1
|
Jia P, Chen D, Zhu Y, Wang M, Zeng J, Zhang L, Cai Q, Lian D, Zhao C, Xu Y, Chu J, Lin S, Peng J, Lin W. Liensinine improves AngII-induced vascular remodeling via MAPK/TGF-β1/Smad2/3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116768. [PMID: 37308031 DOI: 10.1016/j.jep.2023.116768] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liensinine(Lien, C37H42N2O6) is an alkaloid compound from plumula nelumbinis that demonstrates an antihypertensive effect. The protective effects of Lien on target organs during hypertension are still unclear. AIM OF THE STUDY This study aimed to understand the mechanism of Lien during the treatment of hypertension, with emphasis on vascular protection. MATERIALS AND METHODS Lien was extracted and isolated from plumula nelumbinis for further study. In vivo model of Ang II-induced hypertension, non-invasive sphygmomanometer was used to detect the blood pressure in and out of the context of Lien intervention. Ultrasound was used to detect the abdominal aorta pulse wave and media thickness of hypertensive mice, and RNA sequencing was used to detect the differential genes and pathways of blood vessels. The intersection of Lien and MAPK protein molecules was detected by molecular interconnecting technique. The pathological conditions of abdominal aorta vessels of mice were observed by HE staining. The expression of PCNA, α-SMA, Collagen Type Ⅰ and Collagen Type Ⅲ proteins were detected by IHC. The collagen expression in the abdominal aorta was detected by Sirius red staining. The MAPK/TGF-β1/Smad2/3 signaling and the protein expression of PCNA and α-SMA was detected by Western blot. In vitro, MAPK/TGF-β1/Smad2/3 signaling and the protein expression of PCNA and α-SMA were detected by Western blot, and the expression of α-SMA was detected by immunofluorescence; ELISA was used to detect the effect of ERK/MAPK inhibitor PD98059 on Ang Ⅱ-induced TGF-β1secrete; and the detection TGF-β1and α-SMA protein expression by Western blot; Western blot was used to detect the effect of ERK/MAPK stimulant12-O-tetradecanoyl phorbol-13-acetate (TPA) on the protein expression of TGF-β1 and α-SMA. RESULTS Lien displayed an antihypertensive effect on Ang Ⅱ-induced hypertension, reducing the pulse wave conduction velocity of the abdominal aorta and the thickness of the abdominal aorta vessel wall, ultimately improving the pathological state of blood vessels. RNA sequencing further indicated that the differential pathways expressed in the abdominal aorta of hypertensive mice were enriched in proliferation-related markers compared with the Control group. The profile of differentially expressed pathways was ultimately reversed by Lien. Particularly, MAPK protein demonstrated good binding with the Lien molecule. In vivo, Lien inhibited Ang Ⅱ-induced abdominal aorta wall thickening, reduced collagen deposition in the ventral aortic vessel, and prevented the occurrence of vascular remodeling by inhibiting MAPK/TGF-β1/Smad2/3 signaling activation. In addition, Lien inhibited the activation of Ang II-induced MAPK and TGF-β1/Smad2/3 signaling, attenuating the expression of PCNA and inhibiting the reduction of α-SMA, collectively playing a role in the inhibition of Ang Ⅱ-induced hypertensive vascular remodeling. PD98059 alone could inhibit Ang Ⅱ-induced elevation of TGF-β1 and the decrease of α-SMA expression. Further, PD98059 combined with Lien had no discrepancy with the inhibitors alone. Simultaneously TPA alone could significantly increase the expression of TGF-β1 and decrease the expression of α-SMA. Further, Lien could inhibit the effect of TPA. CONCLUSION This study helped clarify the protective mechanism of Lien during hypertension, elucidating its role as an inhibitor of vascular remodeling and providing an experimental basis for the research and development of novel antihypertensive therapies.
Collapse
Affiliation(s)
- Peizhi Jia
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Daxin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Ying Zhu
- Fujian Health College, Fuzhou, Fujian, 350101, China.
| | - Meiling Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jianwei Zeng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Qiaoyan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Dawei Lian
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Chunyu Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Yaoyao Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| | - Jianfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China.
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou, Fujian, 350122, China; Scientific and Economic Integration Service Platform for Translational Medicine of Cardiovascular Diseases in Fujian Province, Fuzhou, Fujian, 350122, China.
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
2
|
Su Q, Li M, Yang L, Fan L, Liu P, Ying X, Zhao Y, Tian X, Tian F, Zhao Q, Li B, Gao Y, Qiu Y, Song G, Yan X. ASC/Caspase-1-activated endothelial cells pyroptosis is involved in vascular injury induced by arsenic combined with high-fat diet. Toxicology 2023; 500:153691. [PMID: 38042275 DOI: 10.1016/j.tox.2023.153691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Environmental arsenic (As) or high-fat diet (HFD) exposure alone are risk factors for the development of cardiovascular disease (CVDs). However, the effects and mechanisms of co-exposure to As and HFD on the cardiovascular system remain unclear. The current study aimed to investigate the combined effects of As and HFD on vascular injury and shed some light on the underlying mechanisms. The results showed that co-exposure to As and HFD resulted in a significant increase in serum lipid levels and significant lipid accumulation in the aorta of rats compared with exposure to As or HFD alone. Meanwhile, the combined exposure altered blood pressure and disrupted the morphological structure of the abdominal aorta in rats. Furthermore, As combined with HFD exposure upregulated the expression of vascular endothelial cells pyroptosis-related proteins (ASC, Pro-caspase-1, Caspase-1, IL-18, IL-1β), as well as the expression of vascular endothelial adhesion factors (VCAM-1 and ICAM-1). More importantly, we found that with increasing exposure time, vascular injury-related indicators were significantly higher in the combined exposure group compared with exposure to As or HFD alone, and the vascular injury was more severe in female rats compared with male rats. Taken together, these results suggested that the combination of As and HFD induced vascular endothelial cells pyroptosis through activation of the ASC/Caspase-1 pathway. Therefore, vascular endothelial cells pyroptosis may be a potential molecular mechanism for vascular injury induced by As combined with HFD exposure.
Collapse
Affiliation(s)
- Qiang Su
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meng Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Changzhi Maternal and Child Health Hospital, Changzhi, Shanxi 046000, China
| | - Lingling Yang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Linhua Fan
- Laboratory Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Penghui Liu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China
| | - Xiaodong Ying
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yannan Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaolin Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fengjie Tian
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qian Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Ben Li
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Gao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Guohua Song
- Laboratory Animal Center, Shanxi Key Laboratory of Experimental Animal Science and Animal Model of Human Disease, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoyan Yan
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
3
|
Babarikova K, Svitok P, Kopkan L, Zeman M, Molcan L. Decreased sympathetic nerve activity in young hypertensive rats reared by normotensive mothers. Life Sci 2023; 333:122179. [PMID: 37852575 DOI: 10.1016/j.lfs.2023.122179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/12/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
AIMS Early postnatal development can be significantly compromised by changes in factors provided by the mother, leading to increased vulnerability to hypertension in her offspring. TGR(mRen-2)27 (TGR) mothers, characterised by an overactivated renin-angiotensin system, exhibit altered ion composition in their breast milk. Therefore, we aimed to analyse the impact of cross-fostering on cardiovascular parameters in hypertensive TGR and normotensive Hannover Sprague-Dawley (HanSD) offspring. MATERIALS AND METHODS We measured cardiovascular parameters in 5- to 10-week-old male offspring by telemetry. The expression of proteins related to vascular function was assessed by western blotting in the aortic samples obtained from 6- to 12-week-old male offspring. Plasma renin activity and plasma angiotensin II (Ang II) levels were evaluated by radioimmunoassay (RIA). KEY FINDINGS The development of hypertension was in TGR accompanied by increased low-to-high frequency ratio (LF/HF; a marker of sympathovagal balance; 0.51 ± 0.16 in week 10). Furthermore, TGR exhibited increased aortic expression of mineralocorticoid receptor (MR; p < 0.05) and transforming growth factor beta type 1 (TGF-β1; p = 0.002) compared to HanSD offspring. Fostering significantly decreased sympathovagal balance (0.23 ± 0.10 in week 10) and, transiently, plasma Ang II levels and MR expression in TGR offspring reared by HanSD mothers. SIGNIFICANCE These findings highlight the importance of understanding the complex interplay between early life experiences, maternal factors, and later cardiovascular function. Understanding the mechanisms behind the observed effects may help to identify potential interventions to prevent the development of hypertension later in life.
Collapse
Affiliation(s)
- Katarina Babarikova
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Slovak Republic.
| | - Pavel Svitok
- GYN - FIV a.s., Centre for Gynaecology and Assisted Reproduction, Bratislava, Slovak Republic
| | - Libor Kopkan
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Slovak Republic
| | - Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University Bratislava, Slovak Republic
| |
Collapse
|
4
|
Tomazelli CA, Ishikawa FM, Couto GK, Parente JM, Castro MMD, Xavier FE, Rossoni LV. Small artery remodeling and stiffening in deoxycorticosterone acetate-salt hypertensive rats involves the interaction between endogenous ouabain/Na + K + -ATPase/cSrc signaling. J Hypertens 2023; 41:1554-1564. [PMID: 37432904 DOI: 10.1097/hjh.0000000000003502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVE Endogenous ouabain (EO) increases in some patients with hypertension and in rats with volume-dependent hypertension. When ouabain binds to Na + K + -ATPase, cSrc is activated, which leads to multieffector signaling activation and high blood pressure (BP). In mesenteric resistance arteries (MRA) from deoxycorticosterone acetate (DOCA)-salt rats, we have demonstrated that the EO antagonist rostafuroxin blocks downstream cSrc activation, enhancing endothelial function and lowering oxidative stress and BP. Here, we examined the possibility that EO is involved in the structural and mechanical alterations that occur in MRA from DOCA-salt rats. METHODS MRA were taken from control, vehicle-treated DOCA-salt or rostafuroxin (1 mg/kg per day, for 3 weeks)-treated DOCA-salt rats. Pressure myography and histology were used to evaluate the mechanics and structure of the MRA, and western blotting to assess protein expression. RESULTS DOCA-salt MRA exhibited signs of inward hypertrophic remodeling and increased stiffness, with a higher wall:lumen ratio, which were reduced by rostafuroxin treatment. The enhanced type I collagen, TGFβ1, pSmad2/3 Ser465/457 /Smad2/3 ratio, CTGF, p-Src Tyr418 , EGFR, c-Raf, ERK1/2 and p38MAPK protein expression in DOCA-salt MRA were all recovered by rostafuroxin. CONCLUSION A process combining Na + K + -ATPase/cSrc/EGFR/Raf/ERK1/2/p38MAPK activation and a Na + K + -ATPase/cSrc/TGF-1/Smad2/3/CTGF-dependent mechanism explains how EO contributes to small artery inward hypertrophic remodeling and stiffening in DOCA-salt rats. This result supports the significance of EO as a key mediator for end-organ damage in volume-dependent hypertension and the efficacy of rostafuroxin in avoiding remodeling and stiffening of small arteries.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabiano Elias Xavier
- Department of Physiology and Pharmacology, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
5
|
Perego MC, McMichael BD, Bain LJ. Arsenic impairs stem cell differentiation via the Hippo signaling pathway. Toxicol Res (Camb) 2023; 12:296-309. [PMID: 37125325 PMCID: PMC10141767 DOI: 10.1093/toxres/tfad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Arsenic is a ubiquitous toxic metalloid, with over 150 million people exposed to arsenic concentrations above the current 10 ppb drinking water standard through contaminated food and water. Arsenic is a known developmental toxicant as neuronal and muscle development are disrupted following arsenic exposure during embryogenesis. In this study, murine embryonic stem cells were chronically exposed to 0.1 μM (7.5 ppb) arsenic for 32 weeks. RNA sequencing showed that the Hippo signaling pathway, which is involved in embryonic development and pluripotency maintenance, is impaired following arsenic exposure. Thus, temporal changes in the Hippo pathway's core components and its downstream target genes Ctgf and c-Myc were investigated. Protein expression of the pathway's main effector YAP in its active form was significantly upregulated by 3.7-fold in arsenic-exposed cells at week 8, while protein expression of inactive phosphorylated YAP was significantly downregulated by 2.5- and 2-fold at weeks 8 and 16. Exposure to arsenic significantly increased the ratio between nuclear and cytoplasmic YAP by 1.9-fold at weeks 16 and 28. The ratio between nuclear and cytoplasmic transcriptional enhancer factor domain was similarly increased in arsenic-treated samples by 3.4- and 1.6-fold at weeks 16 and 28, respectively. Levels of Ctgf and c-Myc were also upregulated following arsenic exposure. These results suggest that chronic exposure to an environmentally relevant arsenic concentration might hinder cellular differentiation and maintain pluripotency through the impairment of the Hippo signaling pathway resulting in increased YAP activation.
Collapse
Affiliation(s)
- M Chiara Perego
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29631, United States
| | - Benjamin D McMichael
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29631, United States
- Department of Biology, University of North Carolina, 120 South Road, Chapel Hill, NC, 27599, United States
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29631, United States
| |
Collapse
|
6
|
Rahaman MS, Mise N, Ikegami A, Zong C, Ichihara G, Ichihara S. The mechanism of low-level arsenic exposure-induced hypertension: Inhibition of the activity of the angiotensin-converting enzyme 2. CHEMOSPHERE 2023; 318:137911. [PMID: 36669534 DOI: 10.1016/j.chemosphere.2023.137911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
It is now well-established that arsenic exposure induces hypertension in humans. Although arsenic-induced hypertension is reported in many epidemiological studies, the underlying molecular mechanism of arsenic-induced hypertension is not fully characterized. In the human body, blood pressure is primarily regulated by a well-known physiological system known as the renin-angiotensin system (RAS). Hence, we explored the potential molecular mechanisms of arsenic-induced hypertension by investigating the regulatory roles of the RAS. Adult C57BL/6JJcl male mice were divided into four groups according to the concentration of arsenic in drinking water (0, 8, 80, and 800 ppb) provided for 8 weeks. Arsenic significantly raised blood pressure in arsenic-exposed mice compared to the control group, and significantly raised plasma MDA and Ang II and reduced Ang (1-7) levels. RT-PCR results showed that arsenic significantly downregulated ACE2 and MasR in mice aortas. In vitro studies of endothelial HUVEC cells treated with arsenic showed increased level of MDA and Ang II and lower levels of Ang (1-7), compared with the control. Arsenic significantly downregulated ACE2 and MasR expression, as well as those of Sp1 and SIRT1; transcriptional activators of ACE2, in HUVECs. Arsenic also upregulated markers of endothelial dysfunction (MCP-1, ICAM-1) and inflammatory cytokines (IL-6, TNF-α) in HUVECs. Our findings suggest that arsenic-induced hypertension is mediated, at least in part, by oxidative stress-mediated inhibition of ACE2 as well as by suppressing the vasoprotective axes of RAS, in addition to the activation of the classical axis.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
7
|
Melatonin improves arsenic-induced hypertension through the inactivation of the Sirt1/autophagy pathway in rat. Biomed Pharmacother 2022; 151:113135. [PMID: 35598369 DOI: 10.1016/j.biopha.2022.113135] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 11/20/2022] Open
Abstract
Arsenic (As), a metalloid chemical element, is classified as heavy metal. Previous studies proposed that As induces vascular toxicity by inducing autophagy, apoptosis, and oxidative stress. It has been shown that melatonin (Mel) can decrease oxidative stress and apoptosis, and modulate autophagy in different pathological situations. Hence, this study aimed to investigate the Mel effect on As-induced vascular toxicity through apoptosis and autophagy regulation. Forty male rats were treated with As (15 mg/kg; oral gavage) and Mel (10 and 20 mg/kg, intraperitoneally; i.p.) for 28 days. The systolic blood pressure (SBP) changes, oxidative stress markers, the aorta histopathological injuries, contractile and relaxant responses, the level of apoptosis (Bnip3 and caspase-3) and autophagy (Sirt1, Beclin-1 and LC3 II/I ratio) proteins were determined in rats aorta. The As exposure significantly increased SBP and enhanced MDA level while reduced GSH content. The exposure to As caused substantial histological damage in aorta tissue and changed vasoconstriction and vasorelaxation responses to KCl, PE, and Ach in isolated rat aorta. The levels of HO-1 and Nrf-2, apoptosis markers, Sirt1, and autophagy proteins also enhanced in As group. Interestingly, Mel could reduce changes in oxidative stress, blood pressure, apoptosis, and autophagy induced by As. On the other hand, Mel led to more increased the levels of Nrf-2 and HO-1 proteins compared with the As group. In conclusion, our findings showed that Mel could have a protective effect against As-induced vascular toxicity by inhibiting apoptosis and the Sirt1/autophagy pathway.
Collapse
|
8
|
Gowda BR, Prakash N, Santhosh CR, Pavithra BH, Rajashekaraiah R, Sathyanarayana ML, Rao S, Waghe P, Kumar KRA, Shivaprasad GR, Muralidhar Y. Effect of Telmisartan on Arsenic-Induced (Sub-chronic) Perturbations in Redox Homeostasis, Pro-inflammatory Cascade and Aortic Dysfunction in Wistar Rats. Biol Trace Elem Res 2022; 200:1776-1790. [PMID: 34339004 DOI: 10.1007/s12011-021-02804-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/19/2021] [Indexed: 11/26/2022]
Abstract
An experimental study was conducted in male Wistar rats to explore the antioxidant potential of telmisartan (an AT1 receptor blocker) to overcome arsenic ('As')-induced perturbations in redox homeostasis pro-inflammatory cytokines, prostaglandin-E2 levels and aortic dysfunction in Wistar rats. Wistar rats were randomly divided into four groups of six each. Group-I served as untreated control, while group-II received sodium (meta) arsenite (NaAsO2) (10 mg/kg b.wt. p.o) for a period of 60 days. Experimental rats in group-III received treatment similar to group-II, but in addition received telmisartan (with 1% aqueous solution of Tween 80) @ 10 mg/kg b.wt. (p.o) for a similar duration, while rats in group-IV received telmisartan alone. Arsenic exposure resulted in significant (p < 0.05) elevation in the levels of superoxide anion ([Formula: see text]) radicals (control: 768.20 ± 126.77 vs group-II: 1232.75 ± 97.85 pmol of NBT reduced/min/mg protein). Telmisartan administration showed significant (p < 0.05) reduction in [Formula: see text] generation (815.34 ± 43.41 pmol of NBT reduced/min/mg protein). Sub-chronic exposure to 'As' significantly (p < 0.05) decreased the activities of SOD, CAT, GPx and GR activity and GSH levels in the aorta, thus induced lipid peroxidation (LPO) measured as measured in terms of thiobarbituric acid reactive substances (TBARS) called as malondialdehyde (MDA). However, the administration of telmisartan effectively countered the LPO (24.03 ± 1.18 nmol of MDA/g) on account of restoring the levels of aforesaid antioxidant defense system. Telmisartan administration effectively attenuated the 'As'-induced surge in pro-inflammatory cytokines (viz., IL-1β, IL-6 and TNF-α) levels, as well as countered the activity of cyclooxygenase (COX2) as indicated by a significant (p < 0.05) decrease in PGE2 level in the aorta. In addition to it, there was a significant (p < 0.05) decrease in plasma angiotensin II (Ang-II) levels in experimental rats receiving telmisartan. Quantitative RT-PCR studies revealed that sub-chronic exposure to 'As' upregulated the Nox2 mRNA expression, but there was a 1.2-fold reduction in expression level upon co-administration of telmisartan. Histopathological examination revealed marked recovery from 'As'-induced disruption of tunica adventitia and loss of connective tissue in experimental rats receiving telmisartan. The study concludes that telmisartan can overcome aortic dysfunction induced by sub-chronic exposure to arsenic through drinking water in experimental rats through restoration of redox balance, attenuation of pro-inflammatory cytokines and mediators and downregulation of Nox2 mRNA expression.
Collapse
Affiliation(s)
- B Rudresh Gowda
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - N Prakash
- Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Vinobanagar, Shivamogga, Karnataka, 577 204, India.
| | - C R Santhosh
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - B H Pavithra
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Rashmi Rajashekaraiah
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - M L Sathyanarayana
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Suguna Rao
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Prashantkumar Waghe
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Nandinagar, Bidar, Karnataka, 585 226, India
| | - K R Anjan Kumar
- Department of Veterinary Pathology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - G R Shivaprasad
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| | - Y Muralidhar
- Department of Veterinary Pharmacology and Toxicology, Veterinary College, Karnataka Veterinary, Animal and Fisheries Sciences University, Hebbal, Bengaluru, Karnataka, 560 024, India
| |
Collapse
|
9
|
Immunomodulatory Activity of the Most Commonly Used Antihypertensive Drugs-Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers. Int J Mol Sci 2022; 23:ijms23031772. [PMID: 35163696 PMCID: PMC8836033 DOI: 10.3390/ijms23031772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review article is focused on antihypertensive drugs, namely angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB), and their immunomodulatory properties reported in hypertensive patients as well as in experimental settings involving studies on animal models and cell lines. The immune regulatory action of ACEI and ARB is mainly connected with the inhibition of proinflammatory cytokine secretion, diminished expression of adhesion molecules, and normalization of CRP concentration in the blood plasma. The topic has significant importance in future medical practice in the therapy of patients with comorbidities with underlying chronic inflammatory responses. Thus, this additional effect of immune regulatory action of ACEI and ARB may also benefit the treatment of patients with metabolic syndrome, allergies, or autoimmune disorders.
Collapse
|
10
|
Wang X, Wu Y, Sun X, Guo Q, Xia W, Wu Y, Li J, Xu S, Li Y. Arsenic exposure and metabolism in relation to blood pressure changes in pregnant women. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112527. [PMID: 34311426 DOI: 10.1016/j.ecoenv.2021.112527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is concerned with cardiovascular diseases including hypertension, atherosclerosis, and endothelial dysfunction. However, what effects the arsenic exposure and the arsenic metabolism have on hypertensive disorders of pregnancy (HDP) and blood pressure changes during pregnancy remain largely unknown. Our goal was to assess the associations of arsenic exposure and arsenic metabolism with HDP and blood pressure changes in pregnant women through a prospective birth cohort study. A total of 1038 women who were pregnant (52 HDP, 986 non-HDP participants) were included. Arsenic species of spot urine samples collected at three trimesters were measured, which included inorganic arsenic (iAs), monomethylated arsenic (MMA), and dimethylated arsenic (DMA). Arsenic metabolism was evaluated as the percentages of iAs, MMA, and DMA respectively (i.e., iAs%, MMA%, and DMA%). Outcomes were HDP and systolic, diastolic, and mean arterial pressure changes during pregnancy. We employed mixed linear models to investigate the relationships between arsenic exposure and arsenic metabolism with changes in blood pressure during pregnancy. Poisson regression with a robust error variance with generalized estimating equations (GEE) estimation was used so that the associations of arsenic exposure and arsenic metabolism with HDP could be estimated. In this study, there was a significant relationship between the concentrations of urinary DMA and the weekly change in systolic blood pressure (SBP) (β = -0.10; 95% CI: -0.15, -0.05), diastolic blood pressure (DBP) (β = -0.07; 95% CI: -0.11, -0.02) and mean arterial pressure (MAP) (β = -0.08; 95% CI: -0.12, -0.04). Higher DMA% was accompanied with lesser weekly increase in SBP (β = -0.05; 95% CI: -0.10, 0.00), DBP (β = -0.06; 95% CI: -0.10, -0.01) and MAP (β = -0.06; 95% CI: -0.09, -0.01) during pregnancy. There was a positive association with the highest tertile of iAs% and weekly change of SBP (β = 0.08; 95% CI: 0.03, 0.13), DBP (β = 0.07; 95% CI: 0.03, 0.11) and MAP (β = 0.07; 95% CI: 0.03, 0.11). No association was found between each arsenic specie and arsenic metabolism marker in the first trimester and risk of HDP. Arsenic exposure and arsenic metabolism during pregnancy potentially change blood pressure of pregnant women. These findings may be significance as even modest elevation of blood pressure can increase the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yi Wu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Qing Guo
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jingguang Li
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), school of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
11
|
Kabir R, Sinha P, Mishra S, Ebenebe OV, Taube N, Oeing CU, Keceli G, Chen R, Paolocci N, Rule A, Kohr MJ. Inorganic arsenic induces sex-dependent pathological hypertrophy in the heart. Am J Physiol Heart Circ Physiol 2021; 320:H1321-H1336. [PMID: 33481702 PMCID: PMC8260381 DOI: 10.1152/ajpheart.00435.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 01/17/2023]
Abstract
Arsenic exposure though drinking water is widespread and well associated with adverse cardiovascular outcomes, yet the pathophysiological mechanisms by which iAS induces these effects are largely unknown. Recently, an epidemiological study in an American population with a low burden of cardiovascular risk factors found that iAS exposure was associated with altered left ventricular geometry. Considering the possibility that iAS directly induces cardiac remodeling independently of hypertension, we investigated the impact of an environmentally relevant iAS exposure on the structure and function of male and female hearts. Adult male and female C56BL/6J mice were exposed to 615 μg/L iAS for 8 wk. Males exhibited increased systolic blood pressure via tail cuff photoplethysmography, left ventricular wall thickening via transthoracic echocardiography, and increased plasma atrial natriuretic peptide via enzyme immunoassay. RT-qPCR revealed increased myocardial RNA transcripts of Acta1, Myh7, and Nppa and decreased Myh6, providing evidence of pathological hypertrophy in the male heart. Similar changes were not detected in females, and nitric oxide-dependent mechanisms of cardioprotection in the heart appeared to remain intact. Further investigation found that Rcan1 was upregulated in male hearts and that iAS activated NFAT in HEK-293 cells via luciferase assay. Interestingly, iAS induced similar hypertrophic gene expression changes in neonatal rat ventricular myocytes, which were blocked by calcineurin inhibition, suggesting that iAS may induce pathological cardiac hypertrophy in part by targeting the calcineurin-NFAT pathway. As such, these results highlight iAS exposure as an independent cardiovascular risk factor and provide biological impetus for its removal from human consumption.NEW & NOTEWORTHY This investigation provides the first mechanistic link between an environmentally relevant dose of inorganic arsenic (iAS) and pathological hypertrophy in the heart. By demonstrating that iAS exposure may cause pathological cardiac hypertrophy not only by increasing systolic blood pressure but also by potentially activating calcineurin-nuclear factor of activated T cells and inducing fetal gene expression, these results provide novel mechanistic insight into the theat of iAS exposure to the heart, which is necessary to identify targets for medical and public health intervention.
Collapse
MESH Headings
- Animals
- Arsenites/toxicity
- Calcineurin/metabolism
- Female
- Gene Expression Regulation
- HEK293 Cells
- Humans
- Hypertrophy, Left Ventricular/chemically induced
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Isolated Heart Preparation
- Male
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NFATC Transcription Factors/metabolism
- Sex Factors
- Signal Transduction
- Sodium Compounds/toxicity
- Time Factors
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Water Pollutants, Chemical/toxicity
- Mice
Collapse
Affiliation(s)
- Raihan Kabir
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Prithvi Sinha
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nicole Taube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Chistian U Oeing
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gizem Keceli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Ana Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Mark J Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
12
|
Yang C, Wu X, Shen Y, Liu C, Kong X, Li P. Alamandine attenuates angiotensin II-induced vascular fibrosis via inhibiting p38 MAPK pathway. Eur J Pharmacol 2020; 883:173384. [PMID: 32707188 DOI: 10.1016/j.ejphar.2020.173384] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
Alamandine attenuates hypertension and cardiac remodeling in spontaneously hypertensive rats (SHRs). We examined whether alamandine attenuates vascular remodeling in mice, and regulates angiotensin II (Ang II)-induced fibrosis in rat vascular smooth muscle cells (VSMCs). Alamandine attenuated hypertension in mice induced by Ang II. Ang II increased the fibrosis of thoracic aorta in mice, which was attenuated by alamandine treatment. Increased levels of collagen I, transforming growth factor-β (TGF-β), and connective tissue growth factor (CTGF) levels in thoracic aortas after Ang II treatment in mice were inhibited by alamandine. Ang II-stimulated collagen I, TGF-β, and CTGF level increases were inhibited by alamandine in rat VSMCs. This could be reversed by Mas-related G protein-coupled receptor, member D (MrgD) antagonist D-Pro7-Ang-(1-7) but not Mas receptor antagonist A779. MrgD expression was increased in the thoracic aortas of mice or VSMCs treatment with Ang II. Ang II increased p-p38 and cAMP levels in rat VSMCs, and alamandine blocked Ang II-induced these increases. Cyclic adenosine monophosphate (cAMP) reversed the inhibitory effects of alamandine on the Ang II-induced increases in collagen I, TGF-β, and CTGF levels. These results demonstrate alamandine attenuates vascular fibrosis by stimulating MrgD expression and decreases arterial fibrosis by blocking p-p38 expression. Alamandine/MrgD axis is a potential target for the treatment of vascular remodeling.
Collapse
Affiliation(s)
- Chuanxi Yang
- Medical Department of Southeast University, Nanjing, China
| | - Xiaoguang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yihui Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangqing Kong
- Medical Department of Southeast University, Nanjing, China; Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
13
|
Zhang L, Yang F, Yan Q. Candesartan ameliorates vascular smooth muscle cell proliferation via regulating miR-301b/STAT3 axis. Hum Cell 2020; 33:528-536. [PMID: 32170715 DOI: 10.1007/s13577-020-00333-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022]
Abstract
Excessive vascular smooth muscle cell (VSMC) proliferation contributes to vascular remodeling and stroke during hypertension. Blockade of Angiotensin (AngII) type 1 receptor (AT1R) is shown to effectively attenuate VSMC proliferation and vascular remodeling, while the mechanisms underlying these protective effects are unclear. Here, we investigated whether the amelioration of VSMC proliferation mediated by candesartan, an AT1R blocker, could be associated with miRNA regulation. Based on the published data in rat aortic smooth muscle cells (RASMCs), we discovered that candesartan specifically reversed the AngII-induced decrease of miR-301b level in RASMCs and human aortic smooth muscle cells (HASMCs). Knockdown of miR-301b abolished candesartan-mediated inhibition of HASMC proliferation via promoting cell cycle transition. Computational analysis showed that miR-301b targets at 3'UTR of STAT3. MiR-301b upregulation inhibited the luciferase activity and protein expression of STAT3, whereas miR-301b knockdown increased STAT3 luciferase activity and expression. Furthermore, downregulation of STAT3 markedly abrogated the effects of miR-301b inhibition on candesartan-mediated HASMC proliferation, invasion, and migration. Collectively, this study suggests that miR-301b may be a novel molecular target of candesartan and provides a new understanding for the mechanisms underlying the cardiovascular effects of candesartan.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Pharmacy, Xiantao First People's Hospital, No. 29 Mianzhou Road, Xiantao, 433000, Hubei, China.
| | - Fan Yang
- Department of Pharmacy, Xiantao First People's Hospital, No. 29 Mianzhou Road, Xiantao, 433000, Hubei, China
| | - Qiong Yan
- Department of Pharmacy, Huazhong University of Science and Technology Hospital, Wuhan, 430074, Hubei, China
| |
Collapse
|
14
|
Fan Z, Yang J, Yang C, Zhang J, Cai W, Huang C. MicroRNA‑24 attenuates diabetic vascular remodeling by suppressing the NLRP3/caspase‑1/IL‑1β signaling pathway. Int J Mol Med 2020; 45:1534-1542. [PMID: 32323758 PMCID: PMC7138286 DOI: 10.3892/ijmm.2020.4533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
Vascular remodeling plays an important role in the pathogenesis of diabetic cardiovascular complications. Previous published research has indicated that microRNA-24 (miR-24) is involved in diabetic vascular remodeling, but the underlying molecular mechanisms have yet to be fully elucidated. The aim of the present study was to investigate whether adenovirus-mediated miR-24 overexpression can suppress the NOD-like receptor family pyrin domain-containing 3 (NLRP3)-related inflammatory signaling pathway and attenuate diabetic vascular remodeling. The carotid arteries of diabetic rats were harvested and prepared for analysis. Reverse transcription-quantitative PCR and western blotting assays were used to detect the expressions of related mRNAs and proteins. Morphological examinations, including hematoxylin and eosin, immunohistochemical and Masson’s trichrome staining, were also performed. The results of the present study demonstrated that miR-24 upregulation suppressed neointimal hyperplasia and accelerated reendothelialization in the injured arteries, lowered the expression of NLRP3, apoptosis-associated speck-like protein, caspase-1, proliferating cell nuclear antigen, CD45, interleukin (IL)-1β, IL-18 and tumor necrosis factor-α, and increased the expression of CD31, smooth muscle (SM) α-actin and SM-myosin heavy chain. These data indicated that miR-24 overexpression can attenuate vascular remodeling in a diabetic rat model through suppressing the NLRP3/caspase-1/IL-1β signaling pathway.
Collapse
Affiliation(s)
- Zhixing Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian Yang
- Department of Cardiology, The People's Hospital of Three Gorges University/The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - Chaojun Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Wanying Cai
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
15
|
Wang Q, Zhang Y, Le F, Wang N, Zhang F, Luo Y, Lou Y, Hu M, Wang L, Thurston LM, Xu X, Jin F. Alteration in the expression of the renin-angiotensin system in the myocardium of mice conceived by in vitro fertilization. Biol Reprod 2019; 99:1276-1288. [PMID: 30010728 PMCID: PMC6299247 DOI: 10.1093/biolre/ioy158] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/11/2018] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies have revealed that offspring conceived by in vitro fertilization (IVF) have an elevated risk of cardiovascular malformations at birth, and are more predisposed to cardiovascular diseases. The renin-angiotensin system (RAS) plays an essential role in both the pathogenesis of congenital heart disease in fetuses and cardiovascular dysfunction in adults. This study aimed to assess the relative expression levels of genes in the RAS pathway in mice conceived using IVF, compared to natural mating with superovulation. Results demonstrated that expression of the angiotensin II receptor type 1 (AGTR1), connective tissue growth factor (CTGF), and collagen 3 (COL3), in the myocardial tissue of IVF-conceived mice, was elevated at 3 weeks, 10 weeks, and 1.5 years of age, when compared to their non-IVF counterparts. These data were supported by microRNA microarray analysis of the myocardial tissue of aged IVF-conceived mice, where miR-100, miR-297, and miR-758, which interact with COL3, AGTR1, and COL1 respectively, were upregulated when compared to naturally mated mice of the same age. Interestingly, bisulfite sequencing data indicated that IVF-conceived mice exhibited decreased methylation of CpG sites in Col1. In support of our in vivo investigations, miR-297 overexpression was shown to upregulate AGTR1 and CTGF, and increased cell proliferation in cultured H9c2 cardiomyocytes. These findings indicate that the altered expression of RAS in myocardial tissue might contribute to cardiovascular malformation and/or dysfunction in IVF-conceived offspring. Furthermore, these cardiovascular abnormalities might be the result of altered DNA methylation and abnormal regulation of microRNAs.
Collapse
Affiliation(s)
- Qijing Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yue Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fang Le
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ning Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Zhang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yiyun Lou
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang Province, China
| | - Minhao Hu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lisa M Thurston
- Department of Comparative Biomedical Science, Royal Veterinary College, University of London, London NW1 0TU, UK.,Academic Unit of Reproduction and Development, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2SF, UK
| | - Xiangrong Xu
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Key Laboratory of Reproductive Genetics of National Ministry of Education, Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
16
|
Dai J, Xu M, Zhang X, Niu Q, Hu Y, Li Y, Li S. Bi-directional regulation of TGF-β/Smad pathway by arsenic: A systemic review and meta-analysis of in vivo and in vitro studies. Life Sci 2019; 220:92-105. [PMID: 30703382 DOI: 10.1016/j.lfs.2019.01.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Arsenic exposure can cause fibrosis of organs including the liver, heart and lung. It was reported that TGF-β/Smad pathway played a crucial role in the process of fibrosis. However, the mechanism of arsenic-induced fibrosis through TGF-β/Smad signaling pathway has remained controversial. OBJECTIVE A systematic review and meta-analysis was performed to clarify the relationship between arsenic and TGF-β/Smad pathway, providing a theoretical basis of fibrosis process caused by arsenic. METHODS A meta-analysis was used to reveal a correlation between arsenic and fibrosis markers of TGF-β/Smad pathway, including 47 articles of both in vivo and in vitro studies. (Standardized Mean Difference) SMD was employed to compare and analyze the combined effects. When I2 > was 50%, random effect model was selected and subgroup analysis was used to explore the source of heterogeneity. RESULTS Arsenic exposure up-regulated the expression of TGF-β1, p-Smad2/3, α-SMA, Collagen1/3 and FN. The dose-response relationship showed that low dose (≤5 μmol/L) arsenic exposure up-regulated the expression of TGF-β1, whereas high doses had a tendency to down-regulate that of TGF-β1. Subgroup analysis showed that low or short-term arsenic exposure induced the expression of TGF-β1 and fibrosis markers. CONCLUSION The results indicated that arsenic activates the TGF-β/Smad pathway and induced fibrosis. The mechanism is related to the up-regulation of NADPH oxidase and ROS accumulation. However, high-dose arsenic exposure may inhibit this pathway.
Collapse
Affiliation(s)
- Jingyuan Dai
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Mengchuan Xu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Xiaoran Zhang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Qiang Niu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Yu Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Shugang Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
17
|
The role of losartan in preventing vascular remodeling in spontaneously hypertensive rats by inhibition of the H2O2/VPO1/HOCl/MMPs pathway. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Xu X, Liu S, Aodengqimuge, Wang H, Hu M, Xing C, Song L. Arsenite Induces Vascular Endothelial Cell Dysfunction by Activating IRE1α/XBP1s/HIF1α-Dependent ANGII Signaling. Toxicol Sci 2017; 160:315-328. [DOI: 10.1093/toxsci/kfx184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|