1
|
Allegra A, Caserta S, Genovese S, Pioggia G, Gangemi S. Gender Differences in Oxidative Stress in Relation to Cancer Susceptibility and Survival. Antioxidants (Basel) 2023; 12:1255. [PMID: 37371985 DOI: 10.3390/antiox12061255] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Genetic, developmental, biochemical, and environmental variables interact intricately to produce sex differences. The significance of sex differences in cancer susceptibility is being clarified by numerous studies. Epidemiological research and cancer registries have revealed over the past few years that there are definite sex variations in cancer incidence, progression, and survival. However, oxidative stress and mitochondrial dysfunction also have a significant impact on the response to treatment of neoplastic diseases. Young women may be more protected from cancer than men because most of the proteins implicated in the regulation of redox state and mitochondrial function are under the control of sexual hormones. In this review, we describe how sexual hormones control the activity of antioxidant enzymes and mitochondria, as well as how they affect several neoplastic diseases. The molecular pathways that underlie the gender-related discrepancies in cancer that have been identified may be better understood, which may lead to more effective precision medicine and vital information on treatment options for both males and females with neoplastic illnesses.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Santino Caserta
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood 'Gaetano Barresi', University of Messina, 98125 Messina, Italy
| | - Sara Genovese
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
2
|
Masubuchi Y, Ihara A. Protection of mice against carbon tetrachloride-induced acute liver injury by endogenous and exogenous estrogens. Drug Metab Pharmacokinet 2022; 46:100460. [DOI: 10.1016/j.dmpk.2022.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
|
3
|
Sari G, van Oord GW, van de Garde MDB, Voermans JJC, Boonstra A, Vanwolleghem T. Sexual Dimorphism in Hepatocyte Xenograft Models. Cell Transplant 2021; 30:9636897211006132. [PMID: 33938243 PMCID: PMC8114754 DOI: 10.1177/09636897211006132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Humanized liver mouse models are crucial tools in liver research, specifically in the fields of liver cell biology, viral hepatitis and drug metabolism. The livers of these humanized mouse models are repopulated by 3-dimensional islands of fully functional primary human hepatocytes (PHH), which are notoriously difficult to maintain in vitro. As low efficiency and high cost hamper widespread use, optimization is of great importance. In the present study, we analyzed experimental factors associated with Hepatitis E virus (HEV) infection and PHH engraftment in 2 xenograft systems on a Nod-SCID-IL2Ry-/- background: the alb-urokinase plasminogen activator mouse model (uPA-NOG, n=399); and the alb-HSV thymidine kinase model (TK-NOG, n = 198). In a first analysis, HEV fecal shedding in liver humanized uPA-NOG and TK-NOG mice with comparable human albumin levels was found to be similar irrespective of the mouse genetic background. In a second analysis, sex, mouse age at transplantation and hepatocyte donor were the most determinant factors for xenograft success in both models. The sexual imbalance for xenograft success was related to higher baseline ALT levels and lower thresholds for ganciclovir induced liver morbidity and mortality in males. These data call for sexual standardization of human hepatocyte xenograft models, but also provide a platform for further studies on mechanisms behind sexual dimorphism in liver diseases.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gertine W van Oord
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn D B van de Garde
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolanda J C Voermans
- Department of Viroscience, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and Hepatology, 6993Erasmus University Medical Center, Rotterdam, The Netherlands.,Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp and Netherlands.,Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium, Netherlands
| |
Collapse
|
4
|
Barretto SA, Lasserre F, Huillet M, Régnier M, Polizzi A, Lippi Y, Fougerat A, Person E, Bruel S, Bétoulières C, Naylies C, Lukowicz C, Smati S, Guzylack L, Olier M, Théodorou V, Mselli-Lakhal L, Zalko D, Wahli W, Loiseau N, Gamet-Payrastre L, Guillou H, Ellero-Simatos S. The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice. MICROBIOME 2021; 9:93. [PMID: 33879258 PMCID: PMC8059225 DOI: 10.1186/s40168-021-01050-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/16/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND The gut microbiota-intestine-liver relationship is emerging as an important factor in multiple hepatic pathologies, but the hepatic sensors and effectors of microbial signals are not well defined. RESULTS By comparing publicly available liver transcriptomics data from conventional vs. germ-free mice, we identified pregnane X receptor (PXR, NR1I2) transcriptional activity as strongly affected by the absence of gut microbes. Microbiota depletion using antibiotics in Pxr+/+ vs Pxr-/- C57BL/6J littermate mice followed by hepatic transcriptomics revealed that most microbiota-sensitive genes were PXR-dependent in the liver in males, but not in females. Pathway enrichment analysis suggested that microbiota-PXR interaction controlled fatty acid and xenobiotic metabolism. We confirmed that antibiotic treatment reduced liver triglyceride content and hampered xenobiotic metabolism in the liver from Pxr+/+ but not Pxr-/- male mice. CONCLUSIONS These findings identify PXR as a hepatic effector of microbiota-derived signals that regulate the host's sexually dimorphic lipid and xenobiotic metabolisms in the liver. Thus, our results reveal a potential new mechanism for unexpected drug-drug or food-drug interactions. Video abstract.
Collapse
Affiliation(s)
- Sharon Ann Barretto
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Frederic Lasserre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marine Huillet
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Marion Régnier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Elodie Person
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Bruel
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Colette Bétoulières
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sarra Smati
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Guzylack
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Maïwenn Olier
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Walter Wahli
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, 308232, Singapore
- Center for Integrative Genomics, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|
5
|
The impact of sex on hepatotoxic, inflammatory and proliferative responses in mouse models of liver carcinogenesis. Toxicology 2020; 442:152546. [PMID: 32763287 DOI: 10.1016/j.tox.2020.152546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/28/2020] [Indexed: 01/01/2023]
Abstract
Liver cancer is the third most common cause of cancer-related death but is almost 4-fold more prevalent in men than in women. Increased risk in men may be due in part to elevated chronic inflammation, which is a crucial driving force for many cancers. Male mice also have a greater incidence of liver cancer than females after postnatal exposure to procarcinogens such as 4-aminobiphenyl (ABP) or diethylnitrosamine (DEN), or in mice that transgenically express hepatitis B virus (HBV) proteins. Liver damage, inflammation and proliferation are central to liver cancer development, and previous studies have shown that hepatocellular damage, inflammation and proliferation are acutely elevated to a greater extent in adult male mice than in females after high-dose exposure to DEN. In contrast, postnatal exposure of mice to tumor-inducing doses of either DEN or ABP produces no such acute responses. However, it is not known whether sex differences in responses to postnatal carcinogen exposure or to HBV protein expression may develop over time following sexual maturation. We conducted an extended time course study to compare markers of liver damage, inflammation and proliferation between male and female mice exposed postnatally to 600 nmol ABP or 10 mg/kg DEN, and also in HBV transgenic (HBVTg) mice, over the duration of time that mice are normally maintained for standard liver tumor development protocols. Postnatal exposure to either ABP or DEN produced no evidence of either acute or chronic hepatocyte damage, liver inflammation or proliferation in either male or female mice. In contrast, HBVTg mice showed increased liver damage, inflammation and proliferation with age, but with no observed sex difference. These findings suggest that although chronic liver damage, inflammation and proliferation may be drivers for liver cancer development, they are unlikely to contribute directly to observed sex differences in liver tumor risk.
Collapse
|
6
|
Lau-Corona D, Bae WK, Hennighausen L, Waxman DJ. Sex-biased genetic programs in liver metabolism and liver fibrosis are controlled by EZH1 and EZH2. PLoS Genet 2020; 16:e1008796. [PMID: 32428001 PMCID: PMC7263639 DOI: 10.1371/journal.pgen.1008796] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
Sex differences in the incidence and progression of many liver diseases, including liver fibrosis and hepatocellular carcinoma, are associated with sex-biased hepatic expression of hundreds of genes. This sexual dimorphism is largely determined by the sex-specific pattern of pituitary growth hormone secretion, which controls a transcriptional regulatory network operative in the context of sex-biased and growth hormone-regulated chromatin states. Histone H3K27-trimethylation yields a major sex-biased repressive chromatin mark deposited at many strongly female-biased genes in male mouse liver, but not at male-biased genes in female liver, and is catalyzed by polycomb repressive complex-2 through its homologous catalytic subunits, Ezh1 and Ezh2. Here, we used Ezh1-knockout mice with a hepatocyte-specific knockout of Ezh2 to investigate the sex bias of liver H3K27-trimethylation and its functional role in regulating sex-differences in the liver. Combined hepatic Ezh1/Ezh2 deficiency led to a significant loss of sex-biased gene expression, particularly in male liver, where many female-biased genes were increased in expression while male-biased genes showed decreased expression. The associated loss of H3K27me3 marks, and increases in the active enhancer marks H3K27ac and H3K4me1, were also more pronounced in male liver. Further, Ezh1/Ezh2 deficiency in male liver, and to a lesser extent in female liver, led to up regulation of many genes linked to liver fibrosis and liver cancer, which may contribute to the observed liver pathologies and the increased sensitivity of these mice to hepatotoxin exposure. Thus, Ezh1/Ezh2-catalyzed H3K27-trimethyation regulates sex-dependent genetic programs in liver metabolism and liver fibrosis through its sex-dependent effects on the epigenome, and may thereby determine the sex-bias in liver disease susceptibility. Sex-differences in the expression of genes in liver have a direct impact on liver diseases whose incidence and severity is sex-biased, and is controlled by hormones that regulate chemical alterations to histone proteins used to package chromosomal DNA. However, a direct demonstration of the functional importance of such sex differences in histone protein modifications has been elusive. Here, we address this question using a mouse model deficient in two enzymes, Ezh1/Ezh2, which generate the histone repressive mark H3K27me3. Remarkably, although H3K27me3 marks are formed by Ezh1/Ezh2 throughout the genome, loss of liver Ezh1/Ezh2 preferentially disrupts the control of sex-biased genes, with expression increasing in male mouse liver for many female-biased genes and decreasing for many male-biased genes. Sex-biased H3K27me3 repressive marks were abolished, and there was a gain of active histone marks at gene enhancers. We also found increased expression of many genes associated with liver fibrosis and hepatocellular carcinoma, which may help explain the increased sensitivity of Ezh1/Ezh2-deficient livers to hepatotoxic chemicals whose exposure may lead to sex differences in liver disease incidence and susceptibility. Thus, our findings highlight the potential role of sex differences in histone modifications catalyzed by Ezh1/Ezh2 in widespread sex differences in liver diseases.
Collapse
Affiliation(s)
- Dana Lau-Corona
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Woo Kyun Bae
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Lothar Hennighausen
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David J. Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
7
|
Primary aromatic amines and cancer: Novel mechanistic insights using 4-aminobiphenyl as a model carcinogen. Pharmacol Ther 2019; 200:179-189. [DOI: 10.1016/j.pharmthera.2019.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
|
8
|
Melia T, Waxman DJ. Sex-Biased lncRNAs Inversely Correlate With Sex-Opposite Gene Coexpression Networks in Diversity Outbred Mouse Liver. Endocrinology 2019; 160:989-1007. [PMID: 30840070 PMCID: PMC6449536 DOI: 10.1210/en.2018-00949] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/27/2019] [Indexed: 01/05/2023]
Abstract
Sex differences in liver gene expression are determined by pituitary growth hormone secretion patterns, which regulate sex-dependent liver transcription factors and establish sex-specific chromatin states. Hypophysectomy (hypox) identifies two major classes of liver sex-biased genes, defined by their sex-dependent positive or negative responses to pituitary hormone ablation. However, the mechanisms that underlie each hypox-response class are unknown. We sought to discover candidate, regulatory, long noncoding RNAs (lncRNAs) controlling responsiveness to hypox. We characterized gene structures and expression patterns for 15,558 mouse liver-expressed lncRNAs, including many sex-specific lncRNAs regulated during postnatal development or subject to circadian regulation. Using the high natural allelic variance of Diversity Outbred (DO) mice, we discovered tightly coexpressed clusters of sex-specific protein-coding genes (gene modules) in male and female DO liver. Remarkably, many gene modules were strongly enriched for sex-specific genes within a single hypox-response class, indicating that the genetic heterogeneity of DO mice encompasses responsiveness to hypox. Moreover, several distant gene modules were enriched for gene subsets of the same hypox-response class, highlighting the complex regulation of hypox-responsiveness. Finally, we identified eight sex-specific lncRNAs with strong negative regulatory potential, as indicated by their strong negative correlation of expression across DO mouse livers with that of protein-coding gene modules enriched for genes of the opposite sex bias and inverse hypox-response class. These findings reveal an important role for genetic factors in regulating responsiveness to hypox, and present testable hypotheses for the roles of sex-biased liver lncRNAs in controlling the sex-bias of liver gene expression.
Collapse
Affiliation(s)
- Tisha Melia
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
| | - David J Waxman
- Department of Biology and Bioinformatics Program, Boston University, Boston, Massachusetts
- Correspondence: David J. Waxman, PhD, Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts 02215. E-mail:
| |
Collapse
|
9
|
Xu SF, Ji LL, Wu Q, Li J, Liu J. Ontogeny and aging of Nrf2 pathway genes in livers of rats. Life Sci 2018; 203:99-104. [PMID: 29689272 DOI: 10.1016/j.lfs.2018.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/22/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
The Nrf2/Keap1 antioxidant system plays important roles in protecting against oxidative stress and toxic stimuli, which may vary in infants, elderly, and females. AIM The constitutive expression of the Nrf2 genes during development and aging in both sexes would help our understanding of the Nrf2/Keap1 pathway in toxicological studies. MAIN METHODS Sprague Dawley rat livers were collected at 11 age points from prenatal (-2 d), neonatal (1, 7, 14 and 21 d), at puberty (28 and 35 d), at adulthood (60 and 180 d), to aging (540 and 800 d) from both sexes. Total RNA and proteins were extracted for real-time RT-PCR and Western-blot analysis. KEY FINDINGS The abundant mRNA expression was in the order of Nrf2, Gclm, Nqo1, Gclc, Ho-1, and Keap1. The expression of these genes except Gclc was high in fetal livers, decreased at birth, reached the first peak at 7 days of age, and gradually decreased to adult levels till 180 days of age. All these genes remained high at 540 days of age, but declined at 800 days of age, with more increases with Nqo1 and Ho-1. Females had lower fetal, neonatal, and aged levels than males. Protein expressions of Nrf2, Nqo1, Ho-1, GCLC and GCLM agree with mRNA analysis. SIGNIFICANCE This study characterized the age- and sex-related changes of Nrf2-related gene/proteins in livers of rats, and higher expressions in newborns and aged rats could cope with increased oxidative stress in infants and elderly.
Collapse
Affiliation(s)
- Shang-Fu Xu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China; The MOE Key Lab for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Li Ji
- The MOE Key Lab for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China
| | - Jin Li
- Research Center for Medicine & Biology, Zunyi Medical University, Zunyi, China
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Kerns ML, Hakim JMC, Zieman A, Lu RG, Coulombe PA. Sexual Dimorphism in Response to an NRF2 Inducer in a Model for Pachyonychia Congenita. J Invest Dermatol 2017; 138:1094-1100. [PMID: 29277538 DOI: 10.1016/j.jid.2017.09.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 11/30/2022]
Abstract
Sex is an influential factor regarding pathophysiology and therapeutic response in human disease. Pachyonychia congenita is caused by mutations in keratin genes and typified by dystrophic lesions affecting nails, glands, oral mucosa, and palmar-plantar epidermis. Painful palmar-plantar keratoderma (PPK) severely impairs mobility in pachyonychia congenita. Mice genetically null for keratin 16 (Krt16), one of the genes mutated in pachyonychia congenita, develop pachyonychia congenita-like PPK. In male Krt16-/- mice, oxidative stress associated with impaired glutathione synthesis and nuclear factor erythroid-derived 2 related factor 2 (NRF2)-dependent gene expression precedes PPK onset, which can be prevented by topical sulforaphane-mediated activation of NRF2. We report here that sulforaphane treatment fails to activate NRF2 and prevent PPK in female Krt16-/- mice despite a similar set of molecular circumstances. Follow-up studies reveal a temporal shift in PPK onset in Krt16-/- females, coinciding with sex-specific fluctuations in footpad skin glutathione levels. Dual treatment with sulforaphane and diarylpropionitrile, an estrogen receptor beta selective agonist, results in NRF2 activation, normalization of glutathione levels, and prevention of PPK in female Krt16-/- mice. These findings point to a sex difference in NRF2 responsiveness that needs be considered when exploring NRF2 as a therapeutic target in skin disorders.
Collapse
Affiliation(s)
- Michelle L Kerns
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jill M C Hakim
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Abigail Zieman
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rosemary G Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland, USA; Department of Dermatology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|