1
|
Mello DF, Perez L, Bergemann CM, Morton KS, Ryde IT, Meyer JN. Comprehensive characterization of mitochondrial bioenergetics at different larval stages reveals novel insights about the developmental metabolism of Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600841. [PMID: 38979262 PMCID: PMC11230424 DOI: 10.1101/2024.06.26.600841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondrial bioenergetic processes are fundamental to development, stress responses, and health. Caenorhabditis elegans is widely used to study developmental biology, mitochondrial disease, and mitochondrial toxicity. Oxidative phosphorylation generally increases during development in many species, and genetic and environmental factors may alter this normal trajectory. Altered mitochondrial function during development can lead to both drastic, short-term responses including arrested development and death, and subtle consequences that may persist throughout life and into subsequent generations. Understanding normal and altered developmental mitochondrial biology in C. elegans is currently constrained by incomplete and conflicting reports on how mitochondrial bioenergetic parameters change during development in this species. We used a Seahorse XFe24 Extracellular Flux (XF) Analyzer to carry out a comprehensive analysis of mitochondrial and non-mitochondrial oxygen consumption rates (OCR) throughout larval development in C. elegans. We optimized and describe conditions for analysis of basal OCR, basal mitochondrial OCR, ATP-linked OCR, spare and maximal respiratory capacity, proton leak, and non-mitochondrial OCR. A key consideration is normalization, and we present and discuss results as normalized per individual worm, protein content, worm volume, mitochondrial DNA (mtDNA) count, nuclear DNA (ncDNA) count, and mtDNA:ncDNA ratio. Which normalization process is best depends on the question being asked, and differences in normalization explain some of the discrepancies in previously reported developmental changes in OCR in C. elegans. Broadly, when normalized to worm number, our results agree with previous reports in showing dramatic increases in OCR throughout development. However, when normalized to total protein, worm volume, or ncDNA or mtDNA count, after a significant 2-3-fold increase from L1 to L2 stages, we found small or no changes in most OCR parameters from the L2 to the L4 stage, other than a marginal increase at L3 in spare and maximal respiratory capacity. Overall, our results indicate an earlier cellular shift to oxidative metabolism than suggested in most previous literature.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Luiza Perez
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Christina M. Bergemann
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Katherine S. Morton
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC, 27708-0328 United States of America
| |
Collapse
|
2
|
Campbell D, Zuryn S. The mechanisms and roles of mitochondrial dynamics in C. elegans. Semin Cell Dev Biol 2024; 156:266-275. [PMID: 37919144 DOI: 10.1016/j.semcdb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism's healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.
Collapse
Affiliation(s)
- Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
3
|
Khan H, Verma Y, Rana SVS. Combined Effects of Fluoride and Arsenic on Mitochondrial Function in the Liver of Rat. Appl Biochem Biotechnol 2023; 195:6856-6866. [PMID: 36947368 DOI: 10.1007/s12010-023-04401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/23/2023]
Abstract
Biochemical and/or molecular mechanisms of arsenic or fluoride toxicity in experimental animals have been widely investigated in the recent past. However, their combined effects on target cells/organelle are poorly understood. The present study was executed to delineate their combined effects on mitochondrial function in the liver of rat. Female Wistar rats (140 ± 20 g) were force fed individually or in combination with sodium arsenate (4 mg/kg body weight) and sodium fluoride (4 mg/kg body weight) for 90 days. Thereafter, established markers of mitochondrial function viz. mitochondrial lipid peroxidation, oxidative phosphorylation, ATPase, succinic dehydrogenase, and caspase-3 activity were determined. Cytochrome C release and oxidative DNA damage were also estimated in the liver of respective groups of rats. The study showed significant differences in these results amongst the three groups. Observations on parameters viz. LPO, cytochrome-C, caspase-3, and 8-OHdG suggested an antagonistic relationship between these two elements. Results on ATPase, SDH, and ADP:O ratio indicated synergism. It is concluded that AsIII + F in combination may express differential effects on signalling pathways and proapoptotic/antiapoptotic proteins/genes that contribute to liver cell death. Interaction of As and F with mitochondria.
Collapse
Affiliation(s)
- Huma Khan
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - Yeshvandra Verma
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India
| | - S V S Rana
- Department of Toxicology, Ch. Charan Singh University, Meerut, 250 004, India.
| |
Collapse
|
4
|
Martins AC, Virgolini MB, Ávila DS, Scharf P, Li J, Tinkov AA, Skalny AV, Bowman AB, Rocha JBT, Aschner M. Mitochondria in the Spotlight: C. elegans as a Model Organism to Evaluate Xenobiotic-Induced Dysfunction. Cells 2023; 12:2124. [PMID: 37681856 PMCID: PMC10486742 DOI: 10.3390/cells12172124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/19/2023] [Accepted: 08/20/2023] [Indexed: 09/09/2023] Open
Abstract
Mitochondria play a crucial role in cellular respiration, ATP production, and the regulation of various cellular processes. Mitochondrial dysfunctions have been directly linked to pathophysiological conditions, making them a significant target of interest in toxicological research. In recent years, there has been a growing need to understand the intricate effects of xenobiotics on human health, necessitating the use of effective scientific research tools. Caenorhabditis elegans (C. elegans), a nonpathogenic nematode, has emerged as a powerful tool for investigating toxic mechanisms and mitochondrial dysfunction. With remarkable genetic homology to mammals, C. elegans has been used in studies to elucidate the impact of contaminants and drugs on mitochondrial function. This review focuses on the effects of several toxic metals and metalloids, drugs of abuse and pesticides on mitochondria, highlighting the utility of C. elegans as a model organism to investigate mitochondrial dysfunction induced by xenobiotics. Mitochondrial structure, function, and dynamics are discussed, emphasizing their essential role in cellular viability and the regulation of processes such as autophagy, apoptosis, and calcium homeostasis. Additionally, specific toxins and toxicants, such as arsenic, cadmium, and manganese are examined in the context of their impact on mitochondrial function and the utility of C. elegans in elucidating the underlying mechanisms. Furthermore, we demonstrate the utilization of C. elegans as an experimental model providing a promising platform for investigating the intricate relationships between xenobiotics and mitochondrial dysfunction. This knowledge could contribute to the development of strategies to mitigate the adverse effects of contaminants and drugs of abuse, ultimately enhancing our understanding of these complex processes and promoting human health.
Collapse
Affiliation(s)
- Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Miriam B. Virgolini
- Departamento de Farmacología Otto Orsingher, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Instituto de Farmacología Experimental de Córdoba-Consejo Nacional de Investigaciones Técnicas (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
| | - Daiana Silva Ávila
- Laboratory of Biochemistry and Toxicology in Caenorhabditis Elegans, Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, Uruguaiana 97500-970, RS, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Jung Li
- College of Osteopathic Medicine, Des Moines University, Des Moines, IA 50312, USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl 150003, Russia
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Aaron B. Bowman
- School of Health Sciences, Purdue University, West Lafayette, IN 47907-2051, USA
| | - João B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| |
Collapse
|
5
|
Melnikov K, Kucharíková S, Bárdyová Z, Botek N, Kaiglová A. Applications of a powerful model organism Caenorhabditis elegans to study the neurotoxicity induced by heavy metals and pesticides. Physiol Res 2023; 72:149-166. [PMID: 37159850 PMCID: PMC10226405 DOI: 10.33549/physiolres.934977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/03/2023] [Indexed: 08/27/2023] Open
Abstract
The expansion of industry and the use of pesticides in agriculture represent one of the major causes of environmental contamination. Unfortunately, individuals and animals are exposed to these foreign and often toxic substances on a daily basis. Therefore, it is crucial to monitor the impact of such chemicals on human health. Several in vitro studies have addressed this issue, but it is difficult to explore the impact of these compounds on living organisms. A nematode Caenorhabditis elegans has become a useful alternative to animal models mainly because of its transparent body, fast growth, short life cycle, and easy cultivation. Furthermore, at the molecular level, there are significant similarities between humans and C. elegans. These unique features make it an excellent model to complement mammalian models in toxicology research. Heavy metals and pesticides, which are considered environmental contaminants, are known to have affected the locomotion, feeding behavior, brood size, growth, life span, and cell death of C. elegans. Today, there are increasing numbers of research articles dedicated to this topic, of which we summarized the most recent findings dedicated to the effect of heavy metals, heavy metal mixtures, and pesticides on the well-characterized nervous system of this nematode.
Collapse
Affiliation(s)
- K Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, University in Trnava, Slovakia.
| | | | | | | | | |
Collapse
|
6
|
Lin S, Yang F, Hu M, Chen J, Chen G, Hu A, Li X, Fu D, Xing C, Xiong Z, Wu Y, Cao H. Selenium alleviates cadmium-induced mitophagy through FUNDC1-mediated mitochondrial quality control pathway in the lungs of sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120954. [PMID: 36581240 DOI: 10.1016/j.envpol.2022.120954] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is a poisonous metal element that causes mitochondrial dysfunction. Selenium (Se) can reduce the damage of Cd to various organs of animals, but the protective mechanism of Se in Cd-induced lung injury has not been fully elucidated. For purpose of further illustrating the specific mechanism of Se alleviated Cd-triggered pulmonary toxicity, 48 sheep were divided into 4 groups, of which the sheep in the treatment group were taken 1 mg/kg body weight (BW) of Cd, 0.34 mg/kg BW of Se, and 0.34 mg Se + 1 mg/kg BW of Cd by intragastric administration for 50 d, respectively. The results indicated that Cd caused inflammatory cell infiltration and alveolar wall thickening, which facilitated mitochondrial vacuolation and formation of mitophagosomes in lung tissues. Simultaneously, Cd treatment impaired the antioxidant capacity of sheep lung tissue. Additionally, Cd treatment down-regulated the expression levels of mitochondrial biogenesis and mitochondrial fusion, but up-regulated the levels of mitochondrial fission and mitophagy mediated by FUNDC1. Moreover, the immunofluorescence co-localization puncta of LC3B/COX IV, LC3B/FUNDC1 were increased after Cd treatment. Nevertheless, co-treatment with Se improved effectively the above variation caused by Cd exposure. In summary, Se could mitigate Cd-generated mitophagy through FUNDC1-mediated mitochondrial quality control pathway in the lungs of sheep.
Collapse
Affiliation(s)
- Shixuan Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Mingwen Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Jing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guiping Chen
- Jiangxi Provincial Agricultural Ecology and Resource Protection Station, Nanchang 330046, Jiangxi, PR China
| | - Aiming Hu
- Ji'an Animal Husbandry and Veterinary Bureau, No.4 Luzhou West Road, Jizhou District, Ji'an 343000, Jiangxi, PR China
| | - Xiong Li
- Pingxiang Agricultural Science Research Center, Pingxiang 337000, Jiangxi, PR China
| | - Danghua Fu
- Nanchang Zoo, Nanchang, 330025, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Yunhui Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
7
|
Protective Effect of Electroacupuncture on the Barrier Function of Intestinal Injury in Endotoxemia through HO-1/PINK1 Pathway-Mediated Mitochondrial Dynamics Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:1464853. [PMID: 36647427 PMCID: PMC9840552 DOI: 10.1155/2023/1464853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 01/09/2023]
Abstract
Background and Aims Endotoxemia (ET) is a common critical illness in patients receiving intensive care and is associated with high mortality and prolonged hospital stay. The intestinal epithelial cell dysfunction is regarded as the "engine" of deteriorated ET. Although electroacupuncture (EA) can mitigate endotoxin-induced intestinal epithelial cell dysfunction in ET, the mechanism through which EA improves endotoxin-induced intestinal injury for preventing ET deterioration needs further investigation. Methods An in vivo ET model was developed by injecting lipopolysaccharide (LPS) in wild-type and PINK1-knockout mice. An in vitro model was also established by incubating epithelial cells in the serum samples obtained from both groups of mice. Hemin and zinc protoporphyrin IX (ZnPP) were applied to activate or inhibit heme oxygenase 1 (HO-1) production. EA treatment was performed for 30 min consecutively for 5 days before LPS injection, and on the day of the experiment, EA was performed throughout the process. Samples were harvested at 6 h after LPS induction for analyzing tissue injury, oxidative stress, ATP production, activity of diamine oxidase (DAO), and changes in the levels of HO-1, PTEN-induced putative kinase 1 (PINK1), mitochondrial fusion and fission marker gene, caspase-1, and interleukin 1 beta (IL-1β). Results In the wild-type models (both in vivo and vitro), EA alleviated LPS-induced intestinal injury and mitochondrial dysfunction, as indicated by decreased reactive oxygen species (ROS) production and oxygen consumption rate (OCR) and reduced levels of mitochondrial fission proteins. EA treatment also boosted histopathological morphology, ATP levels, DAO activity, and levels of mitochondrial fusion proteins in vivo and vitro. The effect of EA was enhanced by hemin but suppressed by Znpp. However, EA + AP, Znpp, or hemin had no effects on the LPS-induced, PINK1-knocked out mouse models. Conclusion EA may improve the HO-1/PINK1 pathway-mediated mitochondrial dynamic balance to protect the intestinal barrier in patients with ET.
Collapse
|
8
|
Leuthner T, Benzing L, Kohrn B, Bergemann C, Hipp M, Hershberger K, Mello D, Sokolskyi T, Stevenson K, Merutka I, Seay S, Gregory S, Kennedy S, Meyer J. Resistance of mitochondrial DNA to cadmium and Aflatoxin B1 damage-induced germline mutation accumulation in C. elegans. Nucleic Acids Res 2022; 50:8626-8642. [PMID: 35947695 PMCID: PMC9410910 DOI: 10.1093/nar/gkac666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura Benzing
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Danielle F Mello
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Tymofii Sokolskyi
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kevin Stevenson
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Ilaria R Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Sarah A Seay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA,Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Joel N Meyer
- To whom correspondence should be addressed. Tel: +1 919 613 8109;
| |
Collapse
|
9
|
Rodríguez-Martín D, Murciano A, Herráiz M, de Francisco P, Amaro F, Gutiérrez JC, Martín-González A, Díaz S. Arsenate and arsenite differential toxicity in Tetrahymena thermophila. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128532. [PMID: 35248958 DOI: 10.1016/j.jhazmat.2022.128532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A comparative analysis of toxicities of both arsenic forms (arsenite and arsenate) in the model eukaryotic microorganism Tetrahymena thermophila (ciliate protozoa) has shown the presence of various detoxification mechanisms and cellular effects comparable to those of animal cells under arsenic stress. In the wild type strain SB1969 arsenate is almost 2.5 times more toxic than arsenite. According to the concentration addition model used in binary metallic mixtures their toxicities show an additive effect. Using fluorescent assays and flow cytometry, it has been detected that As(V) generates elevated levels of ROS/RNS compared to As(III). Both produce the same levels of superoxide anion, but As(V) also causes greater increases in hydrogen peroxide and peroxynitrite. The mitochondrial membrane potential is affected by both As(V) and As(III), and electron microscopy has also revealed that mitochondria are the main target of both arsenic ionic forms. Fusion/fission and swelling mitochondrial and mitophagy, together with macroautophagy, vacuolization and mucocyst extruction are mainly associated to As(V) toxicity, while As(III) induces an extensive lipid metabolism dysfunction (adipotropic effect). Quantitative RT-PCR analysis of some genes encoding antioxidant proteins or enzymes has shown that glutathione and thioredoxin metabolisms are involved in the response to arsenic stress. Likewise, the function of metallothioneins seems to be crucial in arsenic detoxification processes, after using both metallothionein knockout and knockdown strains and cells overexpressing metallothionein genes from this ciliate. The analysis of the differential toxicity of As(III) and As(V) shown in this study provides cytological and molecular tools to be used as biomarkers for each of the two arsenic ionic forms.
Collapse
Affiliation(s)
- Daniel Rodríguez-Martín
- Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28130 Madrid, Spain.
| | - Antonio Murciano
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Marta Herráiz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | | | - Francisco Amaro
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Juan Carlos Gutiérrez
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| | - Silvia Díaz
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Spain.
| |
Collapse
|
10
|
Maglioni S, Schiavi A, Melcher M, Brinkmann V, Luo Z, Laromaine A, Raimundo N, Meyer JN, Distelmaier F, Ventura N. Neuroligin-mediated neurodevelopmental defects are induced by mitochondrial dysfunction and prevented by lutein in C. elegans. Nat Commun 2022; 13:2620. [PMID: 35551180 PMCID: PMC9098500 DOI: 10.1038/s41467-022-29972-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/09/2022] [Indexed: 12/02/2022] Open
Abstract
Complex-I-deficiency represents the most frequent pathogenetic cause of human mitochondriopathies. Therapeutic options for these neurodevelopmental life-threating disorders do not exist, partly due to the scarcity of appropriate model systems to study them. Caenorhabditis elegans is a genetically tractable model organism widely used to investigate neuronal pathologies. Here, we generate C. elegans models for mitochondriopathies and show that depletion of complex I subunits recapitulates biochemical, cellular and neurodevelopmental aspects of the human diseases. We exploit two models, nuo-5/NDUFS1- and lpd-5/NDUFS4-depleted animals, for a suppressor screening that identifies lutein for its ability to rescue animals’ neurodevelopmental deficits. We uncover overexpression of synaptic neuroligin as an evolutionarily conserved consequence of mitochondrial dysfunction, which we find to mediate an early cholinergic defect in C. elegans. We show lutein exerts its beneficial effects by restoring neuroligin expression independently from its antioxidant activity, thus pointing to a possible novel pathogenetic target for the human disease. Mitochondrial deficiency causes rare incurable disorders. Here, the authors use C. elegans to study these diseases and find that the natural compound lutein prevents neurodevelopmental deficits, thus pointing to a possible therapeutic target for the human diseases.
Collapse
Affiliation(s)
- Silvia Maglioni
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Alfonso Schiavi
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany.,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Marlen Melcher
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Vanessa Brinkmann
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany
| | - Zhongrui Luo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Anna Laromaine
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC. Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Nuno Raimundo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, 17033, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Duesseldorf, Germany
| | - Natascia Ventura
- IUF-Leibniz Research Institute for Environmental Medicine, 40225, Duesseldorf, Germany. .,Institute for Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, Heinrich Heine University, 40225, Duesseldorf, Germany.
| |
Collapse
|
11
|
Camacho J, de Conti A, Pogribny IP, Sprando RL, Hunt PR. Assessment of the effects of organic vs. inorganic arsenic and mercury in Caenorhabditis elegans. Curr Res Toxicol 2022; 3:100071. [PMID: 35602005 PMCID: PMC9118485 DOI: 10.1016/j.crtox.2022.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Exposures to mercury and arsenic are known to pose significant threats to human health. Effects specific to organic vs. inorganic forms of these toxic elements are less understood however, especially for organic dimethylarsinic acid (DMA), which has recently been detected in pups of rodent dams orally exposed to inorganic sodium (meta)arsenite (NaAsO2). Caenorhabditis elegans is a small animal alternative toxicity model. To fill data gaps on the effects of DMA relative to NaAsO2, C. elegans were exposed to these two compounds alongside more thoroughly researched inorganic mercury chloride (HgCl2) and organic methylmercury chloride (meHgCl). For timing of developmental milestone acquisition in C. elegans, meHgCl was 2 to 4-fold more toxic than HgCl2, and NaAsO2 was 20-fold more toxic than DMA, ranking the four compounds meHgCl > HgCl2 > NaAsO2 ≫ DMA for developmental toxicity. Methylmercury induced significant decreases in population locomotor activity levels in developing C. elegans. DMA was also associated with developmental hypoactivity, but at >100-fold higher concentrations than meHgCl. Transcriptional alterations in native genes were observed in wild type C. elegans adults exposed to concentrations equitoxic for developmental delay in juveniles. Both forms of arsenic induced genes involved in immune defense and oxidative stress response, while the two mercury species induced proportionally more genes involved in transcriptional regulation. A transgenic bioreporter for activation of conserved proteosome specific unfolded protein response was strongly activated by NaAsO2, but not DMA at tested concentrations. HgCl2 and meHgCl had opposite effects on a bioreporter for unfolded protein response in the endoplasmic reticulum. Presented experiments indicating low toxicity for DMA in C. elegans are consistent with human epidemiologic data correlating higher arsenic methylation capacity with resistance to arsenic toxicity. This work contributes to the understanding of the accuracy and fit-for-use categories for C. elegans toxicity screening and its usefulness to prioritize compounds of concern for further testing.
Collapse
Key Words
- Alternative Toxicity Model
- Arsenic
- DEGs, Differentially Expressed Genes
- DMA, dimethylarsinic acid
- ER, endoplasmic reticulum
- EXT, extinction (a measure of optical density)
- GO, gene ontology
- HgCl2, mercury(ii) chloride
- Inorganic
- L1, first larval stage C. elegans
- LD50, the median lethal dose per kilogram of body weight
- LOEL, lowest observed effect level
- Mercury
- NOEL, no observed effect level
- NaAsO2, sodium (meta)arsenite
- Organic
- OxStrR, Oxidative Stress Response
- Predictive Toxicology
- TOF, time of flight (a measure of size)
- UPR, Unfolded Protein Response
- iAs, inorganic arsenic
- meHgCl, methylmercury chloride
Collapse
Affiliation(s)
- Jessica Camacho
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Aline de Conti
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Igor P. Pogribny
- Food and Drug Administration, National Center for Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, United States
| | - Robert L. Sprando
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| | - Piper Reid Hunt
- Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Applied Research and Safety Assessment, 8301 Muirkirk Road, Laurel, MD 20708, United States
| |
Collapse
|
12
|
Mello DF, Bergemann CM, Fisher K, Chitrakar R, Bijwadia SR, Wang Y, Caldwell A, Baugh LR, Meyer JN. Rotenone Modulates Caenorhabditis elegans Immunometabolism and Pathogen Susceptibility. Front Immunol 2022; 13:840272. [PMID: 35273616 PMCID: PMC8902048 DOI: 10.3389/fimmu.2022.840272] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Mitochondria are central players in host immunometabolism as they function not only as metabolic hubs but also as signaling platforms regulating innate immunity. Environmental exposures to mitochondrial toxicants occur widely and are increasingly frequent. Exposures to these mitotoxicants may pose a serious threat to organismal health and the onset of diseases by disrupting immunometabolic pathways. In this study, we investigated whether the Complex I inhibitor rotenone could alter C. elegans immunometabolism and disease susceptibility. C. elegans embryos were exposed to rotenone (0.5 µM) or DMSO (0.125%) until they reached the L4 larval stage. Inhibition of mitochondrial respiration by rotenone and disruption of mitochondrial metabolism were evidenced by rotenone-induced detrimental effects on mitochondrial efficiency and nematode growth and development. Next, through transcriptomic analysis, we investigated if this specific but mild mitochondrial stress that we detected would lead to the modulation of immunometabolic pathways. We found 179 differentially expressed genes (DEG), which were mostly involved in detoxification, energy metabolism, and pathogen defense. Interestingly, among the down-regulated DEG, most of the known genes were involved in immune defense, and most of these were identified as commonly upregulated during P. aeruginosa infection. Furthermore, rotenone increased susceptibility to the pathogen Pseudomonas aeruginosa (PA14). However, it increased resistance to Salmonella enterica (SL1344). To shed light on potential mechanisms related to these divergent effects on pathogen resistance, we assessed the activation of the mitochondrial unfolded protein response (UPRmt), a well-known immunometabolic pathway in C. elegans which links mitochondria and immunity and provides resistance to pathogen infection. The UPRmt pathway was activated in rotenone-treated nematodes further exposed for 24 h to the pathogenic bacteria P. aeruginosa and S. enterica or the common bacterial food source Escherichia coli (OP50). However, P. aeruginosa alone suppressed UPRmt activation and rotenone treatment rescued its activation only to the level of DMSO-exposed nematodes fed with E. coli. Module-weighted annotation bioinformatics analysis was also consistent with UPRmt activation in rotenone-exposed nematodes consistent with the UPR being involved in the increased resistance to S. enterica. Together, our results demonstrate that the mitotoxicant rotenone can disrupt C. elegans immunometabolism in ways likely protective against some pathogen species but sensitizing against others.
Collapse
Affiliation(s)
- Danielle F. Mello
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | | | - Kinsey Fisher
- Department of Biology, Duke University, Durham, NC, United States
| | - Rojin Chitrakar
- Department of Biology, Duke University, Durham, NC, United States
| | - Shefali R. Bijwadia
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Yang Wang
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Alexis Caldwell
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Larry Ryan Baugh
- Department of Biology, Duke University, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University, Durham, NC, United States
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
13
|
Reigle J, Secic D, Biesiada J, Wetzel C, Shamsaei B, Chu J, Zang Y, Zhang X, Talbot NJ, Bischoff ME, Zhang Y, Thakar CV, Gaitonde K, Sidana A, Bui H, Cunningham JT, Zhang Q, Schmidt LS, Linehan WM, Medvedovic M, Plas DR, Figueroa JAL, Meller J, Czyzyk-Krzeska MF. Tobacco smoking induces metabolic reprogramming of renal cell carcinoma. J Clin Invest 2021; 131:140522. [PMID: 32970633 DOI: 10.1172/jci140522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDClear cell renal cell carcinoma (ccRCC) is the most common histologically defined renal cancer. However, it is not a uniform disease and includes several genetic subtypes with different prognoses. ccRCC is also characterized by distinctive metabolic reprogramming. Tobacco smoking (TS) is an established risk factor for ccRCC, with unknown effects on tumor pathobiology.METHODSWe investigated the landscape of ccRCCs and paired normal kidney tissues using integrated transcriptomic, metabolomic, and metallomic approaches in a cohort of white males who were long-term current smokers (LTS) or were never smokers (NS).RESULTSAll 3 Omics domains consistently identified a distinct metabolic subtype of ccRCCs in LTS, characterized by activation of oxidative phosphorylation (OXPHOS) coupled with reprogramming of the malate-aspartate shuttle and metabolism of aspartate, glutamate, glutamine, and histidine. Cadmium, copper, and inorganic arsenic accumulated in LTS tumors, showing redistribution among intracellular pools, including relocation of copper into the cytochrome c oxidase complex. A gene expression signature based on the LTS metabolic subtype provided prognostic stratification of The Cancer Genome Atlas ccRCC tumors that was independent of genomic alterations.CONCLUSIONThe work identified the TS-related metabolic subtype of ccRCC with vulnerabilities that can be exploited for precision medicine approaches targeting metabolic pathways. The results provided rationale for the development of metabolic biomarkers with diagnostic and prognostic applications using evaluation of OXPHOS status. The metallomic analysis revealed the role of disrupted metal homeostasis in ccRCC, highlighting the importance of studying effects of metals from e-cigarettes and environmental exposures.FUNDINGDepartment of Defense, Veteran Administration, NIH, ACS, and University of Cincinnati Cancer Institute.
Collapse
Affiliation(s)
- James Reigle
- Department of Cancer Biology and.,Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Dina Secic
- Department of Cancer Biology and.,Agilent Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Collin Wetzel
- Department of Cancer Biology and.,Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA
| | - Behrouz Shamsaei
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Yuanwei Zang
- Department of Cancer Biology and.,Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiang Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, and
| | | | | | - Yongzhen Zhang
- Department of Cancer Biology and.,Department of Urology, Qilu Hospital, Shandong University, Jinan, China
| | - Charuhas V Thakar
- Division of Nephrology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Cincinnati Veteran Affairs Medical Center, Department of Veterans Affairs, Cincinnati, Ohio, USA
| | - Krishnanath Gaitonde
- Division of Nephrology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Urology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Abhinav Sidana
- Division of Urology, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Hai Bui
- Cincinnati Veteran Affairs Medical Center, Department of Veterans Affairs, Cincinnati, Ohio, USA
| | | | - Qing Zhang
- Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, UNC-Chapel Hill, North Carolina, USA
| | - Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.,Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Mario Medvedovic
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | - Julio A Landero Figueroa
- Agilent Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA.,Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio, USA
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology and.,Cincinnati Veteran Affairs Medical Center, Department of Veterans Affairs, Cincinnati, Ohio, USA.,Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Qi Y, Ma L, Naeem S, Gu X, Chao X, Yuan C, Huang D. Pb induced mitochondrial fission of fibroblast cells via ATM activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126177. [PMID: 34492951 DOI: 10.1016/j.jhazmat.2021.126177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/19/2021] [Accepted: 05/17/2021] [Indexed: 06/13/2023]
Abstract
Previous study showed that lead (Pb) could induce ATM-dependent mitophagy. However, whether Pb has any impact on mitochondrial fusion and fission, the upstream events of mitophagy, and how ATM connects to these processes remain unclear. In this study, we found that Pb can disrupt mitochondrial network morphology as indicated by increased percentage of shortened mitochondria and by decreased mitochondrial footprints. Correspondingly, the expression of fission protein Drp1 and its association with mitochondrial marker Hsp60 were significantly increased, while those of fusion proteins Mfn2 and Opa1 and their co-localization with Hsp60 were drastically attenuated. Notably, the expression of p-Drp1 (Ser616) and its translocation to mitochondria were dramatically elevated. Moreover, a small amount of ATM could be detected in the cytoplasm around mitochondria in response to Pb, and the co-localization of p-ATM (Ser1981) with Drp1 and p-Drp1 (Ser616) was obviously increased while its co-localization with Mfn2 and Opa1 was dramatically decreased. Furthermore, siRNA silencing of ATM evidently promoted greater fission in response to Pb stress, indicating that ATM is involved in mitochondrial fragmentation. Our results suggest that cytoplasmic ATM is an important regulator of Pb-induced mitochondrial fission.
Collapse
Affiliation(s)
- Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lin Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xijuan Chao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Cong Yuan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Dejun Huang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
15
|
Zheng F, Chen P, Li H, Aschner M. Drp-1-Dependent Mitochondrial Fragmentation Contributes to Cobalt Chloride-Induced Toxicity in Caenorhabditis elegans. Toxicol Sci 2021; 177:158-167. [PMID: 32617571 DOI: 10.1093/toxsci/kfaa105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Excess cobalt may lead to metallosis, characterized by sensorineural hearing loss, visual, and cognitive impairment, and peripheral neuropathy. In the present study, we sought to address the molecular mechanisms of cobalt-induced neurotoxicity, using Caenorhabditis elegans as an experimental model. Exposure to cobalt chloride for 2 h significantly decreased the survival rate and lifespan in nematodes. Cobalt chloride exposure led to increased oxidative stress and upregulation of glutathione S-transferase 4. Consistently, its upstream regulator skn-1, a mammalian homolog of the nuclear factor erythroid 2-related factor 2, was activated. Among the mRNAs examined by quantitative real-time polymerase chain reactions, apoptotic activator egl-1, proapoptotic gene ced-9, autophagic (bec-1 and lgg-1), and mitochondrial fission regulator drp-1 were significantly upregulated upon cobalt exposure, concomitant with mitochondrial fragmentation, as determined by confocal microscopy. Moreover, drp-1 inhibition suppressed the cobalt chloride-induced reactive oxygen species generation, growth defects, and reduced mitochondrial fragmentation. Our novel findings suggest that the acute toxicity of cobalt is mediated by mitochondrial fragmentation and drp-1 upregulation.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
16
|
Chong H, Tan C, Fang S, Chen X, Tao Q, Yuan X, Li J, Zhai C, Fei C, Yang D, Fan H, Shao H, Qin A, Wang G, Shi Z, Z'hang T, Yao H, Li H, Wang C. BODIPY-Appended Pt(II) Complexes with High Toxicities and Anti-chemoresistance Performances in a Cisplatin Resistant In Vivo Model. Inorg Chem 2021; 60:10047-10055. [PMID: 34142816 DOI: 10.1021/acs.inorgchem.1c01471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two novel fluorophore (BODIPY)-bearing complexes, pyriplatin (mCBP) and pyrimidine-chelated cisplatin (dCBP), were synthesized and characterized. The additional BODIPY-pyridine/pyridimine motifs of the two Pt(II) complexes resulted in stronger interactions with DNA in comparison with those of cisplatin. mCBP and cisplatin caused relative decreases in life span and body length in a cisplatin resistant in vivo model, N2 (wild-type) Caenorhabditis elegans. In contrast, dCBP resulted in a dramatic reduction in the two physiological parameters in N2 C. elegans, indicating high toxicity and sensitivity. The resistance factors (RF) of cisplatin, mCBP, and dCBP were determined to be 2.46, 1.04, and 0.91, respectively. The increasing RF folds for mCBP and dCBP against cisplatin were 2.36 and 2.70, respectively. This suggested they were featured with improved anti-chemoresistance capabilities. It is noteworthy that dCBP showed lowest lethal concentration (LC50) values of 0.56 and 0.61 mM in cisplatin resistant and sensitive in vivo models, respectively. Upregulation of several evolutionary conservation genes that regulate cisplatin chemoresistance through cisplatin effluxing, the DNA damage response, the unfolded protein response, and detoxification (asna-1, parp-1, enpl-1, and skn-1) was observed upon exposure to cisplatin but not to mCBP and dCBP. This could explain the improved anti-chemoresistance performances of synthesized Pt(II) complexes.
Collapse
Affiliation(s)
- Hui Chong
- Department of Chemical and Chemical Engineering, Yangzhou University, Si-Wang-Ting Road, No. 180, Yangzhou, Jiangsu 225009, China
| | - Chuan Tan
- Department of Chemical and Chemical Engineering, Yangzhou University, Si-Wang-Ting Road, No. 180, Yangzhou, Jiangsu 225009, China
| | - Siyu Fang
- Department of Chemical and Chemical Engineering, Yangzhou University, Si-Wang-Ting Road, No. 180, Yangzhou, Jiangsu 225009, China
| | - Xichen Chen
- Analysis Centre, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Qi Tao
- Department of Chemical and Chemical Engineering, Yangzhou University, Si-Wang-Ting Road, No. 180, Yangzhou, Jiangsu 225009, China
| | - Xiaohui Yuan
- Department of Chemical and Chemical Engineering, Yangzhou University, Si-Wang-Ting Road, No. 180, Yangzhou, Jiangsu 225009, China
| | - Jinzhi Li
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Cunhui Zhai
- Department of Chemical and Chemical Engineering, Yangzhou University, Si-Wang-Ting Road, No. 180, Yangzhou, Jiangsu 225009, China
| | - Chengxin Fei
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College (Institute of Translational Medicine), Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Di Yang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College (Institute of Translational Medicine), Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hongying Fan
- Testing Center of Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hongxia Shao
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Aijian Qin
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Guoxiu Wang
- School of Mathematical and Physical Sciences, University of Technology Sydney, City Campus, Broadway, Sydney, NSW 2007, Australia
| | - Zhonghua Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Care Hospital, Analysis Centre, Women's Hospital of Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Ting Z'hang
- Department of Clinical Laboratory, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu 211166, China
| | - Hang Yao
- Department of Chemical and Chemical Engineering, Yangzhou University, Si-Wang-Ting Road, No. 180, Yangzhou, Jiangsu 225009, China
| | - Hualing Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College (Institute of Translational Medicine), Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chengyin Wang
- Testing Center of Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
17
|
Hershberger KA, Rooney JP, Turner EA, Donoghue LJ, Bodhicharla R, Maurer LL, Ryde IT, Kim JJ, Joglekar R, Hibshman JD, Smith LL, Bhatt DP, Ilkayeva OR, Hirschey MD, Meyer JN. Early-life mitochondrial DNA damage results in lifelong deficits in energy production mediated by redox signaling in Caenorhabditis elegans. Redox Biol 2021; 43:102000. [PMID: 33993056 PMCID: PMC8134077 DOI: 10.1016/j.redox.2021.102000] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
The consequences of damage to the mitochondrial genome (mtDNA) are poorly understood, although mtDNA is more susceptible to damage resulting from some genotoxicants than nuclear DNA (nucDNA), and many environmental toxicants target the mitochondria. Reports from the toxicological literature suggest that exposure to early-life mitochondrial damage could lead to deleterious consequences later in life (the “Developmental Origins of Health and Disease” paradigm), but reports from other fields often report beneficial (“mitohormetic”) responses to such damage. Here, we tested the effects of low (causing no change in lifespan) levels of ultraviolet C (UVC)-induced, irreparable mtDNA damage during early development in Caenorhabditis elegans. This exposure led to life-long reductions in mtDNA copy number and steady-state ATP levels, accompanied by increased oxygen consumption and altered metabolite profiles, suggesting inefficient mitochondrial function. Exposed nematodes were also developmentally delayed, reached smaller adult size, and were rendered more susceptible to subsequent exposure to chemical mitotoxicants. Metabolomic and genetic analysis of key signaling and metabolic pathways supported redox and mitochondrial stress-response signaling during early development as a mechanism for establishing these persistent alterations. Our results highlight the importance of early-life exposures to environmental pollutants, especially in the context of exposure to chemicals that target mitochondria. Early life mtDNA damage led to lifelong deficits in mitochondrial function. C. elegans developed slowly and were sensitive to chemical exposures as adults. Redox signaling is a mechanism that establishes these persistent alterations. Data are consistent with the Developmental Origins of Health and Disease model.
Collapse
Affiliation(s)
- Kathleen A Hershberger
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - John P Rooney
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Elena A Turner
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Lauren J Donoghue
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Rakesh Bodhicharla
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Laura L Maurer
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Ian T Ryde
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Jina J Kim
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Rashmi Joglekar
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | - Jonathan D Hibshman
- Duke University Department of Biology and University Program in Genetics and Genomics, Durham, NC, USA
| | - Latasha L Smith
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA
| | | | | | | | - Joel N Meyer
- Duke University, Nicholas School of the Environment, Integrated Toxicology and Environmental Health Program, Durham, NC, USA.
| |
Collapse
|
18
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
19
|
Leuthner TC, Hartman JH, Ryde IT, Meyer JN. PCR-Based Determination of Mitochondrial DNA Copy Number in Multiple Species. Methods Mol Biol 2021; 2310:91-111. [PMID: 34096001 DOI: 10.1007/978-1-0716-1433-4_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitochondrial DNA (mtDNA) copy number is a critical component of overall mitochondrial health. In this chapter, we describe methods for simultaneous isolation of mtDNA and nuclear DNA (nucDNA), and measurement of their respective copy numbers using quantitative PCR. Methods differ depending on the species and cell type of the starting material, and availability of specific PCR reagents. We also briefly describe factors that affect mtDNA copy number and discuss caveats to its use as a biomarker.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Ian T Ryde
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
| |
Collapse
|
20
|
Bora S, Vardhan GSH, Deka N, Khataniar L, Gogoi D, Baruah A. Paraquat exposure over generation affects lifespan and reproduction through mitochondrial disruption in C. elegans. Toxicology 2020; 447:152632. [PMID: 33197508 DOI: 10.1016/j.tox.2020.152632] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Paraquat (methyl viologen), is a non-selective contact herbicide and well known mitochondrial toxicant. Mitochondria are the center of cellular metabolism, and involved in the development, lifespan, and reproduction of an organism. Mitochondria are dynamic organelles that are inherited maternally through the germline and carry multiple copies of their own genome (mtDNA). It is important to understand the effects of acute and chronic stress caused by mitochondrial toxicants over multiple generations at the cellular and organism levels. Using the model nematode C. elegans, we show that acute and chronic exposure to paraquat affects reproduction, longevity, gene expression, and mitochondrial physiology. Acute exposure to paraquat in N2 (wild type) causes induction of mitochondrial unfolded protein response (mtUPR), increased expression of mitochondrial superoxide dismutase, decreased mitochondrial membrane potential (Δψm), a dose-dependent progression from linear to fragmented mitochondria, and dose-dependent changes in longevity. Chronic exposure to a low dose of paraquat (0.035 mM) over multiple generations in N2 causes a progressive decline of fertility, leading to complete loss of fertile embryo production by the third generation. The mutation in CEP-1 [cep-1(gk138)], a key regulator of stress-induced apoptosis in the germline, causes increased sensitivity to chronic paraquat relative to N2 with no fertile embryo production beyond the second generation. Whereas, mitochondrial electron transport chain (complex III) mutant [isp-1(qm150)], which display constitutive activation of mtUPR showed increased tolerance and produced fertile embryo out to the fourth generation. The N2, cep-1(gk138), and isp-1(qm150) strain's lifespan over multiple generations exposed to chronic paraquat were measured. Fertility and lifespan data together indicate a trade-off between reproduction and somatic maintenance during chronic paraquat exposure. We have proposed that mitochondrial signaling, dynamics, and CEP-1 mediated germline apoptosis is involved in this trade-off.
Collapse
Affiliation(s)
- Snigdha Bora
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, India
| | | | - Nikhita Deka
- DBT-NECAB, Assam Agricultural University, Jorhat-13, India
| | - Lipika Khataniar
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, India
| | - Debajani Gogoi
- DBT-NECAB, Assam Agricultural University, Jorhat-13, India
| | - Aiswarya Baruah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat-13, India; DBT-NECAB, Assam Agricultural University, Jorhat-13, India.
| |
Collapse
|
21
|
Yang X, Zhang R, Nakahira K, Gu Z. Mitochondrial DNA Mutation, Diseases, and Nutrient-Regulated Mitophagy. Annu Rev Nutr 2020; 39:201-226. [PMID: 31433742 DOI: 10.1146/annurev-nutr-082018-124643] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A wide spectrum of human diseases, including cancer, neurodegenerative diseases, and metabolic disorders, have been shown to be associated with mitochondrial dysfunction through multiple molecular mechanisms. Mitochondria are particularly susceptible to nutrient deficiencies, and nutritional intervention is an essential way to maintain mitochondrial homeostasis. Recent advances in genetic manipulation and next-generation sequencing reveal the crucial roles of mitochondrial DNA (mtDNA) in various pathophysiological conditions. Mitophagy, a term coined to describe autophagy that targets dysfunctional mitochondria, has emerged as an important cellular process to maintain mitochondrial homeostasis and has been shown to be regulated by various nutrients and nutritional stresses. Given the high prevalence of mtDNA mutations in humans and their impact on mitochondrial function, it is important to investigate the mechanisms that regulate mtDNA mutation. Here, we discuss mitochondrial genetics and mtDNA mutations and their implications for human diseases. We also examine the role of mitophagy as a therapeutic target, highlighting how nutrients may eliminate mtDNA mutations through mitophagy.
Collapse
Affiliation(s)
- Xuan Yang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Ruoyu Zhang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| | - Kiichi Nakahira
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA; , ,
| |
Collapse
|
22
|
Machiela E, Liontis T, Dues DJ, Rudich PD, Traa A, Wyman L, Kaufman C, Cooper JF, Lew L, Nadarajan S, Senchuk MM, Van Raamsdonk JM. Disruption of mitochondrial dynamics increases stress resistance through activation of multiple stress response pathways. FASEB J 2020; 34:8475-8492. [PMID: 32385951 PMCID: PMC7313680 DOI: 10.1096/fj.201903235r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
Abstract
Mitochondria are dynamic organelles that can change shape and size depending on the needs of the cell through the processes of mitochondrial fission and fusion. In this work, we investigated the role of mitochondrial dynamics in organismal stress response. By using C. elegans as a genetic model, we could visualize mitochondrial morphology in a live organism with well‐established stress assays and well‐characterized stress response pathways. We found that disrupting mitochondrial fission (DRP1/drp‐1) or fusion (OPA1/eat‐3, MFN/fzo‐1) genes caused alterations in mitochondrial morphology that impacted both mitochondrial function and physiologic rates. While both mitochondrial fission and mitochondrial fusion mutants showed increased sensitivity to osmotic stress and anoxia, surprisingly we found that the mitochondrial fusion mutants eat‐3 and fzo‐1 are more resistant to both heat stress and oxidative stress. In exploring the mechanism of increased stress resistance, we found that disruption of mitochondrial fusion genes resulted in the upregulation of multiple stress response pathways. Overall, this work demonstrates that disrupting mitochondrial dynamics can have opposite effects on resistance to different types of stress. Our results suggest that disruption of mitochondrial fusion activates multiple stress response pathways that enhance resistance to specific stresses.
Collapse
Affiliation(s)
- Emily Machiela
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Thomas Liontis
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Leslie Wyman
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Corah Kaufman
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jason F Cooper
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Leira Lew
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | | | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Zebrafish CYP1A expression in transgenic Caenorhabditis elegans protects from exposures to benzo[a]pyrene and a complex polycyclic aromatic hydrocarbon mixture. Toxicology 2020; 440:152473. [PMID: 32360973 DOI: 10.1016/j.tox.2020.152473] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/19/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental toxicants primarily produced during incomplete combustion; some are carcinogens. PAHs can be safely metabolized or, paradoxically, bioactivated via specific cytochrome P450 (CYP) enzymes to more reactive metabolites, some of which can damage DNA and proteins. Among the CYP isoforms implicated in PAH metabolism, CYP1A enzymes have been reported to both sensitize and protect from PAH toxicity. To clarify the role of CYP1A in PAH toxicity, we generated transgenic Caenorhabditis elegans that express CYP1A at a basal (but not inducible) level. Because this species does not normally express any CYP1 family enzyme, this approach permitted a test of the role of basally expressed CYP1A in PAH toxicity. We exposed C. elegans at different life stages to either the PAH benzo[a]pyrene (BaP) alone, or a real-world mixture dominated by PAHs extracted from the sediment of a highly contaminated site on the Elizabeth River (VA, USA). This site, the former Atlantic Wood Industries, was declared a Superfund site due to coal tar creosote contamination that caused very high levels (in the [mg/mL] range) of high molecular weight PAHs within the sediments. We demonstrate that CYP1A protects against BaP-induced growth delay, reproductive toxicity, and reduction of steady state ATP levels. Lack of sensitivity of a DNA repair (Nucleotide Excision Repair)-deficient strain suggested that CYP1A did not produce significant levels of DNA-reactive metabolites from BaP. The protective effects of CYP1A in Elizabeth River sediment extract (ERSE)-exposed nematodes were less pronounced than those seen in BaP-exposed nematodes; CYP1A expression protected against ERSE-induced reduction of steady-state ATP levels, but not other outcomes of exposure to sediment extracts. Overall, we find that in C. elegans, a basal level of CYP1A activity is protective against the examined PAH exposures.
Collapse
|
24
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
25
|
Huang W, Cao Z, Yao Q, Ji Q, Zhang J, Li Y. Mitochondrial damage are involved in Aflatoxin B 1-induced testicular damage and spermatogenesis disorder in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:135077. [PMID: 31733399 DOI: 10.1016/j.scitotenv.2019.135077] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 (AFB1) is an unavoidable environmental pollutants, which seriously endangers human and animal health. AFB1 has male reproductive toxicity, yet the underlying mechanisms remain inconclusive. Mitochondra are a kind of crucial organelle for maintaining spermatogenesis in testis. Thus, we hypothesized that AFB1 can impair mitochondria to aggravate testicular damage and spermatogenesis disorder. To verify this hypothesis, 48 male mice were intragastrically administered with 0, 0.375, 0.75 or 1.5 mg/kg body weight AFB1 for 30 days, respectively. In this study, we found AFB1 caused testicular histopathological lesions and spermatogenesis abnormalities, with the elevation of oxidative stress (increased H2O2, whereas decreased SOD and GSH). Significant mitochondria structure damage of germ cells and Leydig cells, MMP loss, ATP contents reduction, and inhibited activities of mitochondrial complexes I-IV in mice testis were found in AFB1 treatment groups. Besides, AFB1 inhibited mitochondrial biogenesis and mitochondrial dynamics, presenting as the decreased mRNA and protein expressions of PGC-1α, Nrf1, Tfam, Drp1, Fis1, Mfn1 and Opa1. The results revealed that the mitochondrial damage were involved in AFB1-induced testicular damage and spermatogenesis disorder, providing a considerable direction to clarify potential mechanisms of AFB1 reproductive toxicity.
Collapse
Affiliation(s)
- Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zheng Cao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qiucheng Yao
- College of Agriculture, Guangdong Ocean University, Zhanjiang 524000, China
| | - Qiang Ji
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
26
|
Dreier DA, Mello D, Meyer J, Martyniuk CJ. Linking Mitochondrial Dysfunction to Organismal and Population Health in the Context of Environmental Pollutants: Progress and Considerations for Mitochondrial Adverse Outcome Pathways. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1625-1634. [PMID: 31034624 PMCID: PMC6961808 DOI: 10.1002/etc.4453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Mitochondria are key targets of many environmental contaminants, because specific chemicals can interact directly with mitochondrial proteins, lipids, and ribonucleic acids. These direct interactions serve as molecular initiating events that impede adenosine triphosphate production and other critical functions that mitochondria serve within the cell (e.g., calcium and metal homeostasis, apoptosis, immune signaling, redox balance). A limited but growing number of adverse outcome pathways (AOPs) have been proposed to associate mitochondrial dysfunction with effects at organismal and population levels. These pathways involve key events such as altered membrane potential, mitochondrial fission/fusion, and mitochondrial DNA damage, among others. The present critical review and analysis reveals current progress on AOPs involving mitochondrial dysfunction, and, using a network-based computational approach, identifies the localization of mitochondrial molecular initiating events and key events within multiple existing AOPs. We also present 2 case studies, the first examining the interaction between mitochondria and immunotoxicity, and the second examining the role of early mitochondrial dysfunction in the context of behavior (i.e., locomotor activity). We discuss limitations in our current understanding of mitochondrial AOPs and highlight opportunities for clarifying their details. Advancing our knowledge of key event relationships within the AOP framework will require high-throughput datasets that permit the development and testing of chemical-agnostic AOPs, as well as high-resolution research that will enhance the mechanistic testing and validation of these key event relationships. Given the wide range of chemicals that affect mitochondria, and the centrality of energy production and signaling to ecologically important outcomes such as pathogen defense, homeostasis, growth, and reproduction, a better understanding of mitochondrial AOPs is expected to play a significant, if not central, role in environmental toxicology. Environ Toxicol Chem 2019;38:1625-1634. © 2019 SETAC.
Collapse
Affiliation(s)
- David A. Dreier
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
| | - Danielle Mello
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328 USA
| | - Joel Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328 USA
| | - Christopher J. Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611 USA
- University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL, 32611 USA
- Address correspondence to
| |
Collapse
|
27
|
Miao X, Li W, Niu B, Li J, Sun J, Qin M, Zhou Z. Mitochondrial dysfunction in endothelial cells induced by airborne fine particulate matter (<2.5 μm). J Appl Toxicol 2019; 39:1424-1432. [DOI: 10.1002/jat.3828] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/05/2019] [Accepted: 05/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaoyan Miao
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Wenke Li
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Bingyu Niu
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Jiangshuai Li
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Jingjie Sun
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Mengnan Qin
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| | - Zhixiang Zhou
- College of Life Science and BioengineeringBeijing University of Technology Beijing China
| |
Collapse
|
28
|
Hartman JH, Gonzalez-Hunt C, Hall SM, Ryde IT, Caldwell KA, Caldwell GA, Meyer JN. Genetic Defects in Mitochondrial Dynamics in Caenorhabditis elegans Impact Ultraviolet C Radiation- and 6-hydroxydopamine-Induced Neurodegeneration. Int J Mol Sci 2019; 20:ijms20133202. [PMID: 31261893 PMCID: PMC6651461 DOI: 10.3390/ijms20133202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Background: Parkinson’s disease (PD) is one of the most common neurodegenerative disorders involving devastating loss of dopaminergic neurons in the substantia nigra. Early steps in PD pathogenesis include mitochondrial dysfunction, and mutations in mitochondrial genes have been linked to familial forms of the disease. However, low penetrance of mutations indicates a likely important role for environmental factors in PD risk through gene by environment interactions. Herein, we study how genetic deficiencies in mitochondrial dynamics processes including fission, fusion, and mitophagy interact with environmental exposures to impact neurodegeneration. Methods: We utilized the powerful model organism Caenorhabditis elegans to study ultraviolet C radiation (UVC)- and 6-hydroxydopamine-induced degeneration of fluorescently-tagged dopaminergic neurons in the background of fusion deficiency (MFN1/2 homolog, fzo-1), fission deficiency (DMN1L homolog, drp-1), and mitochondria-specific autophagy (mitophagy) deficiency (PINK1 and PRKN homologs, pink-1 and pdr-1). Results: Overall, we found that deficiency in either mitochondrial fusion or fission sensitizes nematodes to UVC exposure (used to model common environmental pollutants) but protects from 6-hydroxydopamine-induced neurodegeneration. By contrast, mitophagy deficiency makes animals more sensitive to these stressors with an interesting exception—pink-1 deficiency conferred remarkable protection from 6-hydroxydopamine. We found that this protection could not be explained by compensatory antioxidant gene expression in pink-1 mutants or by differences in mitochondrial morphology. Conclusions: Together, our results support a strong role for gene by environment interactions in driving dopaminergic neurodegeneration and suggest that genetic deficiency in mitochondrial processes can have complex effects on neurodegeneration.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | | | - Samantha M Hall
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Ian T Ryde
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
29
|
Zdraljevic S, Fox BW, Strand C, Panda O, Tenjo FJ, Brady SC, Crombie TA, Doench JG, Schroeder FC, Andersen EC. Natural variation in C. elegans arsenic toxicity is explained by differences in branched chain amino acid metabolism. eLife 2019; 8:40260. [PMID: 30958264 PMCID: PMC6453569 DOI: 10.7554/elife.40260] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 03/26/2019] [Indexed: 12/29/2022] Open
Abstract
We find that variation in the dbt-1 gene underlies natural differences in Caenorhabditis elegans responses to the toxin arsenic. This gene encodes the E2 subunit of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, a core component of branched-chain amino acid (BCAA) metabolism. We causally linked a non-synonymous variant in the conserved lipoyl domain of DBT-1 to differential arsenic responses. Using targeted metabolomics and chemical supplementation, we demonstrate that differences in responses to arsenic are caused by variation in iso-branched chain fatty acids. Additionally, we show that levels of branched chain fatty acids in human cells are perturbed by arsenic treatment. This finding has broad implications for arsenic toxicity and for arsenic-focused chemotherapeutics across human populations. Our study implicates the BCKDH complex and BCAA metabolism in arsenic responses, demonstrating the power of C. elegans natural genetic diversity to identify novel mechanisms by which environmental toxins affect organismal physiology. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Stefan Zdraljevic
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Bennett William Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | | | - Oishika Panda
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States.,The Buck Institute for Research on Aging, Novato, United States
| | - Francisco J Tenjo
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Shannon C Brady
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Tim A Crombie
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, United States
| | - Erik C Andersen
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, United States.,Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, United States
| |
Collapse
|
30
|
Hibshman JD, Leuthner TC, Shoben C, Mello DF, Sherwood DR, Meyer JN, Baugh LR. Nonselective autophagy reduces mitochondrial content during starvation in Caenorhabditis elegans. Am J Physiol Cell Physiol 2018; 315:C781-C792. [PMID: 30133321 PMCID: PMC6336938 DOI: 10.1152/ajpcell.00109.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Starvation significantly alters cellular physiology, and signs of aging have been reported to occur during starvation. Mitochondria are essential to the regulation of cellular energetics and aging. We sought to determine whether mitochondria exhibit signs of aging during starvation and whether quality control mechanisms regulate mitochondrial physiology during starvation. We describe effects of starvation on mitochondria in the first and third larval stages of the nematode Caenorhabditis elegans. When starved, C. elegans larvae enter developmental arrest. We observed fragmentation of the mitochondrial network, a reduction in mitochondrial DNA (mtDNA) copy number, and accumulation of DNA damage during starvation-induced developmental arrest. Mitochondrial function was also compromised by starvation. Starved worms had lower basal, maximal, and ATP-linked respiration. These observations are consistent with reduced mitochondrial quality, similar to mitochondrial phenotypes during aging. Using pharmacological and genetic approaches, we found that worms deficient for autophagy were short-lived during starvation and recovered poorly from extended starvation, indicating sensitivity to nutrient stress. Autophagy mutants unc-51/Atg1 and atg-18/Atg18 maintained greater mtDNA content than wild-type worms during starvation, suggesting that autophagy promotes mitochondrial degradation during starvation. unc-51 mutants also had a proportionally smaller reduction in oxygen consumption rate during starvation, suggesting that autophagy also contributes to reduced mitochondrial function. Surprisingly, mutations in genes involved in mitochondrial fission and fusion as well as selective mitophagy of damaged mitochondria did not affect mitochondrial content during starvation. Our results demonstrate the profound influence of starvation on mitochondrial physiology with organismal consequences, and they show that these physiological effects are influenced by autophagy.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- 1Department of Biology, Duke University, Durham, North Carolina,2University Program in Genetics and Genomics, Duke University, Durham, North Carolina,3Department of Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Tess C. Leuthner
- 4Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Chelsea Shoben
- 1Department of Biology, Duke University, Durham, North Carolina
| | - Danielle F. Mello
- 4Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - David R. Sherwood
- 1Department of Biology, Duke University, Durham, North Carolina,2University Program in Genetics and Genomics, Duke University, Durham, North Carolina
| | - Joel N. Meyer
- 4Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - L. Ryan Baugh
- 1Department of Biology, Duke University, Durham, North Carolina,2University Program in Genetics and Genomics, Duke University, Durham, North Carolina
| |
Collapse
|
31
|
Wang Y, Hu SB, Wang MR, Yao RW, Wu D, Yang L, Chen LL. Genome-wide screening of NEAT1 regulators reveals cross-regulation between paraspeckles and mitochondria. Nat Cell Biol 2018; 20:1145-1158. [DOI: 10.1038/s41556-018-0204-2] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/22/2018] [Indexed: 01/26/2023]
|
32
|
Wang Y, Zhao H, Shao Y, Liu J, Li J, Luo L, Xing M. Copper (II) and/or arsenite-induced oxidative stress cascades apoptosis and autophagy in the skeletal muscles of chicken. CHEMOSPHERE 2018; 206:597-605. [PMID: 29778937 DOI: 10.1016/j.chemosphere.2018.05.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Arsenic (As) is a ubiquitous environmental toxin and robust inducer of oxidative stress (OxS). Copper (Cu) is an essential microelement, which participates in OxS as a cofactor for certain enzymes, with narrow optimal range between essential and toxic concentrations. However, their effects are rarely studied in chicken skeletal muscles, which have soaring per capita consumption andare susceptible to oxidative damage. In the present study, we demonstrated that the administration of copper sulfate (300 mg kg-1) or arsenite (30 mg kg-1) individually or their co-administration leads to varying degrees of OxS in the skeletal muscles of chickens. Corresponding to the protein expression pattern, the mRNA levels of caspase, B-cell lymphoma-2 (Bcl-2) families, and autophagy-related genes were also compromised in the experimental groups, indicating the involvement of both apoptotic and autophagic cell death. Additionally, rampant mitochondrial fission caused the vicious cycle between imbalanced mitochondrial dynamics and OxS, thus tethering intracellular homeostasis. The abovementioned muscle damage and index anomalies were time dependent, and more deteriorated effects were observed in Cu2+ and arsenite co-administered groups than those in groups administered Cu2+ and arsenite alone. Intriguingly, in the studied skeletal muscles, namely wing biceps brachii and leg gastrocnemius, there were conspicuous differences in oxidative toxicity susceptibility, which needs further study. The present study showed that Cu and/or As induce oxidative damage in chicken skeletal muscles and discussed its mechanism in terms of apoptosis, autophagy, and mitochondrial dynamics, thus voicing concerns about poultry breeding areas cross-contaminated with Cu2+ and arsenite.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yizhi Shao
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Juanjuan Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Jinglun Li
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Liyang Luo
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
33
|
Zhang JY, Wang M, Wang RY, Sun X, Du YY, Ye JX, Sun GB, Sun XB. Salvianolic Acid A Ameliorates Arsenic Trioxide-Induced Cardiotoxicity Through Decreasing Cardiac Mitochondrial Injury and Promotes Its Anticancer Activity. Front Pharmacol 2018; 9:487. [PMID: 29867492 PMCID: PMC5954107 DOI: 10.3389/fphar.2018.00487] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
Arsenic trioxide (ATO) is used as a therapeutic agent in the treatment of acute promyelocytic leukemia (APL). The therapeutic use of arsenic is limited due to its severe cardiovascular side effects. The cardio-protective effect of salvianolic acid A (Sal A) against ATO cardiotoxicity has been reported. However, the distinct role of the mitochondria in the cardio-protection of Sal A is not understood. The aim of this study was to determine whether Sal A preconditioning protects against ATO-induced heart injury by maintaining cardiac mitochondrial function and biogenesis. For the in vivo study, BALB/c mice were treated with ATO and/or Sal A. For the in vitro study, we determined the effects of ATO and/or Sal A in H9c2 cardiomyocytes. Our results showed that ATO induced mitochondrial structural damage, abnormal mitochondrial permeability transition pore (mPTP) opening, overproduction of mitochondrial reactive oxygen species (ROS), and decreased the ATP content. Sal A pretreatment alleviated the ATO-induced mitochondrial structural and functional damage. In this study, ATO decreased the expression level of the peroxisome proliferator activator receptor gamma-coactivator 1 (PGC-1α) and disrupted the normal division and fusion of mitochondria. Sal A pretreatment improved the dynamic balance of the damaged mitochondrial biogenesis. Moreover, the combination treatment of Sal A and ATO significantly enhanced the ATO-induced cytotoxicity of SGC7901, HepaRG, K562 and HL60 cells in vitro. These results indicated that Sal A protects the heart from ATO-induced injury, which correlates with the modulation of mitochondrial function, and the maintenance of normal mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jing-Yi Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Rui-Ying Wang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Yu-Yang Du
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Jing-Xue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Beijing, China
| |
Collapse
|
34
|
Kim H, Perentis RJ, Caldwell GA, Caldwell KA. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson's models. Cell Death Dis 2018; 9:555. [PMID: 29748634 PMCID: PMC5945629 DOI: 10.1038/s41419-018-0619-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial dynamics in DA neurodegeneration. Moreover, given the largely undefined environmental components of PD etiology, these results highlight a response to an environmental factor that defines distinct mechanisms underlying a potential contributor to the progressive DA neurodegeneration observed in PD.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Rylee J Perentis
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
35
|
Jacquet A, Cottet-Rousselle C, Arnaud J, Julien Saint Amand K, Ben Messaoud R, Lénon M, Demeilliers C, Moulis JM. Mitochondrial Morphology and Function of the Pancreatic β-Cells INS-1 Model upon Chronic Exposure to Sub-Lethal Cadmium Doses. TOXICS 2018; 6:E20. [PMID: 29565305 PMCID: PMC6027415 DOI: 10.3390/toxics6020020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 03/12/2018] [Accepted: 03/20/2018] [Indexed: 11/29/2022]
Abstract
The impact of chronic cadmium exposure and slow accumulation on the occurrence and development of diabetes is controversial for human populations. Islets of Langerhans play a prominent role in the etiology of the disease, including by their ability to secrete insulin. Conversion of glucose increase into insulin secretion involves mitochondria. A rat model of pancreatic β-cells was exposed to largely sub-lethal levels of cadmium cations applied for the longest possible time. Cadmium entered cells at concentrations far below those inducing cell death and accumulated by factors reaching several hundred folds the basal level. The mitochondria reorganized in response to the challenge by favoring fission as measured by increased circularity at cadmium levels already ten-fold below the median lethal dose. However, the energy charge and respiratory flux devoted to adenosine triphosphate synthesis were only affected at the onset of cellular death. The present data indicate that mitochondria participate in the adaptation of β-cells to even a moderate cadmium burden without losing functionality, but their impairment in the long run may contribute to cellular dysfunction, when viability and β-cells mass are affected as observed in diabetes.
Collapse
Affiliation(s)
- Adeline Jacquet
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Cécile Cottet-Rousselle
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Josiane Arnaud
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
- Biochemistry, Molecular Biology and Environmental Toxicology (SB2TE), Grenoble University Hospital, CS 10217, 38043 Grenoble, France.
| | - Kevin Julien Saint Amand
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Raoua Ben Messaoud
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Marine Lénon
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Christine Demeilliers
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
| | - Jean-Marc Moulis
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Inserm, Universite Grenoble Alpes, 38000 Grenoble, France.
- CEA-Grenoble, Bioscience and Biotechnology Institute (BIG), 38054 Grenoble, France.
| |
Collapse
|
36
|
C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol 2018; 354:126-135. [PMID: 29550512 DOI: 10.1016/j.taap.2018.03.016] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/28/2018] [Accepted: 03/12/2018] [Indexed: 12/22/2022]
Abstract
Due to many advantages Caenorhabditis elegans (C. elegans) has become a preferred model of choice in many fields, including neurodevelopmental toxicity studies. This review discusses the benefits of using C. elegans as an alternative to mammalian systems and gives examples of the uses of the nematode in evaluating the effects of major known neurodevelopmental toxins, including manganese, mercury, lead, fluoride, arsenic and organophosphorus pesticides. Reviewed data indicates numerous similarities with mammals in response to these toxins. Thus, C. elegans studies have the potential to predict possible effects of developmental neurotoxicants in higher animals, and may be used to identify new molecular pathways behind neurodevelopmental disruptions, as well as new toxicants.
Collapse
|
37
|
Abstract
Recent decades have seen a rapid increase in reported toxic effects of drugs and pollutants on mitochondria. Researchers have also documented many genetic differences leading to mitochondrial diseases, currently reported to affect ∼1 person in 4,300, creating a large number of potential gene-environment interactions in mitochondrial toxicity. We briefly review this history, and then highlight cutting-edge areas of mitochondrial research including the role of mitochondrial reactive oxygen species in signaling; increased understanding of fundamental biological processes involved in mitochondrial homeostasis (DNA maintenance and mutagenesis, mitochondrial stress response pathways, fusion and fission, autophagy and biogenesis, and exocytosis); systemic effects resulting from mitochondrial stresses in specific cell types; mitochondrial involvement in immune function; the growing evidence of long-term effects of mitochondrial toxicity; mitochondrial-epigenetic cross-talk; and newer approaches to test chemicals for mitochondrial toxicity. We also discuss the potential importance of hormetic effects of mitochondrial stressors. Finally, we comment on future areas of research we consider critical for mitochondrial toxicology, including increased integration of clinical, experimental laboratory, and epidemiological (human and wildlife) studies; improved understanding of biomarkers in the human population; and incorporation of other factors that affect mitochondria, such as diet, exercise, age, and nonchemical stressors.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| | - Jessica H Hartman
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| | - Danielle F Mello
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina 27708-0328
| |
Collapse
|
38
|
van der Bliek AM, Sedensky MM, Morgan PG. Cell Biology of the Mitochondrion. Genetics 2017; 207:843-871. [PMID: 29097398 PMCID: PMC5676242 DOI: 10.1534/genetics.117.300262] [Citation(s) in RCA: 245] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/05/2017] [Indexed: 01/19/2023] Open
Abstract
Mitochondria are best known for harboring pathways involved in ATP synthesis through the tricarboxylic acid cycle and oxidative phosphorylation. Major advances in understanding these roles were made with Caenorhabditiselegans mutants affecting key components of the metabolic pathways. These mutants have not only helped elucidate some of the intricacies of metabolism pathways, but they have also served as jumping off points for pharmacology, toxicology, and aging studies. The field of mitochondria research has also undergone a renaissance, with the increased appreciation of the role of mitochondria in cell processes other than energy production. Here, we focus on discoveries that were made using C. elegans, with a few excursions into areas that were studied more thoroughly in other organisms, like mitochondrial protein import in yeast. Advances in mitochondrial biogenesis and membrane dynamics were made through the discoveries of novel functions in mitochondrial fission and fusion proteins. Some of these functions were only apparent through the use of diverse model systems, such as C. elegans Studies of stress responses, exemplified by mitophagy and the mitochondrial unfolded protein response, have also benefitted greatly from the use of model organisms. Recent developments include the discoveries in C. elegans of cell autonomous and nonautonomous pathways controlling the mitochondrial unfolded protein response, as well as mechanisms for degradation of paternal mitochondria after fertilization. The evolutionary conservation of many, if not all, of these pathways ensures that results obtained with C. elegans are equally applicable to studies of human mitochondria in health and disease.
Collapse
Affiliation(s)
- Alexander M van der Bliek
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center and Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California 90024
| | - Margaret M Sedensky
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| | - Phil G Morgan
- Department of Anesthesiology and Pain Medicine, University of Washington and Center for Developmental Therapeutics, Seattle Children's Research Institute, Washington 98101
| |
Collapse
|
39
|
Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology 2017; 391:42-53. [PMID: 28789970 PMCID: PMC5681418 DOI: 10.1016/j.tox.2017.07.019] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Tess C Leuthner
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Anthony L Luz
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| |
Collapse
|
40
|
Chen Y, Meyer JN, Hill HZ, Lange G, Condon MR, Klein JC, Ndirangu D, Falvo MJ. Role of mitochondrial DNA damage and dysfunction in veterans with Gulf War Illness. PLoS One 2017; 12:e0184832. [PMID: 28910366 PMCID: PMC5599026 DOI: 10.1371/journal.pone.0184832] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/31/2017] [Indexed: 11/22/2022] Open
Abstract
Gulf War Illness (GWI) is a chronic multi-symptom illness not currently diagnosed by standard medical or laboratory test that affects 30% of veterans who served during the 1990-1991 Gulf War. The clinical presentation of GWI is comparable to that of patients with certain mitochondrial disorders-i.e., clinically heterogeneous multisystem symptoms. Therefore, we hypothesized that mitochondrial dysfunction may contribute to both the symptoms of GWI as well as its persistence over time. We recruited 21 cases of GWI (CDC and Kansas criteria) and 7 controls to participate in this study. Peripheral blood samples were obtained in all participants and a quantitative polymerase chain reaction (QPCR) based assay was performed to quantify mitochondrial and nuclear DNA lesion frequency and mitochondrial DNA (mtDNA) copy number (mtDNAcn) from peripheral blood mononuclear cells. Samples were also used to analyze nuclear DNA lesion frequency and enzyme activity for mitochondrial complexes I and IV. Both mtDNA lesion frequency (p = 0.015, d = 1.13) and mtDNAcn (p = 0.001; d = 1.69) were elevated in veterans with GWI relative to controls. Nuclear DNA lesion frequency was also elevated in veterans with GWI (p = 0.344; d = 1.41), but did not reach statistical significance. Complex I and IV activity (p > 0.05) were similar between groups and greater mtDNA lesion frequency was associated with reduced complex I (r2 = -0.35, p = 0.007) and IV (r2 = -0.28, p < 0.01) enzyme activity. In conclusion, veterans with GWI exhibit greater mtDNA damage which is consistent with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yang Chen
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Helene Z Hill
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| | - Gudrun Lange
- Pain and Fatigue Study Center, Beth Israel Medical Center and Albert Einstein Medical Center, New York, New York, United States of America
| | - Michael R Condon
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
- Surgical Services, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Jacquelyn C Klein
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Duncan Ndirangu
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
| | - Michael J Falvo
- War Related Illness and Injury Study Center, Veterans Affairs New Jersey Health Care System, East Orange, New Jersey, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey, United States of America
| |
Collapse
|