1
|
Chen Y, Liu J, Sun Y, Li M, Fan X, Gu X. Multi-omics study reveals Shuangshen Pingfei formula regulates EETs metabolic reprogramming to exert its therapeutic effect on pulmonary fibrosis. Int Immunopharmacol 2024; 143:113275. [PMID: 39395378 DOI: 10.1016/j.intimp.2024.113275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024]
Abstract
As a clinical formula derived from Renshen Pingfei San, Shuangshen Pingfei formula (SSPF) has been used to treat pulmonary fibrosis (PF). However, its in-depth mechanism of action remains unknown. In this study, the effect of SSPF was evaluated by applying a rat model of PF caused by intratracheal drip bleomycin. To characterize the molecular changes related to PF and reveal therapeutic targets for SSPF, we performed transcriptomic and metabolomic analyses on rat lung. Finally, western blotting and qPCR experiments were used to validate the multi-omics results. As a result, a significant reduction in inflammation and fibrosis caused by BLM was observed when SSPF was administered. Widespread changes in gene expression and metabolic programming were observed in the lungs of PF rats through RNA-seq and untargeted metabolomic analysis. Combined transcriptomic and metabolomic analyses revealed the involvement of arachidonic acid (AA) metabolism pathways in PF. Further validation of AA metabolite synthase genes and protein levels showed a significant decrease in the levels of epoxyeicosatrienoic acids (EETs) synthases, including Cyp2j2, Cyp2b1, in the PF lungs. SSPF treatment regulated the above changes in gene expression and metabolic programming, particularly the regulation of EETs. This study is the first to investigate the mechanism of action of SSPF in the treatment of PF from the perspective of regulating the synthesis of EETs in AA metabolism.
Collapse
Affiliation(s)
- Yeqing Chen
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jiayi Liu
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yubo Sun
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengwen Li
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinsheng Fan
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xin Gu
- College of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Koubova K, Tauber Z, Cizkova K. Exploring the impact of sEH inhibition on intestinal cell differentiation and Colon Cancer: Insights from TPPU treatment. Toxicol Appl Pharmacol 2024; 492:117128. [PMID: 39414156 DOI: 10.1016/j.taap.2024.117128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/20/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
Inhibition of soluble epoxide hydrolase (sEH) appears to be promising for the treatment of many diseases. Studies have focused on the beneficial effects of epoxyeicosatrienoic acids (EETs), which are sEH substrates. However, our recent studies have shown that the sEH activity is crucial for the proper intestinal cell differentiation. In this recent study, we investigated the impact of TPPU, an inhibitor of sEH, on the colon cancer cell lines Caco2 and HT-29. We analysed the changes in the expression of the cytoskeletal protein ezrin and the phosphorylated protein kinase p38 (p-p38). Our results showed a decrease in ezrin expression in differentiated cells and an increase in p-p38 expression after TPPU treatment. Immunocytochemical staining revealed a higher staining intensity of p-p38 in the nuclei of HT-29 cells following TPPU treatment. Immunohistochemical staining was performed on human samples of normal colon tissue, grade 2 tumours, and embryonal/foetal tissues. The staining intensity of ezrin in tumours was reduced in the surface area compared to the crypts. Additionally, we observed the translocation of p-p38 expression from the cytoplasm to the nucleus during differentiation. The tumour samples exhibited higher levels of p-p38 in the cytoplasm, similar to normal undifferentiated tissue. To observe the disruption of the cytoskeleton after TPPU treatment, confocal microscopy was used. It was found that β-actin associated with ezrin forms clusters under the plasma membranes. All of these results are significant because sEH inhibitors are being tested in clinical trials, but they could cause an unexpected adverse effects.
Collapse
Affiliation(s)
- Katerina Koubova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic.
| |
Collapse
|
3
|
Gladkikh BP, Danilov DV, D’yachenko VS, Butov GM. 1,3-Dichloroadamantyl-Containing Ureas as Potential Triple Inhibitors of Soluble Epoxide Hydrolase, p38 MAPK and c-Raf. Int J Mol Sci 2023; 25:338. [PMID: 38203510 PMCID: PMC10779153 DOI: 10.3390/ijms25010338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Soluble epoxide hydrolase (sEH) is an enzyme involved in the metabolism of bioactive lipid signaling molecules. sEH converts epoxyeicosatrienoic acids (EET) to virtually inactive dihydroxyeicosatrienoic acids (DHET). The first acids are "medicinal" molecules, the second increase the inflammatory infiltration of cells. Mitogen-activated protein kinases (p38 MAPKs) are key protein kinases involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2). p38 MAPK signaling plays an important role in the regulation of cellular processes, especially inflammation. The proto-oncogenic serine/threonine protein kinase Raf (c-Raf) is a major component of the mitogen-activated protein kinase (MAPK) pathway: ERK1/2 signaling. Normal cellular Raf genes can also mutate and become oncogenes, overloading the activity of MEK1/2 and ERK1/2. The development of multitarget inhibitors is a promising strategy for the treatment of socially dangerous diseases. We synthesized 1,3-disubstituted ureas and diureas containing a dichloroadamantyl moiety. The results of computational methods show that soluble epoxide hydrolase inhibitors can act on two more targets in different signaling pathways of mitogen-activated protein kinases p38 MAPK and c-Raf. The two chlorine atoms in the adamantyl moiety may provide additional Cl-π interactions in the active site of human sEH. Molecular dynamics studies have shown that the stability of ligand-protein complexes largely depends on the "spacer effect." The compound containing a bridge between the chloroadamantyl fragment and the ureide group forms more stable ligand-protein complexes with sEH and p38 MAPK, which indicates a better conformational ability of the molecule in the active sites of these targets. In turn, a compound containing two chlorine atoms forms a more stable complex with c-Raf, probably due to the presence of additional halogen bonds of chlorine atoms with amino acid residues.
Collapse
Affiliation(s)
- Boris P. Gladkikh
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
| | - Dmitry V. Danilov
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
| | - Vladimir S. D’yachenko
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University (VSTU), Volzhsky 404121, Russia
| | - Gennady M. Butov
- Department of Technology of Organic and Petrochemical Synthesis, Volgograd State Technical University, Volgograd 400005, Russia; (B.P.G.); (D.V.D.); (G.M.B.)
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch), Volgograd State Technical University (VSTU), Volzhsky 404121, Russia
| |
Collapse
|
4
|
Abstract
Hypertension is a major healthcare issue that afflicts one in every three adults worldwide and contributes to cardiovascular diseases, morbidity and mortality. Bioactive lipids contribute importantly to blood pressure regulation via actions on the vasculature, kidney, and inflammation. Vascular actions of bioactive lipids include blood pressure lowering vasodilation and blood pressure elevating vasoconstriction. Increased renin release by bioactive lipids in the kidney is pro-hypertensive whereas anti-hypertensive bioactive lipid actions result in increased sodium excretion. Bioactive lipids have pro-inflammatory and anti-inflammatory actions that increase or decrease reactive oxygen species and impact vascular and kidney function in hypertension. Human studies provide evidence that fatty acid metabolism and bioactive lipids contribute to sodium and blood pressure regulation in hypertension. Genetic changes identified in humans that impact arachidonic acid metabolism have been associated with hypertension. Arachidonic acid cyclooxygenase, lipoxygenase and cytochrome P450 metabolites have pro-hypertensive and anti-hypertensive actions. Omega-3 fish oil fatty acids eicosapentaenoic acid and docosahexaenoic acid are known to be anti-hypertensive and cardiovascular protective. Lastly, emerging fatty acid research areas include blood pressure regulation by isolevuglandins, nitrated fatty acids, and short chain fatty acids. Taken together, bioactive lipids are key contributors to blood pressure regulation and hypertension and their manipulation could decrease cardiovascular disease and associated morbidity and mortality.
Collapse
Affiliation(s)
- John D Imig
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
5
|
Huang L, Zhang Z, Xing H, Luo Y, Yang J, Sui X, Wang Y. Risk assessment based on dose-responsive and time-responsive genes to build PLS-DA models for exogenously induced lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114891. [PMID: 37054470 DOI: 10.1016/j.ecoenv.2023.114891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/28/2023] [Accepted: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Xenobiotics can easily harm human lungs owing to the openness of the respiratory system. Identifying pulmonary toxicity remains challenging owing to several reasons: 1) no biomarkers for pulmonary toxicity are available that might help to detect lung injury; 2) traditional animal experiments are time-consuming; 3) traditional detection methods solely focus on poisoning accidents; 4) analytical chemistry methods hardly achieve universal detection. An in vitro testing system able to identify the pulmonary toxicity of contaminants from food, the environment, and drugs is urgently needed. Compounds are virtually infinite, whereas toxicological mechanisms are countable. Therefore, universal methods to identify and predict the risks of contaminants can be designed based on these well-known toxicity mechanisms. In this study, we established a dataset based on transcriptome sequencing of A549 cells upon treatment with different compounds. The representativeness of our dataset was analyzed using bioinformatics methods. Artificial intelligence methods, namely partial least squares discriminant analysis (PLS-DA) models, were employed for toxicity prediction and toxicant identification. The developed model predicted the pulmonary toxicity of compounds with a 92 % accuracy. These models were submitted to an external validation using highly heterogeneous compounds, which supported the accuracy and robustness of our developed methodology. This assay exhibits universal potential applications for water quality monitoring, crop pollution detection, food and drug safety evaluation, as well as chemical warfare agent detection.
Collapse
Affiliation(s)
- Lijuan Huang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Zinan Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Huanchun Xing
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yuan Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Jun Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Xin Sui
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Cizkova K, Tauber Z. Fibrates Affect Levels of Phosphorylated p38 in Intestinal Cells in a Differentiation-Dependent Manner. Int J Mol Sci 2023; 24:ijms24097695. [PMID: 37175404 PMCID: PMC10178720 DOI: 10.3390/ijms24097695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Fibrates are widely used hypolipidaemic agents that act as ligands of the peroxisome proliferator-activated receptor α (PPARα). p38 is a protein kinase that is mainly activated by environmental and genotoxic stress. We investigated the effect of the PPARα activators fenofibrate and WY-14643 and the PPARα inhibitor GW6471 on the levels of activated p38 (p-p38) in the colorectal cancer cell lines HT-29 and Caco2 in relation to their differentiation status. Fibrates increased p-p38 in undifferentiated HT-29 cells, whereas in other cases p-p38 expression was decreased. HT-29 cells showed p-p38 predominantly in the cytoplasm, whereas Caco2 cells showed higher nuclear positivity. The effect of fibrates may depend on the differentiation status of the cell, as differentiated HT-29 and undifferentiated Caco2 cells share similar characteristics in terms of villin, CYP2J2, and soluble epoxide hydrolase (sEH) expression. In human colorectal carcinoma, higher levels of p-p38 were detected in the cytoplasm, whereas in normal colonic surface epithelium, p-p38 showed nuclear positivity. The decrease in p-p38 positivity was associated with a decrease in sEH, consistent with in vitro results. In conclusion, fibrates affect the level of p-p38, but its exact role in the process of carcinogenesis remains unclear and further research is needed in this area.
Collapse
Affiliation(s)
- Katerina Cizkova
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Zdenek Tauber
- Department of Histology and Embryology, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
7
|
Epoxyeicosatrienoic Acids Inhibit the Activation of Murine Fibroblasts by Blocking the TGF-β1-Smad2/3 Signaling in a PPARγ-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7265486. [PMID: 36275905 PMCID: PMC9584742 DOI: 10.1155/2022/7265486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022]
Abstract
Background Epoxyeicosatrienoic acids (EETs), the metabolite of arachidonic acid by cytochrome P450 (CYP), reportedly serve as a vital endogenous protective factor in several chronic diseases. EETs are metabolized by soluble epoxide hydrolase (sEH). We have observed that prophylactic blocking sEH alleviates bleomycin- (BLM-) induced pulmonary fibrosis (PF) in mice. However, the underlying mechanism and therapeutic effects of EETs on PF remain elusive. Objective In this study, we investigated the effect of CYP2J2/EETs on the activation of murine fibroblasts and their mechanisms. Results we found that administration of the sEH inhibitor (TPPU) 7 days after the BLM injection also reversed the morphology changes and collagen deposition in the lungs of BLM-treated mice, attenuating PF. Fibroblast activation is regarded as a critical role of PF. Therefore, we investigated the effects of EETs on the proliferation and differentiation of murine fibroblasts. Results showed that the overexpression of CYP2J2 reduced the cell proliferation and the expressions of α-SMA and PCNA induced by transforming growth factor- (TGF-) β1 in murine fibroblasts. Then, we found that EETs inhibited the proliferation and differentiation of TGF-β1-treated-NIH3T3 cells and primary murine fibroblasts. Mechanistically, we found that 14,15-EET disrupted the phosphorylation of Smad2/3 murine fibroblasts by activating PPARγ, which was completely abolished by a PPARγ inhibitor GW9662. Conclusion our study shows that EETs inhibit the activation of murine fibroblasts by blocking the TGF-β1-Smad2/3 signaling in a PPARγ-dependent manner. Regulating CYP2J2-EET-sEH metabolic pathway may be a potential therapeutic option in PF.
Collapse
|
8
|
Chan MKK, Chung JYF, Tang PCT, Chan ASW, Ho JYY, Lin TPT, Chen J, Leung KT, To KF, Lan HY, Tang PMK. TGF-β signaling networks in the tumor microenvironment. Cancer Lett 2022; 550:215925. [DOI: 10.1016/j.canlet.2022.215925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 11/02/2022]
|
9
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
10
|
Epoxyeicosatrienoic Acids and Fibrosis: Recent Insights for the Novel Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms221910714. [PMID: 34639055 PMCID: PMC8509622 DOI: 10.3390/ijms221910714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Organ fibrosis often ends in eventual organ failure and leads to high mortality. Although researchers have identified many effector cells and molecular pathways, there are few effective therapies for fibrosis to date and the underlying mechanism needs to be examined and defined further. Epoxyeicosatrienoic acids (EETs) are endogenous lipid metabolites of arachidonic acid (ARA) synthesized by cytochrome P450 (CYP) epoxygenases. EETs are rapidly metabolized primarily via the soluble epoxide hydrolase (sEH) pathway. The sEH pathway produces dihydroxyeicosatrienoic acids (DHETs), which have lower activity. Stabilized or increased EETs levels exert several protective effects, including pro-angiogenesis, anti-inflammation, anti-apoptosis, and anti-senescence. Currently, intensive investigations are being carried out on their anti-fibrotic effects in the kidney, heart, lung, and liver. The present review provides an update on how the stabilized or increased production of EETs is a reasonable theoretical basis for fibrosis treatment.
Collapse
|
11
|
Nie J, Liu Y, Sun C, Zheng J, Chen B, Zhuo J, Su Z, Lai X, Chen J, Zheng J, Li Y. Effect of supercritical carbon dioxide fluid extract from Chrysanthemum indicum Linné on bleomycin-induced pulmonary fibrosis. BMC Complement Med Ther 2021; 21:240. [PMID: 34563177 PMCID: PMC8464116 DOI: 10.1186/s12906-021-03409-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Background As a prevalent type of cryptogenic fibrotic disease with high mortality, idiopathic pulmonary fibrosis (IPF) still lacks effective therapeutic drugs. The compounds extracted from buds and flowers of Chrysanthemum indicum Linné with supercritical-carbon dioxide fluid (CISCFE) has been confirmed to have antioxidant, anti-inflammatory, and lung-protective effects. This paper aimed to clarify whether CISCFE could treat IPF induced by bleomycin (BLM) and elucidate the related mechanisms. Methods Rats (Sprague-Dawley, male) were separated into the following groups: normal, model, pirfenidone (50 mg/kg), CISCFE-L, −M, and -H (240, 360, and 480 mg/kg/d, i.g., respectively, for 4 weeks). Rats were given BLM (5 mg/kg) via intratracheal installation to establish the IPF model. A549 and MRC-5 cells were stimulated by Wnt-1 to establish a cell model and then treated with CISCFE. Haematoxylin-eosin (H&E) and Masson staining were employed to observe lesions in the lung tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were performed to observe changes in genes and proteins connected with the Wnt/β-catenin pathway. Results CISCFE inhibited the proliferation of MRC-5 cells (IC50: 2.723 ± 0.488 μg/mL) and A549 cells (IC50: 2.235 ± 0.229 μg/mL). In rats, A549 cells, and MRC-5 cells, BLM and Wnt-1 obviously induced the protein expression of α-smooth muscle actin (α-SMA), vimentin, type I collagen (collagen-I), and Nu-β-catenin. The mRNA levels of matrix metalloproteinase-3 (MMP-3) and − 9 (MMP-9), two enzymes that degrade and reshape the extracellular matrix (ECM) were also increased while those of tissue inhibitor of metalloproteinase 1 (TIMP-1) were decreased. However, CISCFE reversed the effects of BLM and Wnt-1 on the expression pattern of these proteins and genes. Conclusion These findings showed that CISCFE could inhibit IPF development by activating the Wnt/β-catenin pathway and may serve as a treatment for IPF after further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03409-9.
Collapse
Affiliation(s)
- Juan Nie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Yanlu Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Chaoyue Sun
- 2nd Clinical Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Jingna Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Jianyi Zhuo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoping Lai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jibiao Zheng
- Department of Pharmacy, Central People's Hospital of Zhanjiang, Zhanjiang, 524000, China.
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China. .,Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Zhu ZH, Li X, He LF, Cai HF, Ye B, Wu ZM. Glycyrrhizic acid, as an inhibitor of HMGB1, alleviates bleomycin-induced pulmonary toxicity in mice through the MAPK and Smad3 pathways. Immunopharmacol Immunotoxicol 2021; 43:461-470. [PMID: 34142927 DOI: 10.1080/08923973.2021.1939371] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM High-mobility group box 1 (HMGB1) protein has been noticed particularly for its pivotal role in several pathologies. However, the relevance between HMGB1 and pathological progress in lung toxicity still remains unclear. In the study, we evaluated the effect of glycyrrhizic acid as an HMGB1 inhibitor on the early inflammation and late fibrosis in bleomycin-induced pulmonary toxicity in mice. METHODS We established a bleomycin-induced pulmonary toxicity model to detect the relevance between HMGB1 and pathological changes in the early inflammatory and late fibrotic stages. RESULTS We found that bleomycin-induced increase in inflammatory cytokines interleukin (IL)-β1, tumor necrosis factor (TNF)-α, monocyte chemotactic protein (MCP)-1, and inflammatory lesions in lung tissue in the early stage of the model. However, markers of fibrosis such as transforming growth factor (TGF)-β1 and α-smooth muscle actin (α-SMA) were significantly elevated on day 7 after bleomycin instillation. Interestingly, HMGB1 also began to rise on day 7, rather than in the early inflammatory phase. However, early (from day 0 to 14 after bleomycin instillation) or late (from day 14 to 28) intervention with HMGB1 neutralizing antibody or glycyrrhizic acid alleviated inflammation and fibrosis through down-regulating the inflammatory signaling mitogen-activated protein kinase (MAPK) and fibrotic signaling Smad3 pathway. CONCLUSION Our results suggested that HMGB1 mediates both inflammation and fibrosis in this model. The development of high-potency and low-toxicity HMGB1 inhibitors may be a class of potential drugs for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Zhen-Hua Zhu
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - Xing Li
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - Lin-Feng He
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - He-Fei Cai
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - Bin Ye
- Taizhou Central Hospital, School of Medicine of Taizhou University, Taizhou, China
| | - Zhong-Min Wu
- Department of Basic Medical Sciences, School of Medicine of Taizhou University, Taizhou, China
| |
Collapse
|
13
|
Kim HS, Moon SJ, Lee SE, Hwang GW, Yoo HJ, Song JW. The arachidonic acid metabolite 11,12-epoxyeicosatrienoic acid alleviates pulmonary fibrosis. Exp Mol Med 2021; 53:864-874. [PMID: 33990688 PMCID: PMC8178404 DOI: 10.1038/s12276-021-00618-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/02/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid that are rapidly metabolized into diols by soluble epoxide hydrolase (sEH). sEH inhibition has been shown to increase the biological activity of EETs, which are known to have anti-inflammatory properties. However, the role of EETs in pulmonary fibrosis remains unexplored. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) was used to analyze EETs in the lung tissues of patients with idiopathic pulmonary fibrosis (IPF, n = 29) and controls (n = 15), and the function of 11,12-EET was evaluated in in vitro and in vivo in pulmonary fibrosis models. EET levels in IPF lung tissues, including those of 8,9-EET, 11,12-EET, and 14,15-EET, were significantly lower than those in control tissues. The 11,12-EET/11,12-DHET ratio in human lung tissues also differentiated IPF from control tissues. 11,12-EET significantly decreased transforming growth factor (TGF)-β1-induced expression of α-smooth muscle actin (SMA) and collagen type-I in MRC-5 cells and primary fibroblasts from IPF patients. sEH-specific siRNA and 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU; sEH inhibitor) also decreased TGF-β1-induced expression of α-SMA and collagen type-I in fibroblasts. Moreover, 11,12-EET and TPPU decreased TGF-β1-induced p-Smad2/3 and extracellular-signal-regulated kinase (ERK) expression in primary fibroblasts from patients with IPF and fibronectin expression in Beas-2B cells. TPPU decreased the levels of hydroxyproline in the lungs of bleomycin-induced mice. 11,12-EET or sEH inhibitors could inhibit pulmonary fibrosis by regulating TGF-β1-induced profibrotic signaling, suggesting that 11,12-EET and the regulation of EETs could serve as potential therapeutic targets for IPF treatment. Signaling molecules called eicosanoids, which are derived from fatty acids, can suppress lung damage in idiopathic pulmonary fibrosis (IPF), a chronic, progressive disease in which scar tissue builds up in the lungs, making it hard to breathe. The causes of IPF are unknown. Eicosanoids, which have anti-inflammatory properties, have been studied in various lung diseases. Jin Woo Song at the University of Ulsan College of Medicine in Seoul, South Korea, and co-workers investigated how they might affect IPF. They found that eicosanoid levels were lower in lung tissues from patients with IPF than in healthy tissues. Further investigation showed eicosanoid levels could be boosted by suppressing an enzyme called sEH that degrades them. Thus, suppression of sEH and boosting of eicosanoid levels show promise as therapeutic targets for IPF.
Collapse
Affiliation(s)
- Hak Su Kim
- Department of Pulmonary and Critical Care Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.,Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Su-Jin Moon
- Department of Pulmonary and Critical Care Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang Eun Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Gi Won Hwang
- Department of Pulmonary and Critical Care Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Ju Yoo
- Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Song
- Department of Pulmonary and Critical Care Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Das Mahapatra A, Choubey R, Datta B. Small Molecule Soluble Epoxide Hydrolase Inhibitors in Multitarget and Combination Therapies for Inflammation and Cancer. Molecules 2020; 25:molecules25235488. [PMID: 33255197 PMCID: PMC7727688 DOI: 10.3390/molecules25235488] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
The enzyme soluble epoxide hydrolase (sEH) plays a central role in metabolism of bioactive lipid signaling molecules. The substrate-specific hydrolase activity of sEH converts epoxyeicosatrienoic acids (EETs) to less bioactive dihydroxyeicosatrienoic acids. EETs exhibit anti-inflammatory, analgesic, antihypertensive, cardio-protective and organ-protective properties. Accordingly, sEH inhibition is a promising therapeutic strategy for addressing a variety of diseases. In this review, we describe small molecule architectures that have been commonly deployed as sEH inhibitors with respect to angiogenesis, inflammation and cancer. We juxtapose commonly used synthetic scaffolds and natural products within the paradigm of a multitarget approach for addressing inflammation and inflammation induced carcinogenesis. Structural insights from the inhibitor complexes and novel strategies for development of sEH-based multitarget inhibitors are also presented. While sEH inhibition is likely to suppress inflammation-induced carcinogenesis, it can also lead to enhanced angiogenesis via increased EET concentrations. In this regard, sEH inhibitors in combination chemotherapy are described. Urea and amide-based architectures feature prominently across multitarget inhibition and combination chemotherapy applications of sEH inhibitors.
Collapse
Affiliation(s)
- Amarjyoti Das Mahapatra
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Rinku Choubey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
| | - Bhaskar Datta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India; (A.D.M.); (R.C.)
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355, India
- Correspondence: ; Tel.: +079-2395-2073; Fax: +079-2397-2622
| |
Collapse
|
15
|
Inula japonica ameliorated bleomycin-induced pulmonary fibrosis via inhibiting soluble epoxide hydrolase. Bioorg Chem 2020; 102:104065. [DOI: 10.1016/j.bioorg.2020.104065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/14/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
|
16
|
Hammock BD, Wang W, Gilligan MM, Panigrahy D. Eicosanoids: The Overlooked Storm in Coronavirus Disease 2019 (COVID-19)? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1782-1788. [PMID: 32650004 PMCID: PMC7340586 DOI: 10.1016/j.ajpath.2020.06.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Severe coronavirus disease 2019 (COVID-19) symptoms, including systemic inflammatory response and multisystem organ failure, are now affecting thousands of infected patients and causing widespread mortality. Coronavirus infection causes tissue damage, which triggers the endoplasmic reticulum stress response and subsequent eicosanoid and cytokine storms. Although proinflammatory eicosanoids, including prostaglandins, thromboxanes, and leukotrienes, are critical mediators of physiological processes, such as inflammation, fever, allergy, and pain, their roles in COVID-19 are poorly characterized. Arachidonic acid–derived epoxyeicosatrienoic acids could alleviate the systemic hyperinflammatory response in COVID-19 infection by modulating endoplasmic reticulum stress and stimulating the resolution of inflammation. Soluble epoxide hydrolase (sEH) inhibitors, which increase endogenous epoxyeicosatrienoic acid levels, exhibit potent anti-inflammatory activity and inhibit various pathologic processes in preclinical disease models, including pulmonary fibrosis, thrombosis, and acute respiratory distress syndrome. Therefore, targeting eicosanoids and sEH could be a novel therapeutic approach in combating COVID-19. In this review, we discuss the predominant role of eicosanoids in regulating the inflammatory cascade and propose the potential application of sEH inhibitors in alleviating COVID-19 symptoms. The host-protective action of omega-3 fatty acid–derived epoxyeicosanoids and specialized proresolving mediators in regulating anti-inflammation and antiviral response is also discussed. Future studies determining the eicosanoid profile in COVID-19 patients or preclinical models are pivotal in providing novel insights into coronavirus-host interaction and inflammation modulation.
Collapse
Affiliation(s)
- Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, California; UCD Comprehensive Cancer Center, University of California, Davis, California.
| | - Weicang Wang
- Department of Entomology and Nematology, University of California, Davis, California; UCD Comprehensive Cancer Center, University of California, Davis, California
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
17
|
Olivares-Rubio HF, Espinosa-Aguirre JJ. Role of epoxyeicosatrienoic acids in the lung. Prostaglandins Other Lipid Mediat 2020; 149:106451. [PMID: 32294527 DOI: 10.1016/j.prostaglandins.2020.106451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are synthetized from arachidonic acid by the action of members of the CYP2C and CYP2J subfamilies of cytochrome P450 (CYPs). The effects of EETs on cardiovascular function, the nervous system, the kidney and metabolic disease have been reviewed. In the lungs, the presence of these CYPs and EETs has been documented. In general, EETs play a beneficial role in this essential tissue. Among the most important effects of EETs in the lungs are the induction of vasorelaxation in the bronchi, the stimulation of Ca2+-activated K+ channels, the induction of vasoconstriction of pulmonary arteries, anti-inflammatory effects induced by asthma, and protection against infection or exposure to chemical substances such as cigarette smoke. EETs also participate in tissue regeneration, but on the downside, they are possibly involved in the progression of lung cancer. More research is necessary to design therapies with EETs for the treatment of lung disease.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, México.
| | - J J Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, México.
| |
Collapse
|
18
|
Nagilactone D ameliorates experimental pulmonary fibrosis in vitro and in vivo via modulating TGF-β/Smad signaling pathway. Toxicol Appl Pharmacol 2020; 389:114882. [PMID: 31953203 DOI: 10.1016/j.taap.2020.114882] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is a prototypic chronic progressive lung disease with high morbidity and mortality worldwide. Novel effective therapeutic agents are urgently needed owing to the limited treatment options in clinic. Herein, nagilactone D (NLD), a natural dinorditerpenoid obtained from Podocarpus nagi, was found to suppress transforming growth factor-β1 (TGF-β1)-mediated fibrotic process in vitro and bleomycin (BLM)-induced pulmonary fibrosis in vivo. NLD attenuated TGF-β1-induced expression of fibrotic markers including type I and III collagen, fibronectin, α-SMA, and CTGF in human pulmonary fibroblasts (WI-38 VA-13 and HLF-1 cells). Mechanism study indicated that NLD suppressed TGF-β1-induced up-regulation of TβR I, and Smad2 phosphorylation, nuclear translocation, and transcriptional activation. Moreover, NLD ameliorated BLM-induced histopathological abnormalities in the lungs of experimental fibrotic mice, suppressed synthesis of relative fibrotic markers and fibroblast-to-myofibroblast transition, as well as BLM-induced up-regulation of TβR I expression and Smad signaling in mouse lungs. These data collectively support NLD to be a potential therapeutic agent for pulmonary fibrosis.
Collapse
|
19
|
Jiang JX, Guan Y, Shen HJ, Jia YL, Shen J, Zhang LH, Liu Q, Zhu YL, Xie QM. Inhibition of soluble epoxide hydrolase attenuates airway remodeling in a chronic asthma model. Eur J Pharmacol 2019; 868:172874. [PMID: 31866410 DOI: 10.1016/j.ejphar.2019.172874] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Airway remodeling in asthma is difficult to treat because of its complex pathophysiology that involves proinflammatory cytokines, as well as the arachidonic acid cytochrome P-450 (CYP) pathway; however, it has received little attention. In this study, we assessed the efficacy of a soluble epoxide hydrolase (sEH) on airway remodeling in a mouse model of chronic asthma. The expression of sEH and CYP2J2 and the level of 14,15-epoxyeicosatrienoic acid (14,15-EET), airway remodeling and hyperresponsiveness (AHR) were analyzed to determine the level of sEH inhibition. AUDA, a sEH inhibitor, was given daily for 9 weeks orally, which significantly increased the level of 14,15-EET by inhibiting the expression of sEH and increasing the expression of CYP2J2 in lung tissues. The inhibition of sEH reduced the expression of remodeling-related molecular markers, such as interleukin (IL)-13, IL-17, matrix metalloproteinase 9, N-cadherin, α-smooth muscle actin (α-SMA), S100A4, Twist, epithelial goblet cell metaplasia, and collagen deposition in bronchoalveolar lavage fluid (BAL fluid) and lung tissues. Moreover, remodeling-related eosinophil accumulation in the BAL fluid and infiltration into the lung tissue were improved by AUDA. Finally, AUDA alleviated AHR, which is a functional indicator of airway remodeling. The effect of AUDA on airway remodeling was related to the downregulation of extracellular-regulated protein kinases (Erk1/2), c-Jun N-terminal kinases (JNK) and signal transducer and activator of transcription 3 (STAT3). To our knowledge, this is the first report to demonstrate that inhibition of sEH exerts significant protective effects on airway remodeling in asthma.
Collapse
Affiliation(s)
- Jun-Xia Jiang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yan Guan
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hui-Juan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong-Liang Jia
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jian Shen
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Lin-Hui Zhang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qi Liu
- Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yi-Liang Zhu
- Hangzhou Medical College, Hangzhou, 310053, China
| | - Qiang-Min Xie
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China; Zhejiang Respiratory Drugs Research Laboratory of State Food and Drug Administration of China, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Ishihara T, Yoshida M, Arita M. Omega-3 fatty acid-derived mediators that control inflammation and tissue homeostasis. Int Immunol 2019; 31:559-567. [PMID: 30772915 DOI: 10.1093/intimm/dxz001] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/14/2019] [Indexed: 01/03/2025] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid, display a wide range of beneficial effects in humans and animals. Many of the biological functions of PUFAs are mediated via bioactive metabolites produced by fatty acid oxygenases such as cyclooxygenases, lipoxygenases and cytochrome P450 monooxygenases. Liquid chromatography-tandem mass spectrometry-based mediator lipidomics revealed a series of novel bioactive lipid mediators derived from omega-3 PUFAs. Here, we describe recent advances on omega-3 PUFA-derived mediators, mainly focusing on their enzymatic oxygenation pathway, and their biological functions in controlling inflammation and tissue homeostasis.
Collapse
Affiliation(s)
- Tomoaki Ishihara
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Mio Yoshida
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Shibakoen, Minato-ku, Tokyo, Japan
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| |
Collapse
|
21
|
Hrdlička J, Neckář J, Papoušek F, Husková Z, Kikerlová S, Vaňourková Z, Vernerová Z, Akat F, Vašinová J, Hammock BD, Hwang SH, Imig JD, Falck JR, Červenka L, Kolář F. Epoxyeicosatrienoic Acid-Based Therapy Attenuates the Progression of Postischemic Heart Failure in Normotensive Sprague-Dawley but Not in Hypertensive Ren-2 Transgenic Rats. Front Pharmacol 2019; 10:159. [PMID: 30881303 PMCID: PMC6406051 DOI: 10.3389/fphar.2019.00159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) and their analogs have been identified as potent antihypertensive compounds with cardio- and renoprotective actions. Here, we examined the effect of EET-A, an orally active EET analog, and c-AUCB, an inhibitor of the EETs degrading enzyme soluble epoxide hydrolase, on the progression of post-myocardial infarction (MI) heart failure (HF) in normotensive Hannover Sprague-Dawley (HanSD) and in heterozygous Ren-2 transgenic rats (TGR) with angiotensin II-dependent hypertension. Adult male rats (12 weeks old) were subjected to 60-min left anterior descending (LAD) coronary artery occlusion or sham (non-MI) operation. Animals were treated with EET-A and c-AUCB (10 and 1 mg/kg/day, respectively) in drinking water, given alone or combined for 5 weeks starting 24 h after MI induction. Left ventricle (LV) function and geometry were assessed by echocardiography before MI and during the progression of HF. At the end of the study, LV function was determined by catheterization and tissue samples were collected. Ischemic mortality due to the incidence of sustained ventricular fibrillation was significantly higher in TGR than in HanSD rats (35.4 and 17.7%, respectively). MI-induced HF markedly increased LV end-diastolic pressure (Ped) and reduced fractional shortening (FS) and the peak rate of pressure development [+(dP/dt)max] in untreated HanSD compared to sham (non-MI) group [Ped: 30.5 ± 3.3 vs. 9.7 ± 1.3 mmHg; FS: 11.1 ± 1.0 vs. 40.8 ± 0.5%; +(dP/dt)max: 3890 ± 291 vs. 5947 ± 309 mmHg/s]. EET-A and c-AUCB, given alone, tended to improve LV function parameters in HanSD rats. Their combination amplified the cardioprotective effect of single therapy and reached significant differences compared to untreated HanSD controls [Ped: 19.4 ± 2.2 mmHg; FS: 14.9 ± 1.0%; +(dP/dt)max: 5278 ± 255 mmHg/s]. In TGR, MI resulted in the impairment of LV function like HanSD rats. All treatments reduced the increased level of albuminuria in TGR compared to untreated MI group, but neither single nor combined EET-based therapy improved LV function. Our results indicate that EET-based therapy attenuates the progression of post-MI HF in HanSD, but not in TGR, even though they exhibited renoprotective action in TGR hypertensive rats.
Collapse
Affiliation(s)
- Jaroslav Hrdlička
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Neckář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Papoušek
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Zuzana Husková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Soňa Kikerlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vaňourková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Zdenka Vernerová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Firat Akat
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia.,Department of Physiology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Jana Vašinová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Bruce D Hammock
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - Sung Hee Hwang
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, Davis, CA, United States
| | - John D Imig
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern, Dallas, TX, United States
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - František Kolář
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
22
|
Pitushkin DA, Burmistrov VV, Butov GM. Synthesis and Properties of N-(R-Adamantan-1-ylalkyl)-N′-[3(4)-fluorophenyl]thioureas—Target-Oriented Human Soluble Epoxide Hydrolase (hsEH) Inhibitors. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018100056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Burmistrov V, Morisseau C, Pitushkin D, Karlov D, Fayzullin RR, Butov GM, Hammock BD. Adamantyl thioureas as soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 2018; 28:2302-2313. [PMID: 29803731 PMCID: PMC6442743 DOI: 10.1016/j.bmcl.2018.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/30/2018] [Accepted: 05/10/2018] [Indexed: 12/19/2022]
Abstract
A series of inhibitors of the soluble epoxide hydrolase (sEH) containing one or two thiourea groups has been developed. Inhibition potency of the described compounds ranges from 50 μM to 7.2 nM. 1,7-(Heptamethylene)bis[(adamant-1-yl)thiourea] (6f) was found to be the most potent sEH inhibitor, among the thioureas tested. The inhibitory activity of the thioureas against the human sEH is closer to the value of activity against rat sEH rather than murine sEH. While being less active, thioureas are up to 7-fold more soluble than ureas, which makes them more bioavailable and thus promising as sEH inhibitors.
Collapse
Affiliation(s)
- Vladimir Burmistrov
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA; Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch) Volgograd State Technical University, Volzhsky 404121, Russia
| | - Christophe Morisseau
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Dmitry Pitushkin
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch) Volgograd State Technical University, Volzhsky 404121, Russia
| | - Dmitry Karlov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region 142432, Russia
| | - Robert R Fayzullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan 420088, Russia
| | - Gennady M Butov
- Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch) Volgograd State Technical University, Volzhsky 404121, Russia
| | - Bruce D Hammock
- Department of Entomology and Nematology, and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Zhang S, Yu D, Wang M, Huang T, Wu H, Zhang Y, Zhang T, Wang W, Yin J, Ren G, Li D. FGF21 attenuates pulmonary fibrogenesis through ameliorating oxidative stress in vivo and in vitro. Biomed Pharmacother 2018; 103:1516-1525. [DOI: 10.1016/j.biopha.2018.03.100] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 02/06/2023] Open
|