body-first subtype. The resulting spread can be tracked by the development of symptoms, clinical assessments, in vivo imaging, and ultimately pathological examination. The integration of environmental exposures into the brain-first and body-first models generates testable hypotheses, including on the prevalence of the clinical conditions, their future incidence, imaging patterns, and pathological signatures. The proposed link, though, has limitations and leaves many questions unanswered, such as the role of the skin, the influence of the microbiome, and the effects of ongoing exposures. Despite these limitations, the interaction of exogenous factors with the nose and the gut may explain many of the mysteries of Parkinson's disease and open the door toward the ultimate goal -prevention.
Collapse
Affiliation(s)
- E Ray Dorsey
- Department of Neurology and Center for Health and Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Briana R De Miranda
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
6
|
Walker R, Fothergill-Misbah N, Kariuki S, Ojo O, Cilia R, Dekker MCJ, Agabi O, Akpalu A, Amod F, Breckons M, Cham M, Del Din S, Dotchin C, Guggsa S, Kwasa J, Mushi D, Nwaokorie FO, Park T, Rochester L, Rogathi J, Sarfo FS, Shalash A, Ternent L, Urasa S, Okubadejo N. Transforming Parkinson's Care in Africa (TraPCAf): protocol for a multimethodology National Institute for Health and Care Research Global Health Research Group project. BMC Neurol 2023; 23:373. [PMID: 37858118 PMCID: PMC10585779 DOI: 10.1186/s12883-023-03414-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disorder and, according to the Global Burden of Disease estimates in 2015, was the fastest growing neurological disorder globally with respect to associated prevalence, disability, and deaths. Information regarding the awareness, diagnosis, phenotypic characteristics, epidemiology, prevalence, risk factors, treatment, economic impact and lived experiences of people with PD from the African perspective is relatively sparse in contrast to the developed world, and much remains to be learned from, and about, the continent. METHODS Transforming Parkinson's Care in Africa (TraPCAf) is a multi-faceted, mixed-methods, multi-national research grant. The study design includes multiple sub-studies, combining observational (qualitative and quantitative) approaches for the epidemiological, clinical, risk factor and lived experience components, as appropriate, and interventional methods (clinical trial component). The aim of TraPCAf is to describe and gain a better understanding of the current situation of PD in Africa. The countries included in this National Institute for Health and Care Research (NIHR) Global Health Research Group (Egypt, Ethiopia, Ghana, Kenya, Nigeria, South Africa and Tanzania) represent diverse African geographies and genetic profiles, with differing resources, healthcare systems, health and social protection schemes, and policies. The research team is composed of experts in the field with vast experience in PD, jointly led by a UK-based and Africa-based investigator. DISCUSSION Despite the increasing prevalence of PD globally, robust data on the disease from Africa are lacking. Existing data point towards the poor awareness of PD and other neurological disorders on the continent and subsequent challenges with stigma, and limited access to affordable services and medication. This multi-site study will be the first of its kind in Africa. The data collected across the proposed sub-studies will provide novel and conclusive insights into the situation of PD. The selected country sites will allow for useful comparisons and make results relevant to other low- and middle-income countries. This grant is timely, as global recognition of PD and the public health challenge it poses builds. The work will contribute to broader initiatives, including the World Health Organization's Intersectoral global action plan on epilepsy and other neurological disorders. TRIAL REGISTRATION https://doi.org/10.1186/ISRCTN77014546 .
Collapse
Affiliation(s)
- R Walker
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - N Fothergill-Misbah
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - S Kariuki
- Neuroscience Unit, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - O Ojo
- College of Medicine, University of Lagos, Lagos, Nigeria
- Lagos University Teaching Hospital, Lagos, Nigeria
| | - R Cilia
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - M C J Dekker
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - O Agabi
- College of Medicine, University of Lagos, Lagos, Nigeria
| | - A Akpalu
- University of Ghana Medical School, Korle Bu Teaching Hospital, Accra, Ghana
| | - F Amod
- University of KwaZulu-Natal, Durban, South Africa
| | - M Breckons
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - M Cham
- Richard Novati Catholic Hospital, Sogakope, Ghana
| | - S Del Din
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - C Dotchin
- Northumbria Healthcare NHS Foundation Trust, Newcastle upon Tyne, UK
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Guggsa
- Addis Ababa University, Addis Ababa, Ethiopia
| | - J Kwasa
- Department of Clinical Medicine and Therapeutics, University of Nairobi, Nairobi, Kenya
| | - D Mushi
- Institute of Public Health, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - F O Nwaokorie
- Department of Medical Laboratory Science, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - T Park
- Parkinson's Africa, Kingston upon Thames, UK
| | - L Rochester
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- National Institute for Health and Care Research (NIHR) Newcastle Biomedical Research Centre (BRC), Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - J Rogathi
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - F S Sarfo
- Kwame Nkrumah University of Science & Technology, Kumasi, Ghana
| | - A Shalash
- Department of Neurology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - L Ternent
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - S Urasa
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - N Okubadejo
- College of Medicine, University of Lagos, Lagos, Nigeria
| |
Collapse
|
7
|
Nikitina MA, Alifirova VM, Bragina EY, Babushkina NP, Gomboeva DE, Nazarenko SM. Environmental and genetic risk factors for Parkinson’s disease. BULLETIN OF SIBERIAN MEDICINE 2023. [DOI: 10.20538/1682-0363-2022-4-105-113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aim. To analyze risk factors in the group of patients with Parkinson’s disease (PD) and compare them with the literature data.Materials and methods. The study included 439 patients with PD and 354 controls, comparable by gender and age. For each individual, a registration card was filled in containing demographic, epidemiological, clinical, and neuropsychological data. The severity of the disease was studied according to the MDS-UPDRS scale; the stage of PD was determined according to the Hoehn and Yahr scale. Cognitive functions were assessed by the MoCA test and MMSE. The length of the (CAG)n repeat region in the HTT gene was determined using fragment analysis on the ABI 3730 DNA analyzer. The obtained results were analyzed using GeneMapper Software v4.1 (Applied Biosystems, USA).Results. When comparing patients with PD and the control group, the odds ratio (OR) for PD in individuals with traumatic brain injury was 3.13 (95% confidence interval (CI): 2,27–4.34; p = 4.94 × 10–13), which showed the significance of this risk factor for PD. Consumption of coffee in the anamnesis distinguished the group of PD patients from the control group (OR = 0.41 (95% CI: 0.30–0.56); p < 0.0001), confirming its neuroprotective effect. Analysis of the variability in the length of the (CAG)n repeat regions in the HTT gene showed that patients whose genotype contained an allele with 17 repeats in combination with any allele other than an allele containing 18 repeats had a protective effect (OR = 0.50 (95% CI: 0.27–0.92); p = 0.025). All genotypes containing an allele with 18 repeats were predisposed to PD (OR = 2.57 (95% CI: 1.66–4.28); p = 0.007). The predisposing effect of the allele to PD, unrelated to the expansion of CAG repeats in the HTT gene, was revealed for the first time.Conclusion. Traumatic brain injury and the allele with 18 CAG repeats in the HTT gene are risk factors for PD. Coffee consumption can be attributed to protective factors in relation to PD.
Collapse
Affiliation(s)
| | | | - E. Yu. Bragina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - N. P. Babushkina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - D. E. Gomboeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| | - S. M. Nazarenko
- Siberian State Medical University;
Research Institute of Medical Genetics, Tomsk National Research Medical Center (NRMC), Russian Academy of Sciences
| |
Collapse
|
8
|
Hartz P, Fehlmann T, Wagenpfeil G, Unger MM, Bernhardt R. A CYPome-wide study reveals new potential players in the pathogenesis of Parkinson's disease. Front Pharmacol 2023; 13:1094265. [PMID: 36744208 PMCID: PMC9892771 DOI: 10.3389/fphar.2022.1094265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/20/2023] Open
Abstract
Genetic and environmental factors lead to the manifestation of Parkinson's disease (PD) but related mechanisms are only rudimentarily understood. Cytochromes P450 (P450s) are involved in the biotransformation of toxic compounds and in many physiological processes and thus predestinated to be involved in PD. However, so far only SNPs (single nucleotide polymorphisms) in CYP2D6 and CYP2E1 have been associated with the susceptibility of PD. Our aim was to evaluate the role of all 57 human P450s and their redox partners for the etiology and pathophysiology of PD and to identify novel potential players which may lead to the identification of new biomarkers and to a causative treatment of PD. The PPMI (Parkinson's Progression Markers Initiative) database was used to extract the gene sequences of all 57 P450s and their three redox partners to analyze the association of SNPs with the occurrence of PD. Applying statistical analyses of the data, corresponding odds ratios (OR) and confidence intervals (CI) were calculated. We identified SNPs significantly over-represented in patients with a genetic predisposition for PD (GPD patients) or in idiopathic PD (IPD patients) compared to HC (healthy controls). Xenobiotic-metabolizing P450s show a significant accumulation of SNPs in PD patients compared with HC supporting the role of toxic compounds in the pathogenesis of PD. Moreover, SNPs with high OR values (>5) in P450s catalyzing the degradation of cholesterol (CYP46A1, CY7B1, CYP39A1) indicate a prominent role of cholesterol metabolism in the brain for PD risk. Finally, P450s participating in the metabolism of eicosanoids show a strong over-representation of SNPs in PD patients underlining the effect of inflammation on the pathogenesis of PD. Also, the redox partners of P450 show SNPs with OR > 5 in PD patients. Taken together, we demonstrate that SNPs in 26 out of 57 P450s are at least 5-fold over-represented in PD patients suggesting these P450s as new potential players in the pathogenesis of PD. For the first time exceptionally high OR values (up to 12.9) were found. This will lead to deeper insight into the origin and development of PD and may be applied to develop novel strategies for a causative treatment of this disease.
Collapse
Affiliation(s)
- Philip Hartz
- Institut für Biochemie, Fachbereich Biologie, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Saarbrücken, Germany
| | - Tobias Fehlmann
- Institut für Klinische Bioinformatik, Universität des Saarlandes, Saarbrücken, Germany
| | - Gudrun Wagenpfeil
- Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik, Universität des Saarlandes, Homburg, Germany
| | - Marcus Michael Unger
- KLinik für Neurologie, Fachbereich Klinische Medizin, Universität des Saarlandes, Homburg, Germany
- Klinik für Neurologie, SHG Kliniken Sonnenberg, Saarbrücken, Germany
| | - Rita Bernhardt
- Institut für Biochemie, Fachbereich Biologie, Universität des Saarlandes, Naturwissenschaftlich-Technische Fakultät, Saarbrücken, Germany
| |
Collapse
|
9
|
Cardiotoxicity of pyrethroids: molecular mechanisms and therapeutic options for acute and long-term toxicity. Biochem Soc Trans 2022; 50:1737-1751. [PMID: 36383062 DOI: 10.1042/bst20220593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
Pyrethroids (PY) are synthetic pesticides used in many applications ranging from large-scale agriculture to household maintenance. Their classical mechanisms of action are associated with binding to the sodium channel of insect neurons, disrupting its inactivation, ensuring their use as insecticides. However, PY can also lead to toxicity in vertebrates, including humans. In most toxicological studies, the impact of PY on heart function is neglected. Acute exposure to a high dose of PY causes enhancement of the late sodium current (INaL), which impairs the action potential waveform and can cause severe cardiac arrhythmias. Moreover, long-term, low-dose exposure to PY displays oxidative stress in the heart, which could induce tissue remodeling and impairment. Isolated and preliminary evidence supports that, for acute exposure to PY, an antiarrhythmic therapy with ranolazine (an INaL blocker), can be a promising therapeutic approach. Besides, heart tissue remodeling associated with low doses and long-term exposure to PY seems to benefit from antioxidant therapy. Despite significant leaps in understanding the mechanical details of PY intoxication, currently, few studies are focusing on the heart. In this review, we present what is known and what are the gaps in the field of cardiotoxicity induced by PY.
Collapse
|
10
|
The Interplay between Gut Microbiota and Parkinson's Disease: Implications on Diagnosis and Treatment. Int J Mol Sci 2022; 23:ijms232012289. [PMID: 36293176 PMCID: PMC9603886 DOI: 10.3390/ijms232012289] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
The bidirectional interaction between the gut microbiota (GM) and the Central Nervous System, the so-called gut microbiota brain axis (GMBA), deeply affects brain function and has an important impact on the development of neurodegenerative diseases. In Parkinson’s disease (PD), gastrointestinal symptoms often precede the onset of motor and non-motor manifestations, and alterations in the GM composition accompany disease pathogenesis. Several studies have been conducted to unravel the role of dysbiosis and intestinal permeability in PD onset and progression, but the therapeutic and diagnostic applications of GM modifying approaches remain to be fully elucidated. After a brief introduction on the involvement of GMBA in the disease, we present evidence for GM alterations and leaky gut in PD patients. According to these data, we then review the potential of GM-based signatures to serve as disease biomarkers and we highlight the emerging role of probiotics, prebiotics, antibiotics, dietary interventions, and fecal microbiota transplantation as supportive therapeutic approaches in PD. Finally, we analyze the mutual influence between commonly prescribed PD medications and gut-microbiota, and we offer insights on the involvement also of nasal and oral microbiota in PD pathology, thus providing a comprehensive and up-to-date overview on the role of microbial features in disease diagnosis and treatment.
Collapse
|
11
|
Chen Y, Yin Q, Cheng XY, Zhang JR, Jin H, Li K, Mao CJ, Wang F, Bei HZ, Liu CF. G2019S LRRK2 Mutation Enhances MPP +-Induced Inflammation of Human Induced Pluripotent Stem Cells-Differentiated Dopaminergic Neurons. Front Neurosci 2022; 16:947927. [PMID: 35873822 PMCID: PMC9298923 DOI: 10.3389/fnins.2022.947927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 11/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) offer an unprecedented opportunity to mimic human diseases of related cell types, but it is unclear whether they can successfully mimic age-related diseases such as Parkinson’s disease (PD). We generated iPSCs lines from three patients with familial PD associated with the G2019S mutation in the LRRK2 gene and one age-matched healthy individual (control). During long-term culture, dopaminergic (DA) neurons differentiated from iPSCs of G2019S LRRK2 PD patients exhibited morphological changes, including a reduced number of neurites and neurite arborization, which were not evident in DA neurons differentiated from control iPSCs. To mimic PD pathology in vitro, we used 1-methyl-4-phenylpyridium (MPP+) to damage DA neurons and found that DA neurons differentiated from patients with G2019S LRRK2 mutation significantly reduced the survival rate and increased apoptosis compared with the controls. We also found that the mRNA level of inflammatory factors [interleukin (IL)-1β, tumor necrosis factor-α, cyclooxygenase-2, IL-6, and inducible NO synthase] with G2019S LRRK2 mutation were higher than control group after exposure to MPP+. Our study provides an in vitro model based on iPSCs that captures the patients’ genetic complexity and investigates the pathogenesis of familial PD cases in a disease-associated cell type.
Collapse
Affiliation(s)
- Ying Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Qing Yin
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, China.,Department of Neurology, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin-Ru Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Jin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hong-Zhe Bei
- Department of Neurology, The Third Affiliated Hospital of Inner Mongolia Medical University, Baotou, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Rafeeinia A, Asadikaram G, Karimi-Darabi M, Moazed V. High Levels of Organochlorines Are Associated with Induction of ABL1 Promoter Methylation in Children with Acute Lymphoblastic Leukemia. DNA Cell Biol 2022; 41:727-734. [PMID: 35788154 DOI: 10.1089/dna.2022.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to organochlorines is associated with epigenetic changes, including methylation change in the promoter of tumor suppressor genes, thereby leading to cancer induction. The aim of this study was to investigate the relationship between organochlorine pesticides (OCPs) and ABL1 promoter methylation in child patients with acute lymphoblastic leukemia (ALL) and the control group. The methylation rate of the ABL1 promoter was evaluated using the methylation-specific polymerase chain reaction method, and the level of OCPs in patients with ALL and healthy children was measured using gas chromatography. ABL1 promoter hypermethylation was observed in 64% of ALL patients and 28.5% of children in the control group. The level of OCPs in children with methylated ABL1 promoters was significantly higher than that in children with nonmethylated ABL1 promoters (p < 0.05). Our findings suggest that OCPs, especially alpha-hexachlorocyclohexane, beta-hexachlorocyclohexane, gamma-hexachlorocyclohexane, 2,4 dichlorodiphenyldichloroethylene, and 4,4 dichlorodiphenyltrichloroethane may induce methylation at the ABL1 promoter level, thereby preventing the normal expression of the ABL1 gene. As a result, the reduced expression of ABL1 (a tumor suppressor) gene due to the hypermethylation of its promoter leads to the disruption of normal biological processes, thus making cells vulnerable to oncogenic factors.
Collapse
Affiliation(s)
- Arash Rafeeinia
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman, Iran.,Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikaram
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrnaz Karimi-Darabi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Moazed
- Hematology and Oncology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
13
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
14
|
Fan HH, Li BQ, Wu KY, Yan HD, Gu MJ, Yao XH, Dong HJ, Zhang X, Zhu JH. Polymorphisms of Cytochromes P450 and Glutathione S-Transferases Synergistically Modulate Risk for Parkinson’s Disease. Front Aging Neurosci 2022; 14:888942. [PMID: 35572141 PMCID: PMC9099289 DOI: 10.3389/fnagi.2022.888942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Environmental substances such as pesticides are well-known in link with Parkinson’s disease (PD) risk. Enzymes including cytochromes P450 (CYPs), esterases and glutathione S-transferases (GSTs) are responsible for the xenobiotic metabolism and may functionally compensate each other for subtypes in the same class. We hypothesize that the genetic effects of each class modulate PD risk stronger in a synergistic way than individually. Methods We selected 14 polymorphic loci out of 13 genes which encode enzymes in the classes of CYP, esterase, and GST, and recruited a cohort of 1,026 PD and control subjects from eastern China. The genotypes were identified using improved multiplex ligation detection reaction and analyzed using multiple models. Results A total of 13 polymorphisms remained after Hardy-Weinberg equilibrium analysis. None of the polymorphisms were independently associated with PD risk after Bonferroni correction either by logistic regression or genetic models. In contrast, interaction analyses detected increased resistance to PD risk in individuals carrying the rs12441817/CC (CYP1A1) and rs2070676/GG + GC (CYP2E1) genotypes (P = 0.002, OR = 0.393, 95% CI = 0.216–0.715), or carrying the GSTM1-present, GSTT1-null, rs156697/AG + GG (GSTO2) and rs1695/AA (GSTP1) genotypes (P = 0.003, OR = 0.348, 95% CI = 0.171–0.706). The synergistic effect of GSTs on PD was primarily present in females (P = 0.003). No synergistic effect was observed within genotypes of esterases. Conclusion We demonstrate a presence of synergistic but not individual impact on PD susceptibility in polymorphisms of CYPs and GSTs. The results indicate that the genetic interplay leads the way to PD development for xenobiotic metabolizing enzymes.
Collapse
Affiliation(s)
- Hui-Hui Fan
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Institute of Geriatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Bao-Qing Li
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ke-Yun Wu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
| | - Hai-Dan Yan
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
| | - Meng-Jie Gu
- Department of Neurology, Institute of Geriatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xing-Hao Yao
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
| | - Hao-Jia Dong
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
| | - Xiong Zhang
- Department of Neurology, Institute of Geriatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Xiong Zhang,
| | - Jian-Hong Zhu
- Department of Preventive Medicine, Institute of Nutrition and Diseases, Wenzhou Medical University, Wenzhou, China
- Department of Neurology, Institute of Geriatric Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, China
- Jian-Hong Zhu,
| |
Collapse
|
15
|
Boos J, Shubbar A, Geldenhuys WJ. Dual monoamine oxidase B and acetylcholine esterase inhibitors for treating movement and cognition deficits in a C. elegans model of Parkinson's disease. Med Chem Res 2021; 30:1166-1174. [PMID: 34744409 DOI: 10.1007/s00044-021-02720-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Parkinson's disease (PD) is an age-associated neurodegenerative movement disorder that leads to loss of dopaminergic neurons and motor deficits. Approaches to neuroprotection and symptom management in PD include use of monoamine oxidase B (MAO-B) inhibitors. Many patients with PD also exhibit memory loss in the later stages of disease progression, which is treated with acetylcholine esterase (AChE) inhibitors. We sought to identify a dual-mechanism compound that would inhibit both MAO-B and AChE enzymes. Our screen identified a promising compound (7) with balanced MAO-B (IC50 of 16.83 μM) and AChE inhibition activity (AChE IC50 of 22.04 μM). Application of this compound 7 increased short-term associative memory and significantly prevented 6-hydroxy-dopamine toxicity in dopaminergic neurons in the Caenorhabditis elegans nematode. These findings present a platform for future development of dual-mechanism drugs to treat neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Jacob Boos
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Ahmed Shubbar
- Biomedical Sciences Program, Kent State University, Kent, OH, USA
| | - Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
- Department of Neuroscience, School of Medicine, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
16
|
Zhao L, Tang G, Xiong C, Han S, Yang C, He K, Liu Q, Luo J, Luo W, Wang Y, Li Z, Yang S. Chronic chlorpyrifos exposure induces oxidative stress, apoptosis and immune dysfunction in largemouth bass (Micropterus salmoides). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 282:117010. [PMID: 33848913 DOI: 10.1016/j.envpol.2021.117010] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/07/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
This study was undertaken to (a) evaluate the destructive effects of chronic exposure to low-dose of chlorpyrifos (CPF) on antioxidant system and immune function in largemouth bass (Micropterus salmoides), and (b) to examine whether dietary supplementation of curcumin can mitigate the adverse effects induced by CPF contamination. The experiment consisted of three groups (with three replicates, 30 fish per replicate) which lasted for 60 days: A control group (without CPF exposure or CU application), CP group (exposed to 0.004 mg/L of CPF), and CU group (exposed to 0.004 mg/L of CPF and fed a diet containing 100 mg curcumin per kg feed). The results showed that CPF contamination leads to reduced weight gain, severe histopathological lesions, decreased activity of antioxidant enzymes and down-regulated expression of antioxidant-related genes. Moreover, CPF upregulated the expression of pro-inflammatory genes such as TNF-α, IL-8, IL-15, downregulated anti-inflammatory genes TGF-β1, IL-10, and promoted apoptosis through overexpression of Caspase-3, Caspase-8, caspase-9 and Bax. In addition, curcumin supplementation showed significant improvement in oxidative stress, apoptosis and immune dysfunction, but the improved effect gradually weakened during the exposure last. Gas chromatography-mass spectrometry (GC-MS) analysis for accumulation of CPF in muscle supported the changes of general physiological structure, excessive apoptotic responses, abnormal antioxidant and immune system functions and posed potential human health risks to children based on target hazard quotient. These results suggested that chronic exposure to CPF can cause oxidative stress, apoptosis and immune dysfunction, and that curcumin have the potential to reduce pesticides residues in fish. This also highlights the importance of monitoring pesticides residues in aquatic products and aquaculture aquatic environments.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chen Xiong
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shuaishuai Han
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunping Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kuo He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Wang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
17
|
ADORA2A rs5760423 and CYP1A2 rs762551 Polymorphisms as Risk Factors for Parkinson's Disease. J Clin Med 2021; 10:jcm10030381. [PMID: 33498513 PMCID: PMC7864159 DOI: 10.3390/jcm10030381] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Parkinson’s disease (PD) is the second commonest neurodegenerative disease. The genetic basis of PD is indisputable. Both ADORA2A rs5760423 and CYP1A2 rs762551 have been linked to PD, to some extent, but the exact role of those polymorphisms in PD remains controversial. Objective: We assessed the role of ADORA2A rs5760423 and CYP1A2 rs762551 on PD risk. Methods: We genotyped 358 patients with PD and 358 healthy controls for ADORA2A rs5760423 and CYP1A2 rs762551. We also merged and meta-analyzed our data with data from previous studies, regarding these two polymorphisms and PD. Results: No significant association with PD was revealed (p > 0.05), for either ADORA2A rs5760423 or CYP1A2 rs762551, in any of the examined genetic model of inheritance. In addition, results from meta-analyses yield negative results. Conclusions: Based on our analyses, it appears rather unlikely that ADORA2A rs5760423 or CYP1A2 rs762551 is among the major risk factors for PD, at least in Greek patients with PD.
Collapse
|
18
|
Aloizou AM, Siokas V, Sapouni EM, Sita N, Liampas I, Brotis AG, Rakitskii VN, Burykina TI, Aschner M, Bogdanos DP, Tsatsakis A, Hadjigeorgiou GM, Dardiotis E. Parkinson's disease and pesticides: Are microRNAs the missing link? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140591. [PMID: 32721662 DOI: 10.1016/j.scitotenv.2020.140591] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that leads to significant morbidity and decline in the quality of life. It develops due to loss of dopaminergic neurons in the substantia nigra pars compacta, and among its pathogenic factors oxidative stress plays a critical role in disease progression. Pesticides are a broad class of chemicals widely used in agriculture and households for the protection of crops from insects and fungi. Several of them have been incriminated as risk factors for PD, but the underlying mechanisms have yet to be fully understood. MicroRNAs (miRNAs) are small, non-coding RNA molecules that play an important role in regulating mRNA translation and protein synthesis. miRNA levels have been shown to be affected in several diseases as well. Since the studies on the association between pesticides and PD have yet to reach definitive conclusions, here we review recent evidence on deregulated microRNAs upon pesticide exposure, and attempt to find an overlap between miRNAs deregulated in PD and pesticides, as a missing link between the two, and enhance future research in this direction.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - Efstathia-Maria Sapouni
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikoleta Sita
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Ioannis Liampas
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandros G Brotis
- Department of Neurosurgery, School of Medicine, University Hospital of Larissa, University of Thessaly, Larissa, Greece
| | - Valerii N Rakitskii
- The Federal Budgetary Establishment of Science "Federal Scientific Center of Hygiene named after F. F. Erisman" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Oblast' 141014, Russian Federation
| | - Tatyana I Burykina
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation
| | - Michael Aschner
- Albert Einstein College of Medicine, Bronx, NY, USA; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Dimitrios P Bogdanos
- Department of Rheumatology and clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Viopolis 40500, Larissa, Greece
| | - Aristidis Tsatsakis
- The Federal Budgetary Establishment of Science "Federal Scientific Center of Hygiene named after F. F. Erisman" of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 2 Semashko street, Mytishchi, Moscow Oblast' 141014, Russian Federation; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119048 Moscow, Russian Federation; Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University Hospital of Larissa, Greece, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
19
|
Association of Paraoxonase1 enzyme and its genetic single nucleotide polymorphisms with cardio-metabolic and neurodegenerative diseases. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Sergievich AA, Khoroshikh PP, Artemenko AF, Zakharenko AM, Chaika VV, Kodintsev VV, Stroeva OA, Lenda EG, Tsatsakis A, Burykina TI, Agathokleous E, Kostoff RN, Zlatian O, Docea AO, Golokhvast KS. Behavioral impacts of a mixture of six pesticides on rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138491. [PMID: 32335449 DOI: 10.1016/j.scitotenv.2020.138491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Pesticides can potentially contribute to the development of numerous neurodegenerative diseases. This study evaluates the effects of a six-pesticide mixture at doses around the no-observed-adverse-effectlevels (0 × NOAEL, control) and 0.25, 1 and 5 × NOAEL on behavior of Wistar rats. After 3, 6 and 12 months, rats were observed for neurobehavioral changes using the techniques of elevated plus maze and universal problemchamber, and the experiment was conducted thrice. The 3-month exposure revealed a decrease in the cognitive ability at the dose of 5 × NOAEL, and a dose-dependent research activity and anxiety. The 6-month exposurerevealed non-monotonic effects on the cognitive ability, with a decrease by 0.25 and 5 × NOAEL, as well as non-monotonic effects on anxiety, withan increase by 0.25 and 1 × NOAEL. A decrease was also observed in research activity at 5 × NOAEL. However, the 12-month exposure resulted to an increase in cognitive ability by 0.25 × NOAEL and in anxiety by 1 × NOAEL, as well as to a dose-dependent research activity. Repeating the trial showed that the cognitive ability increased from one trial to another, while the researching activity decreased and the anxiety increased by 0× NOAEL. In the groups exposed to pesticides mixture, the trends were different, showing that the exposure to pesticides combined with repeated trials, also influence the response of the animals. The resultsdemonstrate the occurrence of several dose-dependent behavioral responses, with negative effects occurring at doses that are considered safe. This study provides novel insights about time-dependent mixtures biology, and an important perspective to consider when conducting risk assessments.
Collapse
Affiliation(s)
- Alexander A Sergievich
- Far Eastern Federal University, Vladivostok, Russian Federation; Pacific Geographical Institute FEB RAS, Vladivostok, Russian Federation.
| | | | | | | | | | | | - Olga A Stroeva
- Center Hygiene and Epidemiology in the Primorsky Territory, Vladivostok, Russian Federation.
| | - Elena G Lenda
- Center Hygiene and Epidemiology in the Primorsky Territory, Vladivostok, Russian Federation
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, Greece; Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia.
| | - Tatyana I Burykina
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 2-4 Bolshaya Pirogovskaya st., 119991 Moscow, Russia
| | - Evgenios Agathokleous
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu 210044, China.
| | | | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova 200349, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova 200349, Romania.
| | - Kirill S Golokhvast
- Far Eastern Federal University, Vladivostok, Russian Federation; Pacific Geographical Institute FEB RAS, Vladivostok, Russian Federation.
| |
Collapse
|
21
|
Jiang YN, Guo YZ, Lu DH, Pan MH, Liu HZ, Jiao GL, Bi W, Kurihara H, Li YF, Duan WJ, He RR, Yao XS. Tianma Gouteng granules decreases the susceptibility of Parkinson's disease by inhibiting ALOX15-mediated lipid peroxidation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 256:112824. [PMID: 32259664 DOI: 10.1016/j.jep.2020.112824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tianma Gouteng granules (TG), a clinical prescription of traditional Chinese medicine, has been clinically applied to treat Parkinson's disease (PD) in combination with Madopar, as included in the Chinese Pharmacopoeia (2015). TG has the potential to decrease the susceptibility of PD pharmacologically, however the mechanisms need detailed demonstration. AIM OF THE STUDY To evaluate the pharmacological activities, as well as the possible mechanism of TG in diverse models of PD. MATERIALS AND METHODS 6-OHDA-treated rats, MPTP-treated mice, and α-synuclein A53T overexpressed mice, were utilized as PD animal models. Rotarod, locomotor activity, inclined plane and traction tests were used for behavioral assessment. Immunohistochemistry was used for tyrosine hydrolase determination. Western blot were conducted for detection of 4-HNE and 15-lipoxygenase-1 (ALOX15). The interactions of ALOX15 with the components in TG were predicted by molecular docking approach. RESULTS Lipid peroxidation was involved in dopaminergic neuron damage in 6-OHDA-induced rat models. In MPTP-treated mice, the inhibition of lipid peroxidation improved behavioral and pathological symptoms of PD. The lipid peroxidation-related protein, ALOX15 was found to be the key factor in PD process in diverse PD models including 6-OHDA-treated rats, MPTP-treated mice, and α-synuclein A53T overexpressed mice. TG treatment significantly relieved behavioral and pathological symptoms of MPTP-induced PD mouse models with a potential mechanism of alleviating ALOX15-induced lipid peroxidation. Moreover, the results of molecular docking analysis show that compounds in TG might have interactions with ALOX15. CONCLUSIONS TG effectively improved the behavioral and dopaminergic neuron damage in diverse PD models. The mechanism of this action may be related to the direct inhibition of ALOX15 and the relief of lipid peroxidation.
Collapse
Affiliation(s)
- Ying-Nan Jiang
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Yong-Zhi Guo
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Dan-Hua Lu
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Ming-Hai Pan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Hai-Zhi Liu
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Gen-Long Jiao
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Wei Bi
- The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Hiroshi Kurihara
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Yi-Fang Li
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Wen-Jun Duan
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Xin-Sheng Yao
- College of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Dardiotis E, Rikos D, Siokas V, Aloizou AM, Tsouris Z, Sakalakis E, Brotis AG, Bogdanos DP, Hadjigeorgiou GM. Assessment of TREM2 rs75932628 variant's association with Parkinson's disease in a Greek population and Meta-analysis of current data. Int J Neurosci 2020; 131:544-548. [PMID: 32250197 DOI: 10.1080/00207454.2020.1750388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Α number of genetic variants are considered to confer susceptibility to Parkinson's disease (PD). Rs75392628 (R47H), a rare variant of TREM2 gene, has been linked to PD, although its role on PD remains conflicting. OBJECTIVE Detection of a possible contribution of rs75392628 variant of TREM2 gene to PD risk. METHODS A total of 358 PD patients and 358 healthy controls genotyped for rs75392628. In addition, a meta-analysis was performed by merging our results with those from previous studies. RESULTS The rare variant of rs75932628 (47H) of TREM2 gene was not detected on cohort. Meta-analysis of a total of 9271 PD cases and 9777 controls across 14 independent PD data sets from 9 studies, including the present study, did not show any statistically significant effect of rs75392628 on PD risk (ORFE:1.54 95% CI:0.87-2.73. ORRE: 1.54, 95%CI: 0.71-3.32). CONCLUSIONS Rs75392628 TREM2 variant is rather unlikely to be a major genetic risk contributor of PD.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Dimitrios Rikos
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Evagelos Sakalakis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Alexandros G Brotis
- Department of Neurosurgery, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, University General Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.,Cellular Immunotherapy & Molecular Immunodiagnostics, Biomedical Section, Centre for Research and Technology-Hellas (CERTH), Institute for Research and Technology-Thessaly (IRETETH), Larissa, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
23
|
Dardiotis E, Aloizou AM, Sakalakis E, Siokas V, Koureas M, Xiromerisiou G, Petinaki E, Wilks M, Tsatsakis A, Hadjichristodoulou C, Stefanis L, Hadjigeorgiou GM. Organochlorine pesticide levels in Greek patients with Parkinson's disease. Toxicol Rep 2020; 7:596-601. [PMID: 32426240 PMCID: PMC7225589 DOI: 10.1016/j.toxrep.2020.03.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Background Parkinson’s disease (PD) is a neurodegenerative disease, mostly presenting with characteristic motor symptoms. Organochlorines (OC) are a class of widely-used pesticides that have been included among the list of environmental factors incriminated in PD pathogenesis. However, most studies reporting this association are based on questionnaires, and few have reported exposure data. Aim To examine the relationship between OC blood concentrations and PD risk. Methods In the present study, we studied the concentrations of 8 OC compounds (hexachlorobenzene, heptachlor, hepachlor epoxide, c-chlordane, a-chlordane, p,p’-DDE, DDD, DDT) in 104 Greek PD patients and 110 healthy controls. Results All substances studied were present in at least one sample. The most frequently detected (above the level of quantification) pesticides were p,p’-DDE (n = 214, 100 % of both groups) and hexachlorobenzene, HCB (n = 189, cases 46.5 %, controls 53.5 %). Higher levels of DDE were detected among PD patients in comparison to controls by using logistic regression analysis to control for confounders [Odds Ratio, OR (95 % confidence interval, C.I.)]: 2.592,(1.29–5.21)], whilst lower levels of HCB were detect among PD patients [OR,95 %CI:0.176(0.09−0.35)]. Conclusions Our data suggest that exposure to specific OCs is related to the risk of PD. Further studies, using real exposure data, are needed in order to confirm and extend these findings.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Evagelos Sakalakis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Michalis Koureas
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222, Larissa, Greece
| | - Georgia Xiromerisiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Efthymia Petinaki
- Department of Microbiology, Medical School, University of Thessaly, Larissa, Greece
| | - Martin Wilks
- Swiss Centre for Applied Human Toxicology, University of Basel, CH‑4055, Basel, Switzerland
| | - Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Christos Hadjichristodoulou
- Department of Hygiene and Epidemiology, Faculty of Medicine, University of Thessaly, 22 Papakyriazi Street, 41222, Larissa, Greece
| | - Leonidas Stefanis
- 1stDepartment of Neurology, National and Kapodistrian University of Athens, School of Medicine, Eginition Hospital, 72-74 Vas.Sophias Ave, 11528, Athens, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.,Department of Neurology, Medical School, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
24
|
Liu Y, Xue L, Zhang Y, Xie A. Association Between Stroke and Parkinson's Disease: a Meta-analysis. J Mol Neurosci 2020; 70:1169-1176. [PMID: 32180111 DOI: 10.1007/s12031-020-01524-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/28/2020] [Indexed: 11/30/2022]
Abstract
Parkinson's disease (PD) and stroke are both associated with aging, but the relationship between these two disorders remains unclear. Recent evidence has shown that they frequently co-occur and are influenced by each another, although some studies have found inconsistent results. We performed this meta-analysis of patients with PD on stroke risk to clarify the relationship between these two disorders on the basis of the studies published from 1975 to July 2019 in the PubMed, EMBASE, and Cochrane Library databases. In total, 13 case-control studies met the inclusion criteria for meta-analysis. The pooled odds ratio (OR) for PD in relation to the stroke risk was 1.72 (95% confidence interval (CI) 1.19-2.49). The OR for the presence of cerebral infarct among PD in the four studies was 1.35 (95% CI 1.04-1.74). Moreover, the OR for the presence of stroke pathology among PD in the four postmortem studies was 1.86 (95% CI 1.17-2.98). In conclusion, our meta-analysis suggests that there is an association between stroke and PD. Sensitivity analysis was used to test the robustness of our results through the sequential removal of each one study at time, in order to investigate if a single study was driving the study results. These results indicate that PD and stroke may have a common pathogenesis and may share preventive treatment measures.
Collapse
Affiliation(s)
- Yumei Liu
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu road, Qingdao, 266003, Shandong Province, People's Republic of China
| | - Li Xue
- Medical Record Department, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingying Zhang
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu road, Qingdao, 266003, Shandong Province, People's Republic of China.
| | - Anmu Xie
- Department of Neurology, Affiliated Hospital of Qingdao University, No. 16 Jiangsu road, Qingdao, 266003, Shandong Province, People's Republic of China.
| |
Collapse
|
25
|
Pesticides, cognitive functions and dementia: A review. Toxicol Lett 2020; 326:31-51. [PMID: 32145396 DOI: 10.1016/j.toxlet.2020.03.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Pesticides are widely-used chemicals commonly applied in agriculture for the protection of crops from pests. Depending on the class of pesticides, the specific substances may have a specific set of adverse effects on humans, especially in cases of acute poisoning. In past years, evidence regarding sequelae of chronic, low-level exposure has been accumulating. Cognitive impairment and dementia heavily affect a person's quality of life and scientific data has been hinting towards an association between them and antecedent chronic pesticide exposure. Here, we reviewed animal and human studies exploring the association between pesticide exposure, cognition and dementia. Additionally, we present potential mechanisms through which pesticides may act neurotoxically and lead to neurodegeneration. Study designs rarely presented homogeneity and the estimation of the exposure to pesticides has been most frequently performed without measuring the synergic effects and the possible interactions between the toxicants within mixtures, and also overlooking low exposures to environmental toxicants. It is possible that a Real-Life Risk Simulation approach would represent a robust alternative for future studies, so that the safe exposure limits and the net risk that pesticides confer to impaired cognitive function can be examined. Previous studies that evaluated the effect of low dose chronic exposure to mixtures of pesticides and other chemicals intending to simulate real life exposure scenarios showed that hormetic neurobehavioral effects can appear after mixture exposure at doses considered safe for individual compounds and these effects can be exacerbated by a coexistence with specific conditions such as vitamin deficiency. However, there is an overall indication, derived from both epidemiologic and laboratory evidence, supporting an association between exposure to neurotoxic pesticides and cognitive dysfunction, dementia and Alzheimer's disease.
Collapse
|
26
|
Godos J, Tieri M, Ghelfi F, Titta L, Marventano S, Lafranconi A, Gambera A, Alonzo E, Sciacca S, Buscemi S, Ray S, Del Rio D, Galvano F, Grosso G. Dairy foods and health: an umbrella review of observational studies. Int J Food Sci Nutr 2020; 71:138-151. [PMID: 31199182 DOI: 10.1080/09637486.2019.1625035] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Evidence on consumption of dairy foods and human health is contradictory. This study aimed to summarize the level of evidence of dairy consumption on various health outcomes. A systematic search for meta-analyses was performed: study design, dose-response relationship, heterogeneity and agreement of results over time, and identification of potential confounding factors were considered to assess the level of evidence. Convincing and probable evidence of decreased risk of colorectal cancer, hypertension and cardiovascular disease, elevated blood pressure and fatal stroke, respectively, was found for total dairy consumption; possible decreased risk of breast cancer, metabolic syndrome, stroke and type-2 diabetes, and increased risk of prostate cancer and Parkinson's disease was also found. Similar, yet not entirely consistent evidence for individual dairy products was reported. Among potential confounding factors, geographical localisation and fat content of dairy have been detected. In conclusions, dairy may be part of a healthy diet; however, additional studies exploring confounding factors are needed to ascertain the potential detrimental effects.
Collapse
Affiliation(s)
| | - Maria Tieri
- SmartFood Program, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Ghelfi
- SmartFood Program, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
- Wolfson College at the University of Cambridge, Cambridge, UK
- Nutrition Innovation Centre for Food and Health, Ulster University, Ulster, UK
| | - Lucilla Titta
- SmartFood Program, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefano Marventano
- Rimini Women's Health, Childhood and Adolescent Department, AUSL Romagna, Rimini, Italy
| | - Alessandra Lafranconi
- University of Milano - Biccoca, Milan, Italy
- Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Angelo Gambera
- Azienda Ospedaliero-Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Elena Alonzo
- Food and Nutrition Security and Public Health Service, ASP Catania, Catania, Italy
| | - Salvatore Sciacca
- Integrated Cancer Registry of Catania-Messina-Siracusa-Enna, Azienda Ospedaliero-Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Silvio Buscemi
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), University of Palermo, Palermo, Italy
| | - Sumantra Ray
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
- Wolfson College at the University of Cambridge, Cambridge, UK
- Nutrition Innovation Centre for Food and Health, Ulster University, Ulster, UK
- Medical Research Council (MRC) Human Nutrition Research Unit, Cambridge, UK
| | - Daniele Del Rio
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
- Wolfson College at the University of Cambridge, Cambridge, UK
- Nutrition Innovation Centre for Food and Health, Ulster University, Ulster, UK
- Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, Parma, Italy
- Laboratory of Phytochemicals in Physiology, Department of Veterinary Science, University of Parma, Parma, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
- Wolfson College at the University of Cambridge, Cambridge, UK
- Nutrition Innovation Centre for Food and Health, Ulster University, Ulster, UK
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
27
|
Cui Y, Zhao M, Han L. Differences in biological activities between recombinant human paraoxonase 1 (rhPON1) subtype isozemys R/Q as antidotes against organophosphorus poisonings. Toxicol Lett 2020; 325:51-61. [PMID: 31981688 DOI: 10.1016/j.toxlet.2020.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
Paraoxonase 1 (PON1) is a type of aromatic esterase widely existing in mammals. It can hydrolyze various kinds of compounds effectively in vivo and in vitro. Previous studies have confirmed that PON1 can be used as antidote against organophosphorus poisonings (OPs). In this study, we obtained two subtype isozymes (i.e. rhPON1R192 and rhPON1Q192) by gene recombination and compared their detoxification effects against different OPs in rats. The rhPON1R192 demonstrated better detoxification effect against chlorpyrifos poisoning than the rhPON1Q192, whose detoxification effect against diazinon poisoning was prior to the former. Both of them showed poor detoxification effect against trithion. Therefore, we concluded that, to different OPs, better detoxification effect may be achieved by selecting the PON1 subtype isozyme with higher specific hydrolytic activity.
Collapse
Affiliation(s)
- Yue Cui
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| | - Min Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Shenyang, 110004, China.
| | - Lang Han
- Specialist Clinics, Shengjing Hospital of China Medical University, No. 39 Huaxiang Road, Shenyang, 110022, China.
| |
Collapse
|
28
|
Dardiotis E, Siokas V, Moza S, Kosmidis MH, Vogiatzi C, Aloizou AM, Geronikola N, Ntanasi E, Zalonis I, Yannakoulia M, Scarmeas N, Hadjigeorgiou GM. Pesticide exposure and cognitive function: Results from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD). ENVIRONMENTAL RESEARCH 2019; 177:108632. [PMID: 31434017 DOI: 10.1016/j.envres.2019.108632] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Results from studies to date, regarding the role of chronic pesticide exposure on cognitive function remain contradictory. OBJECTIVE To investigate the relationship between self-reported pesticide exposure and cognitive function. METHODS Data from a population-based cohort study of older adults (HEllenic Longitudinal Investigation of Aging and Diet) in Greece was used. Pesticide exposure classification was based on 1) living in areas that were being sprayed; 2) application of spray insecticides/pesticides in their gardens; and 3) occupational application of sprays. Associations between z-scores of cognitive performance and self-reported pesticide exposure were examined with linear regression analyses. Adjusted models were applied, for all analyses. RESULTS Non-demented individuals who reported that they had been living in areas near sprayed fields, had poorer neuropsychological performance, compared to those who had never lived in such areas. Sub-analyses revealed poorer performance in language, executive and visual-spatial functioning, and attention. These associations remained after a sensitivity analysis excluding subjects with mild cognitive impairment. CONCLUSION Self-reported exposure to pesticides was negatively associated with cognitive performance.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Sotiria Moza
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Greece
| | - Mary H Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Greece
| | - Christina Vogiatzi
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Nikoletta Geronikola
- Athens Association of Alzheimer's Disease and Related Disorders, Athens Day Care Center, Athens, Greece
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Greece; Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Ioannis Zalonis
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Greece
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Greece; Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, USA
| | | |
Collapse
|
29
|
Tsatsakis A, Tyshko NV, Docea AO, Shestakova SI, Sidorova YS, Petrov NA, Zlatian O, Mach M, Hartung T, Tutelyan VA. The effect of chronic vitamin deficiency and long term very low dose exposure to 6 pesticides mixture on neurological outcomes – A real-life risk simulation approach. Toxicol Lett 2019; 315:96-106. [DOI: 10.1016/j.toxlet.2019.07.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 01/27/2023]
|
30
|
Vasconcellos PRO, Rizzotto MLF, Machineski GG, Costa RM. Condições da exposição a agrotóxicos de portadores da doença de Parkinson acompanhados no ambulatório de neurologia de um hospital universitário e a percepção da relação da exposição com o adoecimento. SAÚDE EM DEBATE 2019. [DOI: 10.1590/0103-1104201912308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O objetivo desta pesquisa foi investigar, a partir da história laboral de portadores da doença de Parkinson acompanhados no ambulatório de neurologia de um hospital universitário, a ocorrência e as condições da exposição a agrotóxicos, bem como a percepção da relação da exposição com o adoecimento. Trata-se de estudo exploratório e descritivo, com abordagem quantitativa e qualitativa, realizado no Hospital Universitário do Oeste do Paraná, em Cascavel, Paraná, Brasil. Foram entrevistados 32 sujeitos, o usuário ou familiares, com doença de Parkinson, por meio de entrevista telefônica a partir de roteiro semiestruturado. Desses, 16 (50%) eram homens; a maioria idosos aposentados (87,48%), com baixa escolaridade (53,13%); 25 (78,11%) trabalharam na agricultura, residindo na área rural de 11 anos a 30 anos; 24 (74,98%) afirmaram ter tido contato com agrotóxicos de forma direta ou indireta; a forma mais citada de aplicação dos agrotóxicos foi com pulverizador costal; a maioria (75%) não utilizou equipamentos de proteção individual e aprendeu a manipular os agrotóxicos com familiares. Conclui-se que um número expressivo de indivíduos com doença de Parkinson teve alguma atividade laboral na agricultura durante a vida, muitos deles com contato direto com agrotóxicos, seja no preparo e aplicação ou mesmo na lavagem das roupas.
Collapse
|
31
|
Tsatsakis A, Docea AO, Constantin C, Calina D, Zlatian O, Nikolouzakis TK, Stivaktakis PD, Kalogeraki A, Liesivuori J, Tzanakakis G, Neagu M. Genotoxic, cytotoxic, and cytopathological effects in rats exposed for 18 months to a mixture of 13 chemicals in doses below NOAEL levels. Toxicol Lett 2019; 316:154-170. [PMID: 31521832 DOI: 10.1016/j.toxlet.2019.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/13/2022]
Abstract
The present study investigates the genotoxic and cytotoxic effects of long term exposure to low doses of a mixture consisting of methomyl, triadimefon, dimethoate, glyphosate, carbaryl, methyl parathion, aspartame, sodium benzoate, EDTA, ethylparaben, buthylparaben, bisphenol A and acacia gum in rats. Four groups of ten Sprangue Dawley rats (5 males and 5 females per group) were exposed for 18 months to the mixture in doses of 0xNOAEL, 0.0025xNOAEL, 0.01xNOAEL and 0.05xNOAEL (mg/kg bw/day). After 18 months of exposure, the rats were sacrificed and their organs were harvested. Micronuclei frequency was evaluated in bone marrow erythrocytes whereas the organs were cytopathologically examined by the touch preparation technique. The exposure to the mixture caused a genotoxic effect identified only in females. Cytopathological examination showed specific alterations of tissue organization in a tissue-type dependent manner. The observed effects were dose-dependent and correlated to various tissue parameters. Specifically, testes samples revealed degenerative and cellularity disorders, liver hepatocytes exhibited decreased glycogen deposition whereas degenerative changes were present in gastric cells. Lung tissue presented increased inflammatory cells infiltration and alveolar macrophages with enhanced phagocytic activity, whereas brain tissue exhibited changes in glial and astrocyte cells' numbers. In conclusion, exposure to very low doses of the tested mixture for 18 months induces genotoxic effects as well as monotonic cytotoxic effects in a tissue-dependent manner.
Collapse
Affiliation(s)
- Aristidis Tsatsakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece; Spin-Off Toxplus S.A., 71601, Heraklion, Greece.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Carolina Constantin
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Pathology Dept. Colentina Clinical Hospital, Bucharest, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | | | - Polychronis D Stivaktakis
- Center of Toxicology Science & Research, Medical School, University of Crete, Heraklion, Crete, Greece.
| | - Alexandra Kalogeraki
- Department of Pathology-Cytopathology, Medical School, University of Crete, Heraklion, Crete, Greece.
| | | | - George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003, Heraklion, Greece.
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, Bucharest, Romania; Department of Pathology Dept. Colentina Clinical Hospital, Bucharest, Romania.
| |
Collapse
|
32
|
Ogunruku OO, Ogunyemi BO, Oboh G, Babatunde OO, Boligon AA. Modulation of dopamine metabolizing enzymes and antioxidant status by Capsicum annuum Lin in rotenone-intoxicated rat brain. Toxicol Rep 2019; 6:795-802. [PMID: 31440456 PMCID: PMC6700337 DOI: 10.1016/j.toxrep.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Rotenone is a natural pesticide and environmental neurotoxin which mimics key aspects of Parkinson's disease. This study evaluated the effect of ethyl acetate extract of Capsicum annuum L. (C. annuum) in rotenone-intoxicated rats. Oral doses of C. annuum extract (50, 100 & 200 mg kg-1) and rotenone (2 mg kg-1 i.p.) were co-administered for 25 days during which rearing behavior was monitored. Biochemical alterations in the levels of tyrosine hydroxylase (TH), monoamine oxidase (MAO), superoxide dismutase (SOD) as well as reduced and oxidized glutathione (GSH) were estimated. Decrease in rearing behavior resulting from rotenone exposure was ameliorated by 200 mg kg-1 of C. annuum. Furthermore, rotenone exposure significantly (P < 0.05) decreased TH and increased MAO levels respectively. Impaired brain antioxidant capacity, typified by significantly (P < 0.05) decreased GSH redox status and SOD levels were also observed in rotenone-treated rats. However, co-administration of C. annuum ameliorated rotenone-induced derangements and potentiated the effect of levodopa. These results taken together suggests that C. annuum protects against rotenone-induced neurotoxicity by modulating dopamine metabolism and GSH redox status in rat brain.
Collapse
Affiliation(s)
| | | | - Ganiyu Oboh
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, Akure, Ondo State, Nigeria
| | | | - Aline Augusti Boligon
- Program of Post-Graduation in Pharmaceutical Sciences, Federal University of Santa Maria, Campus Camobi, Santa Maria, RS, 97105-900, Brazil
| |
Collapse
|
33
|
Does SCFD1 rs10139154 Polymorphism Decrease Alzheimer’s Disease Risk? J Mol Neurosci 2019; 69:343-350. [DOI: 10.1007/s12031-019-01363-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/25/2019] [Indexed: 12/14/2022]
|
34
|
Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol 2019; 70:74-89. [DOI: 10.2478/aiht-2019-70-3263] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic neurodegeneration seen in Parkinson’s disease. The main neurotoxic mechanisms include oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, and cypermethrin. We also review common targets and pathways of Parkinson’s disease therapy, including Nrf2, Nurr1, and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by future research of novel methods of protection against neurological disorders caused by pesticides that may also find their use in the management/treatment of Parkinson’s disease.
Collapse
|
35
|
Kanthasamy A, Jin H, Charli A, Vellareddy A, Kanthasamy A. Environmental neurotoxicant-induced dopaminergic neurodegeneration: a potential link to impaired neuroinflammatory mechanisms. Pharmacol Ther 2019; 197:61-82. [PMID: 30677475 PMCID: PMC6520143 DOI: 10.1016/j.pharmthera.2019.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the increased incidence of neurodegenerative diseases worldwide, Parkinson's disease (PD) represents the second-most common neurodegenerative disease. PD is a progressive multisystem neurodegenerative disorder characterized by a marked loss of nigrostriatal dopaminergic neurons and the formation of Lewy pathology in diverse brain regions. Although the mechanisms underlying dopaminergic neurodegeneration remain poorly characterized, data from animal models and postmortem studies have revealed that heightened inflammatory responses mediated via microglial and astroglial activation and the resultant release of proinflammatory factors may act as silent drivers of neurodegeneration. In recent years, numerous studies have demonstrated a positive association between the exposure to environmental neurotoxicants and the etiology of PD. Although it is unclear whether neuroinflammation drives pesticide-induced neurodegeneration, emerging evidence suggests that the failure to dampen neuroinflammatory mechanisms may account for the increased vulnerability to pesticide neurotoxicity. Furthermore, recent studies provide additional evidence that shifts the focus from a neuron-centric view to glial-associated neurodegeneration following pesticide exposure. In this review, we propose to summarize briefly the possible factors that regulate neuroinflammatory processes during environmental neurotoxicant exposure with a focus on the potential roles of mitochondria-driven redox mechanisms. In this context, a critical discussion of the data obtained from experimental research and possible epidemiological studies is included. Finally, we hope to provide insights on the pivotal role of exosome-mediated intercellular transmission of aggregated proteins in microglial activation response and the resultant dopaminergic neurodegeneration after exposure to pesticides. Collectively, an improved understanding of glia-mediated neuroinflammatory signaling might provide novel insights into the mechanisms that contribute to neurodegeneration induced by environmental neurotoxicant exposure.
Collapse
Affiliation(s)
- Arthi Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA.
| | - Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Adhithiya Charli
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anantharam Vellareddy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| | - Anumantha Kanthasamy
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
36
|
Díaz M, Luis-Amaro AC, Rodriguez Barreto D, Casañas-Sánchez V, Pérez JA, Marin R. Lipostatic Mechanisms Preserving Cerebellar Lipids in MPTP-Treated Mice: Focus on Membrane Microdomains and Lipid-Related Gene Expression. Front Mol Neurosci 2019; 12:93. [PMID: 31105522 PMCID: PMC6491966 DOI: 10.3389/fnmol.2019.00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/29/2019] [Indexed: 01/22/2023] Open
Abstract
The cerebellum is an essential component in the control of motor patterns. Despite dramatic alteration of basal ganglia morpho-functionality in Parkinson's disease (PD), cerebellar function appears to be unaffected by the disease. Only recently this brain structure has been proposed to play compensatory roles in PD-induced motor dysfunction, particularly during the initial asymptomatic stages of PD. In PD subjects and animal models of PD, such as MPTP-treated mice, brain structures other than basal ganglia are also affected by the disease, including cortical areas not involved in motor control. Thus, it is noteworthy that the cerebellum remains unaffected. In the present study, we have analyzed the lipid composition of membrane microdomains [lipid rafts (LR) and non-raft domains] and assessed the expression levels of genes encoding enzymes synthesizing membrane-related lipids. The outcomes revealed that membrane domain lipids in cerebellum are highly preserved both in control and MPTP-treated mice as compared to control animals. Likewise, only small, mostly not significant, changes were observed in the expression of lipid-related genes in the cerebellum. Indeed, most changes were related to aging rather than to the exposure to the neurotoxin. Conversely, in the same animals, lipid composition, and gene expression were dramatically altered in the occipital cortex (OC), a brain area unrelated to the control of motor function. PCR and immunohistochemical analyses of both brain areas revealed that dopamine transporter (DAT) mRNA and protein were expressed in OC but not in the cerebellum. As MPTP neurotoxicity requires the expression of DAT to access intracellular compartments, we hypothesized that the absence of DAT in cerebellum hampers MPTP-induced toxicity. We conclude that cerebellum is endowed with efficient mechanisms to preserve nerve cell lipid homeostasis, which greatly maintain the stability of membrane microdomains involved in synaptic transmission, signal transduction, and intercellular communication, which together may participate in the compensatory role of the cerebellum in PD symptomatology.
Collapse
Affiliation(s)
- Mario Díaz
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
| | - Ana Canerina Luis-Amaro
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Deiene Rodriguez Barreto
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Verónica Casañas-Sánchez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, San Cristóbal de La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - José A. Pérez
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, San Cristóbal de La Laguna, Spain
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Raquel Marin
- Unidad Asociada de Investigación ULL-CSIC, “Fisiología y Biofísica de la Membrana Celular en Patologías Neurodegenerativas y Tumorales”, San Cristóbal de La Laguna, Spain
- Departamento de Ciencias Médicas Básicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
37
|
Adverse and hormetic effects in rats exposed for 12 months to low dose mixture of 13 chemicals: RLRS part III. Toxicol Lett 2019; 310:70-91. [PMID: 30999039 DOI: 10.1016/j.toxlet.2019.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/27/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
The aim of the current study was to evaluate the effects of a mixture of thirteen common chemicals on rats, after a one-year exposure to doses around the acceptable daily intake (ADIs), using blood and urinary tests. The influence of low doses of the mixture on weight gain, water consumption, feed consumption and feed efficiency, biochemistry parameters, haematological parameters, blood lymphocytes subsets, serum inflammation profile and urine parameters was evaluated. Our mixture caused a moderate monotonic increase of the males' appetite and a non-monotonic increase of anabolism and a monotonic increase of appetite for the females. Regarding biochemical parameters, the exposure to the test mixture caused non-monotonic increases of AST and ALT, a decrease of PChE in males and plausibly a monotonic biliary obstruction in both sexes. Monocytes significantly increased in low dose groups of both sexes. A significant decrease of all the lymphocytes subclasses and an increased expression of TNF-α protein associated with an increased expression of IFN-γ protein observed in various groups. It became apparent that after twelve months of exposure very low doses of the tested mixture had both non-monotonic and monotonic harmful effects on different levels on rats.
Collapse
|
38
|
Henrich-Noack P, Nikitovic D, Neagu M, Docea AO, Engin AB, Gelperina S, Shtilman M, Mitsias P, Tzanakakis G, Gozes I, Tsatsakis A. The blood–brain barrier and beyond: Nano-based neuropharmacology and the role of extracellular matrix. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 17:359-379. [DOI: 10.1016/j.nano.2019.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/13/2022]
|
39
|
Siokas V, Aloizou AM, Tsouris Z, Michalopoulou A, Mentis AFA, Dardiotis E. Risk Factor Genes in Patients with Dystonia: A Comprehensive Review. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 8:559. [PMID: 30643666 PMCID: PMC6329780 DOI: 10.7916/d8h438gs] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 11/20/2018] [Indexed: 12/20/2022]
Abstract
Background Dystonia is a movement disorder with high heterogeneity regarding phenotypic appearance and etiology that occurs in both sporadic and familial forms. The etiology of the disease remains unknown. However, there is increasing evidence suggesting that a small number of gene alterations may lead to dystonia. Although pathogenic variants to the familial type of dystonia have been extensively reviewed and discussed, relatively little is known about the contribution of single-nucleotide polymorphisms (SNPs) to dystonia. This review focuses on the potential role of SNPs and other variants in dystonia susceptibility. Methods We searched the PubMed database for peer-reviewed articles published in English, from its inception through January 2018, that concerned human studies of dystonia and genetic variants. The following search terms were included: “dystonia” in combination with the following terms: 1) “polymorphisms” and 2) “SNPs” as free words. Results A total of 43 published studies regarding TOR1A, BDNF, DRD5, APOE, ARSG, NALC, OR4X2, COL4A1, TH, DDC, DBH, MAO, COMT, DAT, GCH1, PRKRA, MR-1, SGCE, ATP1A3, TAF1, THAP1, GNAL, DRD2, HLA-DRB, CBS, MTHFR, and MS genes, were included in the current review. Discussion To date, a few variants, which are possibly involved in several molecular pathways, have been related to dystonia. Large cohort studies are needed to determine robust associations between variants and dystonia with adjustment for other potential cofounders, in order to elucidate the pathogenic mechanisms of dystonia and the net effect of the genes.
Collapse
Affiliation(s)
- Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Athina-Maria Aloizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| | - Alexios-Fotios A Mentis
- Department of Microbiology, University of Thessaly, University Hospital of Larissa, Larissa, GR.,Public Health Laboratories, Hellenic Pasteur Institute, Athens, GR
| | - Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, GR
| |
Collapse
|
40
|
Bisbal M, Sanchez M. Neurotoxicity of the pesticide rotenone on neuronal polarization: a mechanistic approach. Neural Regen Res 2019; 14:762-766. [PMID: 30688258 PMCID: PMC6375050 DOI: 10.4103/1673-5374.249847] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurons are the most extensive and polarized cells that display a unique single long axon and multiple dendrites, which are compartments exhibiting structural and functional differences. Polarity occurs early in neuronal development and it is maintained by complex subcellular mechanisms throughout cell life. A well-defined and controlled spatio-temporal program of cellular and molecular events strictly regulates the formation of the axon and dendrites from a non-polarized cell. This event is critical for an adequate neuronal wiring and therefore for the normal functioning of the nervous system. Neuronal polarity is very sensitive to the harmful effects of different factors present in the environment. In this regard, rotenone is a crystalline, colorless and odorless isoflavone used as insecticide, piscicide and broad spectrum pesticide commonly used earlier in agriculture. In the present review we will summarize the toxicity mechanism caused by this pesticide in different neuronal cell types, focusing on a particular biological mechanism whereby rotenone could impair neuronal polarization in cultured hippocampal neurons. Recent advances suggest that the inhibition of axonogenesis produced by rotenone could be related with its effect on microtubule dynamics, the actin cytoskeleton and their regulatory pathways, particularly affecting the small RhoGTPase RhoA. Unveiling the mechanism by which rotenone produces neurotoxicity will be instrumental to understand the cellular mechanisms involved in neurodegenerative diseases influenced by this environmental pollutant, which may lead to research focused on the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Mariano Bisbal
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET); Universidad Nacional de Córdoba; Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - Mónica Sanchez
- Laboratory of Neurobiology, Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET); Universidad Nacional de Córdoba; Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| |
Collapse
|
41
|
Tsatsakis AM, Docea AO, Calina D, Buga AM, Zlatian O, Gutnikov S, Kostoff RN, Aschner M. Hormetic Neurobehavioral effects of low dose toxic chemical mixtures in real-life risk simulation (RLRS) in rats. Food Chem Toxicol 2018; 125:141-149. [PMID: 30594548 DOI: 10.1016/j.fct.2018.12.043] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
The current study aims to assess the long-term effects of very low dose exposures to a complex chemical mixture on motor performance and behavioural changes in rats. For twelve months (equivalent to thirty years in human terms), four groups of Sprague Dawley rats (five males and five females per group) were exposed to a thirteen chemical mixture (in drinking water) in doses of 0, 0.25, 1 and 5xADI/TDI (acceptable daily intake/tolerable daily intake) (mg/kg body weight/day). After twelve month exposure, the rats' motor performances were assessed by rotarod test, and their behavioural changes were assessed by open field exploratory test and elevated plus maze test. Exposure to the chemical mixture resulted in a statistically significant increase in the locomotor activity quantified by the number of crossings over external squares and in the spatial orientation activity quantified as the number of rearings in the lower dose group (0.25xADI/TDI) compared with the control group (p < 0.05). No significant changes were observed in the two higher dose groups (1xADI/TDI, 5xADI/TDI) compared with the control group. The administration of a very low doses of a cocktail of 13 chemicals led to a dose-dependent stimulation of the nervous system, rather than its inhibition.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, GR-71003, Heraklion, Crete, Greece.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy, Faculty of Pharmacy, Craiova, 200349, Romania.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy Craiova, 200349, Craiova, Romania.
| | - Ovidiu Zlatian
- Department of Microbiology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania.
| | - Sergei Gutnikov
- Stroke Prevention Research Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom.
| | - Ronald N Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einsten College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
42
|
The role of exposure to pesticides in the etiology of Parkinson's disease: a 18F-DOPA positron emission tomography study. J Neural Transm (Vienna) 2018; 126:159-166. [PMID: 30426251 DOI: 10.1007/s00702-018-1951-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/24/2018] [Indexed: 10/27/2022]
Abstract
Susceptibility to Parkinson's disease (PD) is believed to involve an interaction between genetic and environmental factors. The role of pesticides as a risk factor of PD and neurodegeneration remains controversial. An asymmetric decrease in ligand uptake on 18F-DOPA positron emission tomography (PET), especially in the dorsal putamen, is a sensitive marker of PD. The aim of this study was to examine the pattern of ligand uptake on 18F-DOPA PET in patients with PD exposed or not exposed to pesticides. The main sample included 26 Israeli patients with PD, 13 who were exposed to pesticides and 13 who were not, matched for age and disease duration. All underwent 18F-DOPA PET imaging, and an asymmetry index of ligand uptake between the ipsilateral and contralateral caudate, putamen, and whole striatum was calculated. No significant between-group differences were found in demographic variables, clinical asymmetry index (P = 0.15), or asymmetry index of ligand uptake in the putamen (P = 0.84), caudate (P = 0.78) and striatum (P = 0.45). Comparison of the 18F-DOPA results of the Israeli cohort with those of 17 non-pesticide-exposed patients with PD from Austria yielded no significant differences, further validating our findings. Our observations suggest that although exposure to pesticides might be a risk factor for PD, it does not have an effect on the asymmetry pattern in the nigrostriatal system over non-exposure. We assume that once the disease process is initiated in pesticide-exposed patients, the pathogenic mechanism does not differ from that of idiopathic PD.
Collapse
|
43
|
The Role of MicroRNAs in Patients with Amyotrophic Lateral Sclerosis. J Mol Neurosci 2018; 66:617-628. [PMID: 30415446 DOI: 10.1007/s12031-018-1204-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/30/2018] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a serious neurodegenerative disease that affects motor neurons and leads to death within 2 to 3 years after the first symptoms manifest. MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression in fundamental cellular processes and, post-transcriptionally, the translation levels of target mRNA transcripts. We searched PubMed for studies that examined miRNAs in ALS patients and attempted to group the results in order to find the strongest miRNA candidate for servings as an ALS biomarker. The studies on humans so far have been diverse, yielding considerably heterogeneous results, as they were performed on a wide variety of tissues and subjects. Among the miRNAs that were found consistently deregulated are miR-206, miR-133, miR-149, and miR-338-3p. Additively, the deregulation of some specific miRNAs seems to compose a miRNA expression profile that is specific for ALS. More research is required in order for the scientific community to reach a consensus.
Collapse
|
44
|
Paraoxonase-1 genetic polymorphisms in organophosphate metabolism. Toxicology 2018; 411:24-31. [PMID: 30359673 DOI: 10.1016/j.tox.2018.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 11/21/2022]
Abstract
Organophosphates (OPs) are a class of chemicals commonly used in agriculture as pesticides, that can often lead to severe toxicity in humans. Paraoxonase-1 (PON1) belongs to a family of A-esterases and hydrolyses several OPs while also serving other biological roles. Two main genetic polymorphisms have been shown to affect enzymatic ability; an A > G transition in the 192nd position (192 Q/R, rs662), and an A > T at codon 55 (55 M/L, rs854560). In this review, we searched PubMed for relevant articles published from its inception till June 2018 and included publications from 1996 to 2018. We aimed to address the distribution of the polymorphisms in various populations, the way they affect enzymatic activity and the possible use of PON1 as a biomarker. The polymorphisms present great heterogeneity between populations, with the data being clearer over 192 Q/R, and this heterogeneity is related to the phylogenetic origins of each population. Concerning enzymatic activity, the different genotypes react better or worse to different OP substrates, with studies presenting a variety of findings. Detecting the "paraoxonase status" of an individual -referring to PON1 function- seems to be important in predicting OP toxicity, as studies have shown that some specific-genotype individuals present symptoms of toxicity in higher rates than others. We are strongly convinced that in order for the scientific community to reach a consensus over which polymorphisms confer susceptibility to toxicity and whether PON1 can eventually be used as a biomarker, more studies need to be carried out, since the data thus far does not seem to reach a universal conclusion.
Collapse
|
45
|
Deltamethrin Intranasal administration induces memory, emotional and tyrosine hydroxylase immunoreactivity alterations in rats. Brain Res Bull 2018; 142:297-303. [DOI: 10.1016/j.brainresbull.2018.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/24/2018] [Accepted: 08/11/2018] [Indexed: 02/04/2023]
|
46
|
Chauhan AK, Mittra N, Singh BK, Singh C. Inhibition of glutathione S-transferase-pi triggers c-jun N-terminal kinase-dependent neuronal death in Zn-induced Parkinsonism. Mol Cell Biochem 2018; 452:95-104. [PMID: 30076580 DOI: 10.1007/s11010-018-3415-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/28/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress is recognized as one of the major wrongdoers in Parkinson's disease (PD) while glutathione S-transferase (GST), an endogenous antioxidant, protects from oxidative stress-induced neurodegeneration. Despite GST-pi (GST-π) encounters the toxic manifestations in PD, its role in zinc (Zn)-induced nigrostriatal dopaminergic neurodegeneration remains elusive. The study aimed to explore the role of GST-π in Zn-induced Parkinsonism and its underlying molecular mechanism. Male Wistar rats were treated intraperitoneally with zinc (zinc sulfate), twice a week, for 2-12 weeks. GST-π inducer, benzyl isothiocyanate (BITC) was also administered in a few sets of experiments along with respective vehicle. Catalytic activity and expression of GST-π protein, total GST activity, neurobehavioral indexes, striatal dopamine and its metabolites, nigral tyrosine hydroxylase (TH)-positive neurons and expression of TH and B-cell lymphoma-2 (Bcl-2) proteins were reduced in Zn-treated rats. Conversely, oxidative stress indicators, c-jun N-terminal kinase (JNK) activation, c-jun phosphorylation, cytochrome c release, Bcl-2-associated X protein (Bax) translocation, and procaspase 3/9 to caspase 3/9 conversion were significantly increased in Zn-exposed rats. BITC ameliorated GST-π activity/expression and normalized Zn-induced changes in neurodegenerative indicators, oxidative stress, JNK activation, c-jun phosphorylation and apoptotic indexes. The results demonstrate that Zn inhibits GST-π expression leading to increased oxidative stress and JNK activation, which induce apoptosis thereby degeneration of the nigrostriatal dopaminergic neurons.
Collapse
Affiliation(s)
- Amit Kumar Chauhan
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Namrata Mittra
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Brajesh Kumar Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India
| | - Chetna Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226 001, India.
| |
Collapse
|
47
|
Glaab E. Computational systems biology approaches for Parkinson's disease. Cell Tissue Res 2018; 373:91-109. [PMID: 29185073 PMCID: PMC6015628 DOI: 10.1007/s00441-017-2734-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/06/2017] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a prime example of a complex and heterogeneous disorder, characterized by multifaceted and varied motor- and non-motor symptoms and different possible interplays of genetic and environmental risk factors. While investigations of individual PD-causing mutations and risk factors in isolation are providing important insights to improve our understanding of the molecular mechanisms behind PD, there is a growing consensus that a more complete understanding of these mechanisms will require an integrative modeling of multifactorial disease-associated perturbations in molecular networks. Identifying and interpreting the combinatorial effects of multiple PD-associated molecular changes may pave the way towards an earlier and reliable diagnosis and more effective therapeutic interventions. This review provides an overview of computational systems biology approaches developed in recent years to study multifactorial molecular alterations in complex disorders, with a focus on PD research applications. Strengths and weaknesses of different cellular pathway and network analyses, and multivariate machine learning techniques for investigating PD-related omics data are discussed, and strategies proposed to exploit the synergies of multiple biological knowledge and data sources. A final outlook provides an overview of specific challenges and possible next steps for translating systems biology findings in PD to new omics-based diagnostic tools and targeted, drug-based therapeutic approaches.
Collapse
Affiliation(s)
- Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
48
|
Dardiotis E, Siokas V, Sokratous M, Tsouris Z, Michalopoulou A, Andravizou A, Dastamani M, Ralli S, Vinceti M, Tsatsakis A, Hadjigeorgiou GM. Genetic polymorphisms in amyotrophic lateral sclerosis: Evidence for implication in detoxification pathways of environmental toxicants. ENVIRONMENT INTERNATIONAL 2018; 116:122-135. [PMID: 29677557 DOI: 10.1016/j.envint.2018.04.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Efthimios Dardiotis
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece.
| | - Vasileios Siokas
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Maria Sokratous
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Zisis Tsouris
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Amalia Michalopoulou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Athina Andravizou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Metaxia Dastamani
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Styliani Ralli
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Marco Vinceti
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, USA
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios M Hadjigeorgiou
- Department of Neurology, Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
49
|
Population-Based Analysis of Cluster Headache-Associated Genetic Polymorphisms. J Mol Neurosci 2018; 65:367-376. [PMID: 29959630 DOI: 10.1007/s12031-018-1103-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
Cluster headache is a disorder with increased hereditary risk. Associations between cluster headache and polymorphism rs2653349 of the HCRTR2 gene have been demonstrated. The less common allele (A) seems to reduce disease susceptibility. The polymorphism rs5443 of the GNB3 gene positively influences triptan treatment response. Carriers of the mutated T allele are more likely to respond positively compared to C:C homozygotes, when treated with triptans. DNA was extracted from buccal swabs obtained from 636 non-related Southeastern European Caucasian individuals and was analyzed by real-time PCR. Gene distribution for the rs2653349 was G:G = 79.1%, G:A = 19.2%, and A:A = 1.7%. The frequency of the wild-type G allele was 88.7%. The frequencies for rs5443 were C:C = 44.0%, C:T = 42.6%, and T:T = 13.4%. The frequency of the wild-type C allele was 65.3%. The frequency distribution of rs2653349 in the Southeastern European Caucasian population differs significantly when compared with other European and East Asian populations, and the frequency distribution of rs5443 showed a statistically significant difference between Southeastern European Caucasian and African, South Asian, and East Asian populations. For rs2653349, a marginal statistically significant difference between genders was found (p = 0.080) for A:A versus G:G and G:A genotypes (OR = 2.78), indicating a higher representation of male homozygotes for the protective mutant A:A allele than female. No statistically significant difference was observed between genders for rs5443. Cluster headache pathophysiology and pharmacotherapy response may be affected by genetic factors, indicating the significant role of genotyping in the overall treatment effectiveness of cluster headaches.
Collapse
|
50
|
Martinez EM, Young AL, Patankar YR, Berwin BL, Wang L, von Herrmann KM, Weier JM, Havrda MC. Editor's Highlight: Nlrp3 Is Required for Inflammatory Changes and Nigral Cell Loss Resulting From Chronic Intragastric Rotenone Exposure in Mice. Toxicol Sci 2018; 159:64-75. [PMID: 28903492 DOI: 10.1093/toxsci/kfx117] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Complex interactions between genetic and environmental factors are widely believed to underlie the incidence and progression of Parkinson's disease (PD). Rotenone is a naturally occurring metabolic toxin employed as an insecticide and piscicide identified as a risk factor for the development of PD in agricultural workers. The Nlrp3 inflammasome is an intracellular mediator that can initiate an inflammatory cascade in response to cellular stress. Reports by others indicating that NLRP3 expression was detectable in tissues obtained from Alzheimer's disease patients and that the PD-associated protein α-synuclein could activate inflammasomes in cultured glial cells, prompted us to test the prediction that Nlrp3 was required for the development of Parkinson's-like changes resulting from rotenone exposure in mice. We exposed wild type and Nlrp3-/- mice to chronic low doses of intragastric rotenone and conducted longitudinal behavioral and serum cytokine analysis followed by evaluation of neuroinflammatory and neurodegenerative endpoints in brain tissues. We observed progressive rotenone-dependent changes in serum cytokine levels and circulating leukocytes in wild type mice not observed in Nlrp3-/- mice. Analysis of brain tissues revealed Nlrp3-dependent neuroinflammation and nigral cell loss in mice exposed to rotenone as compared with mice exposed to vehicle alone. Together, our findings provide compelling evidence of a role for Nlrp3 in nigral degeneration and neuroinflammation resulting from systemic rotenone exposure and suggest that the suppression of NLRP3 activity may be a rational neuroprotective strategy for toxin-associated PD.
Collapse
Affiliation(s)
| | | | - Yash R Patankar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
| | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
| | - Li Wang
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | | | |
Collapse
|