1
|
Vargas R, Martins IP, Souza ACHDE, Oliveira JB, Almeira AMDE, Matiusso CCI, Zara CB, Pavanello A, Rickli S, Neves CQ, Rodrigues WNS, Besson JCF, Becker TCA, Malta A, Mathias PCF. Protein-caloric-restriction diet during lactation programs lean phenotype and improves the antioxidative system in adult female rat offspring. AN ACAD BRAS CIENC 2024; 96:e20231049. [PMID: 39258692 DOI: 10.1590/0001-3765202420231049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/19/2024] [Indexed: 09/12/2024] Open
Abstract
Nutritional insults early in life, such as during the suckling phase, are associated with phenotypic alterations and promote adverse permanent effects that impair the capacity to maintain energy balance in adulthood. This study aimed to evaluate the long-term effects of a low-protein (LP) diet during lactation on the metabolism and antioxidant systems of adult female rat offspring. Dams were fed a low-protein diet (4% protein) during the first two weeks of lactation or a normal-protein (NP) diet (20% protein) during the entire lactation period. The female offspring received a standard diet throughout the experiment. At 90 days of age, female LP offspring exhibited decreased body weight, feeding efficiency, and fat pad stores. The adult LP female offspring displayed brown adipose tissue hyperplasia without alterations in glucose homeostasis. The LP diet decreased liver triglyceride content and improved the antioxidant system compared to the NP group. The LP diet during the suckling phase promotes a lean phenotype and improves the hepatocyte antioxidant system in adult female offspring. Thus, the LP diet may play an important role in homeostasis and the prevention of metabolic damage.
Collapse
Affiliation(s)
- Rodrigo Vargas
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
- Universidade Unicesumar, Centro de Ciências da Saúde, Avenida Guedner, 1610, Jardim Acadêmico, 87050-900 Maringá, PR, Brazil
| | - Isabela P Martins
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
- Universidade Unicesumar, Centro de Ciências da Saúde, Avenida Guedner, 1610, Jardim Acadêmico, 87050-900 Maringá, PR, Brazil
| | - Anna Carolina H DE Souza
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Julia B Oliveira
- Universidade Unicesumar, Centro de Ciências da Saúde, Avenida Guedner, 1610, Jardim Acadêmico, 87050-900 Maringá, PR, Brazil
| | - Ariadny M DE Almeira
- Universidade Unicesumar, Centro de Ciências da Saúde, Avenida Guedner, 1610, Jardim Acadêmico, 87050-900 Maringá, PR, Brazil
| | - Camila Cristina I Matiusso
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
- Universidade Unicesumar, Centro de Ciências da Saúde, Avenida Guedner, 1610, Jardim Acadêmico, 87050-900 Maringá, PR, Brazil
| | - Camila B Zara
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Audrei Pavanello
- Universidade Unicesumar, Centro de Ciências da Saúde, Avenida Guedner, 1610, Jardim Acadêmico, 87050-900 Maringá, PR, Brazil
| | - Sarah Rickli
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Camila Q Neves
- Universidade Estadual de Maringá, Departamento de Ciências Morfológicas, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Willian N S Rodrigues
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Jean Carlos Fernando Besson
- Universidade Unicesumar, Centro de Ciências da Saúde, Avenida Guedner, 1610, Jardim Acadêmico, 87050-900 Maringá, PR, Brazil
| | - Tânia Cristina A Becker
- Universidade Estadual de Maringá, Departamento de Ciências Básicas da Saúde, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Ananda Malta
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| | - Paulo Cezar F Mathias
- Universidade Estadual de Maringá, Departamento de Biotecnologia, Genética e Biologia Celular, Avenida Colombo, 5790, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
2
|
Qin Q, Li Z, Liu R, Liu S, Guo M, Zhang M, Wu H, Huang L. Effects of resveratrol on HIF-1α/VEGF pathway and apoptosis in vitrified duck ovary transplantation. Theriogenology 2023; 210:84-93. [PMID: 37481978 DOI: 10.1016/j.theriogenology.2023.06.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023]
Abstract
Preservation of ovarian tissues is an effective way to ensure genetic diversity of susceptible natural bird populations that are in danger of extinction. We examined whether the addition of the plant phenol resveratrol to vitrification solutions ameliorates the damaging effects of tissue hypoxia and reperfusion injury when the tissues are transplanted. Duck ovary tissues were frozen in the presence of varying concentrations of resveratrol in cryopreservation solutions and then transplanted under the renal capsules of 2-day-old Shelducks. Samples of the transplanted tissues were examined on days 3- and 9- post transplantation for activation of hypoxia-, antioxidant- and apoptosis-related gene expression and apoptosis. Resveratrol significantly increased expression of VEGF, HIF-1α, Nrf2, CAT and Bcl-2 mRNA and decreased BAX and Caspase-3 mRNA and reduced numbers of TUNEL-positive cells after vitrification and heterotopic ovarian transplantation. Resveratrol improved the antioxidant capacity, reduced apoptosis and activated the HIF-1α/VEGF pathway to promote angiogenesis 3- and 9-days following transplantation. These results indicated that the addition of resveratrol to vitrification solutions intended for long-term cryopreservation of ovary tissues improves survival in storage and the grafts following transplantation. This study provides a theoretical basis for the successful transplantation of avian ovarian tissue after vitrification.
Collapse
Affiliation(s)
- Qingming Qin
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Zhili Li
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Rongxu Liu
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Shaoxia Liu
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Minghui Guo
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Min Zhang
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Haigang Wu
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China
| | - Li Huang
- Engineering and Technology Research Center for Waterfowl Resources Development and Utilization and Epidemic Disease Prevention and Control of Henan Province, Xinyang Agriculture and Forestry University, Xinyang, Henan Province, 464000, PR China.
| |
Collapse
|
3
|
Zhang LZ, Gong JG, Li JH, Hao YS, Xu HJ, Liu YC, Feng ZH. Dietary resveratrol supplementation on growth performance, immune function and intestinal barrier function in broilers challenged with lipopolysaccharide. Poult Sci 2023; 102:102968. [PMID: 37586190 PMCID: PMC10450988 DOI: 10.1016/j.psj.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
This study discusses the effects of resveratrol (RES) on the productive performance, immune function and intestinal barrier function of broiler chickens challenged with lipopolysaccharide (LPS). Two hundred and forty 1-day-old male Arbor Acres broilers were randomly divided into 4 groups of 6 replicates each, with 10 broilers per replicate. This experiment used a 2 × 2 factorial design with dietary factors (basal diets or basal diets supplemented with 400 mg/kg RES were administered from d 1 to 21) and stress factors (intraperitoneal injection of 0.5 mg/kg BW of saline or LPS at 16, 18 and 20 d of age). The results showed that LPS challenge had a significant adverse effect on average daily gain (ADG) in broilers at 16 to 21 d of age (P < 0.05), whereas the addition of RES to the diet inhibited the LPS-induced decrease in ADG (P < 0.05). RES also alleviated LPS-induced immune function damage in broilers, which was manifested by the decrease of spleen index (P < 0.05) and the recovery of serum immunoglobulin M and ileal secretory immunoglobulin A content (P < 0.05). The LPS challenge also disrupts intestinal barrier function and inflammation, and RES mitigates these adverse effects in different ways. RES attenuated LPS-induced reduction of villus height in the jejunum and ileum of broilers (P < 0.05). LPS also caused an abnormal increase in plasma D-lactic acid levels in broilers (P < 0.05), which was effectively mitigated by RES (P < 0.05). LPS challenge resulted in a significant decrease in mRNA expression of occludin in the intestinal mucosa (P < 0.05), which was mitigated by the addition of RES (P < 0.05). RES significantly decreased the mRNA expression of toll-like receptor 4, nuclear factor kappa-B and tumor necrosis factor alpha in the ileum tissue stimulated by LPS (P < 0.05). Taken together, this study shows that RES exerts its beneficial effect on broilers challenged with LPS by alleviating immune function damage, relieving intestinal inflammation and barrier damage, and thus improving growth performance.
Collapse
Affiliation(s)
- Lei-Zheng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jian-Gang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jia-Hui Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yan-Shuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hong-Jian Xu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yan-Ci Liu
- Baoding Vocational and Technical College, Baoding, Hebei 071001, China
| | - Zhi-Hua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
4
|
da Silva MC, Fabiano LC, da Costa Salomão KC, de Freitas PLZ, Neves CQ, Borges SC, de Souza Carvalho MDG, Breithaupt-Faloppa AC, de Thomaz AA, Dos Santos AM, Buttow NC. A Rodent Model of Human-Dose-Equivalent 5-Fluorouracil: Toxicity in the Liver, Kidneys, and Lungs. Antioxidants (Basel) 2023; 12:antiox12051005. [PMID: 37237871 DOI: 10.3390/antiox12051005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
5-Fluorouracil (5-FU) is a chemotherapy drug widely used to treat a range of cancer types, despite the recurrence of adverse reactions. Therefore, information on its side effects when administered at a clinically recommended dose is relevant. On this basis, we examined the effects of the 5-FU clinical treatment on the integrity of the liver, kidneys, and lungs of rats. For this purpose, 14 male Wistar rats were divided into treated and control groups and 5-FU was administered at 15 mg/kg (4 consecutive days), 6 mg/kg (4 alternate days), and 15 mg/kg on the 14th day. On the 15th day, blood, liver, kidney, and lung samples were collected for histological, oxidative stress, and inflammatory evaluations. We observed a reduction in the antioxidant markers and an increase in lipid hydroperoxides (LOOH) in the liver of treated animals. We also detected elevated levels of inflammatory markers, histological lesions, apoptotic cells, and aspartate aminotransferase. Clinical treatment with 5-FU did not promote inflammatory or oxidative alterations in the kidney samples; however, histological and biochemical changes were observed, including increased serum urea and uric acid. 5-FU reduces endogenous antioxidant defenses and increases LOOH levels in the lungs, suggesting oxidative stress. Inflammation and histopathological alterations were also detected. The clinical protocol of 5-FU promotes toxicity in the liver, kidneys, and lungs of healthy rats, resulting in different levels of histological and biochemical alterations. These results will be useful in the search for new adjuvants to attenuate the adverse effects of 5-FU in such organs.
Collapse
Affiliation(s)
- Mariana Conceição da Silva
- Biological Physics and Cell Signaling Laboratory, Institute of Biology, Department of Structural and Functional Biology, State University of Campinas, Campinas 13083-970, SP, Brazil
| | - Lilian Catarim Fabiano
- Department of Morphological Science, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | | | - Camila Quaglio Neves
- Department of Morphological Science, State University of Maringá, Maringá 87020-900, PR, Brazil
| | | | - Maria das Graças de Souza Carvalho
- Biological Physics and Cell Signaling Laboratory, Institute of Biology, Department of Structural and Functional Biology, State University of Campinas, Campinas 13083-970, SP, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-904, SP, Brasil
| | - André Alexandre de Thomaz
- Quantum Electronic Department, Institute of Physics Gleb Wataghin, State University of Campinas, Campinas 13083-872, SP, Brazil
| | - Aline Mara Dos Santos
- Biological Physics and Cell Signaling Laboratory, Institute of Biology, Department of Structural and Functional Biology, State University of Campinas, Campinas 13083-970, SP, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Science, State University of Maringá, Maringá 87020-900, PR, Brazil
| |
Collapse
|
5
|
Estuani J, Godinho J, Borges SC, Neves CQ, Milani H, Buttow NC. Global cerebral ischemia followed by long-term reperfusion promotes neurodegeneration, oxidative stress, and inflammation in the small intestine in Wistar rats. Tissue Cell 2023; 81:102033. [PMID: 36764059 DOI: 10.1016/j.tice.2023.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 01/20/2023] [Indexed: 01/23/2023]
Abstract
AIMS Brain ischemia and reperfusion may occur in several clinical conditions that have high rates of mortality and disability, compromising an individual's quality of life. Brain injury can affect organs beyond the brain, such as the gastrointestinal tract. The present study investigated the effects of cerebral ischemia on the ileum and jejunum during a chronic reperfusion period by examining oxidative stress, inflammatory parameters, and the myenteric plexus in Wistar rats. MAIN METHODS Ischemia was induced by the four-vessel occlusion model for 15 min with 52 days of reperfusion. Oxidative stress and inflammatory markers were evaluated using biochemical techniques. Gastrointestinal transit time was evaluated, and immunofluorescence techniques were used to examine morpho-quantitative aspects of myenteric neurons. KEY FINDINGS Brain ischemia and reperfusion promoted inflammation, characterized by increases in myeloperoxidase and N-acetylglycosaminidase activity, oxidative stress, and lipid hydroperoxides, decreases in superoxide dismutase and catalase activity, a decrease in levels of reduced glutathione, neurodegeneration in the gut, and slow gastrointestinal transit. SIGNIFICANCE Chronic ischemia and reperfusion promoted a slow gastrointestinal transit time, oxidative stress, and inflammation and neurodegeneration in the small intestine in rats. These findings indicate that the use of antioxidant and antiinflammatory molecules even after a long period of reperfusion may be useful to alleviate the consequences of this pathology.
Collapse
Affiliation(s)
- Julia Estuani
- Biosciences and Pathophysiology Program, State University of Maringá, Maringá, PR, Brazil
| | - Jacqueline Godinho
- Pharmaceutical Sciences Program, State University of Maringá, Maringá, PR, Brazil
| | | | - Camila Quaglio Neves
- Program in Biological Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Sciences, State University of Maringá, Av. Colombo 5790, block H79 room 105 A, CEP: 87020-900 Maringá, PR, Brazil.
| |
Collapse
|
6
|
Early postnatal exposure of rat pups to methylglyoxal induces oxidative stress, inflammation and dysmetabolism at adulthood. J Dev Orig Health Dis 2022; 13:617-625. [DOI: 10.1017/s204017442100074x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
This work aimed to investigate the effects of early progeny exposure to methylglyoxal (MG), programming for metabolic dysfunction and diabetes-like complications later in life. At delivery (PN1), the animals were separated into two groups: control group (CO), treated with saline, and MG group, treated with MG (20 mg/kg of BW; i.p.) during the first 2 weeks of the lactation period. In vivo experiments and tissue collection were done at PN90. Early MG exposure decreased body weight, adipose tissue, liver and kidney weight at adulthood. On the other hand, MG group showed increased relative food intake, blood fructosamine, blood insulin and HOMA-IR, which is correlated with insulin resistance. Besides, MG-treated animals presented dyslipidaemia, increased oxidative stress and inflammation. Likewise, MG group showed steatosis and perivascular fibrosis in the liver, pancreatic islet hypertrophy, increased glomerular area and pericapsular fibrosis, but reduced capsular space. This study shows that early postnatal exposure to MG induces oxidative stress, inflammation and fibrosis markers in pancreas, liver and kidney, which are related to metabolic dysfunction features. Thus, nutritional disruptors during lactation period may be an important risk factor for metabolic alterations at adulthood.
Collapse
|
7
|
|
8
|
Yang H, Wang Y, Jin S, Pang Q, Shan A, Feng X. Dietary resveratrol alleviated lipopolysaccharide-induced ileitis through Nrf2 and NF-κB signalling pathways in ducks (Anas platyrhynchos). J Anim Physiol Anim Nutr (Berl) 2021; 106:1306-1320. [PMID: 34729831 DOI: 10.1111/jpn.13657] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
Gram-negative bacteria contamination of feed can occur at all the stage of feed production, storage, transportation and utilization. Lipopolysaccharide (LPS) is a major toxic metabolite of Gram-negative bacteria. The aim of this study was to explore the effect of dietary resveratrol on the duck ileitis caused by LPS and its optimum addition level in diet. The results showed that LPS-induced duck ileitis with the destruction of intestinal structure, oxidative stress, mitochondrial dysfunction, inflammatory response and permeability alteration. Dietary resveratrol alleviated LPS-induced intestinal dysfunction and the increase of intestinal permeability by linearly increasing mRNA levels of tight junction protein genes (Claudin-1, Occludin-1, ZO-1) (p < 0.05) and protein expression of Claudin-1 (p < 0.01). In addition, dietary resveratrol improved the antioxidant capacity of duck ileum by reducing the production of MDA and increasing the activity of T-SOD (p < 0.01) and CAT. Lipopolysaccharide increased Keap1 at mRNA and protein level (p < 0.01) and decreased the protein level of Nrf2 (p < 0.05). Dietary resveratrol significantly downregulated expression of Keap1 and upregulated expression of Nrf2 in duck (p < 0.05). Dietary resveratrol suppressed the TLR4/NF-κB signalling pathway and the expression of its downstream genes including IKK, TXNIP, NLRP3, Caspase-1, IL-6 and IL-18. Meanwhile, the levels of inflammatory cytokines (IL-6, IL-18 and TNF-α) showed a linearly decrease (p < 0.01) with increasing dietary resveratrol level. These results demonstrated that resveratrol alleviated the LPS-induced acute ileitis of duck through Nrf2 and NF-κB signalling pathways, and the dietary resveratrol of 500 mg/kg is more efficiently.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Yingjie Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Sanjun Jin
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Qian Pang
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| | - Xingjun Feng
- Institute of Animal Nutrition, Northeast Agricultural University, Xiangfang District, Harbin, China
| |
Collapse
|
9
|
Vieira HR, Gonçalves GD, Alves VS, de Melo MAB, Borges SC, Klagenberg J, Neves CQ, Previate C, Saavedra LPJ, Siervo GEMDL, Malta A, Prado MAADC, Palma-Rigo K, Buttow NC, Fernandes GSA, Mathias PCDF. Neonatal metformin short exposure inhibits male reproductive dysfunction caused by a high-fat diet in adult rats. Toxicol Appl Pharmacol 2021; 429:115712. [PMID: 34481828 DOI: 10.1016/j.taap.2021.115712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023]
Abstract
Metformin (Met) is widely used to control blood glucose levels and acts on various organs, including reproductive tissues, to improve reproductive and lifespan. This study evaluated whether neonatal Met exposure prevented male reproductive dysfunction caused by being overweight during adulthood. Randomized Wistar rat pups received an intraperitoneal injection from postnatal days (PNDs) 1 to 12of saline (Sal; 0.9% NaCl/day in 2mL/kg) or Met (100 mg/kg/day in 2 mL/kg). From PNDs 60 to 90, the animals received a regular (R; 4.5% fat; Sal R and Met R groups) or a high-fat (HF; 35% fat; Sal HF and Met HF groups) diet. At PND 90, all animals were euthanized to evaluate their biometric and reproductive parameters. The Sal and Met groups with R showed similar body weights, however, the HF diet increased the body weight in both groups. The Sal HF group showed testicular damage regarding in antioxidant status and inflammatory profile in the epididymal cauda. The HF diet reduced Leydig and Sertoli cells numbers, with lower sperm quality. The Met R animals showed positive reproductive programming, due to improved antioxidant defense, inflammatory biomarkers, and sperm morphology. Met HF prevented HF diet damage to reproductive organs and sperm morphology, but not to sperm motility. Early Met exposure positively affected the male reproductive system of adult rats, preventing reproductive HF disorders. STATEMENT OF NOVELTY AND SIGNIFICANCE: Metformin is used to control type 2 diabetes mellitus and can act to improve metabolism and lifespan. Metformin avoidance is recommended during pregnancy, but there is no information regarding its use when breastfeeding. For the first time, we showed in this current study that metformin positively acts in the male reproductive tissues and helps involved in later life. These data showed a better antioxidant defense and anti-inflammatory profile of Metformin animals than Saline animals and might directly improve reproductive organs morphophysiology and sperm morphology. Also, the neonatal Met application programs the male reproduction to counterbalance damages from an obesogenic environment in later life.
Collapse
Affiliation(s)
- Henrique Rodrigues Vieira
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil; Department of Anatomy, Institute of Biomedical Science III, University of São Paulo (USP), Av. Prof. Lineu Prestes, 2415, CEP: 05508-000 São Paulo, São Paulo, Brazil.
| | - Gessica Dutra Gonçalves
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Vander Silva Alves
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Milene Aparecida Bobato de Melo
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Stephanie Carvalho Borges
- Department of Morphological Sciences, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Josana Klagenberg
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Camila Quaglio Neves
- Department of Morphological Sciences, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Carina Previate
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Gláucia Eloisa Munhoz de Lion Siervo
- Department of General Biology, Biological Sciences Center, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, CEP: 86057-970 Londrina, Paraná, Brazil
| | - Ananda Malta
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Marialba Avezum Alves de Castro Prado
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Kesia Palma-Rigo
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil; Faculdade Adventista Paranaense, PR-317 Km 119 Gleba, R. Paiçandu, Lote 80 - Zona Rural, CEP: 87130-000 Ivatuba - Paraná, Brazil
| | - Nilza Cristina Buttow
- Department of Morphological Sciences, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| | - Glaura Scantamburlo Alves Fernandes
- Department of General Biology, Biological Sciences Center, State University of Londrina (UEL), Rodovia Celso Garcia Cid, PR 445, CEP: 86057-970 Londrina, Paraná, Brazil
| | - Paulo Cezar de Freitas Mathias
- Department of Biotechnology, Genetics, and Cell Biology, State University of Maringá (UEM), Av. Colombo, 5790, CEP: 87020-900 Maringá, Paraná, Brazil
| |
Collapse
|
10
|
Nutraceuticals and Enteric Glial Cells. Molecules 2021; 26:molecules26123762. [PMID: 34205534 PMCID: PMC8234579 DOI: 10.3390/molecules26123762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
Until recently, glia were considered to be a structural support for neurons, however further investigations showed that glial cells are equally as important as neurons. Among many different types of glia, enteric glial cells (EGCs) found in the gastrointestinal tract, have been significantly underestimated, but proved to play an essential role in neuroprotection, immune system modulation and many other functions. They are also said to be remarkably altered in different physiopathological conditions. A nutraceutical is defined as any food substance or part of a food that provides medical or health benefits, including prevention and treatment of the disease. Following the description of these interesting peripheral glial cells and highlighting their role in physiological and pathological changes, this article reviews all the studies on the effects of nutraceuticals as modulators of their functions. Currently there are only a few studies available concerning the effects of nutraceuticals on EGCs. Most of them evaluated molecules with antioxidant properties in systemic conditions, whereas only a few studies have been performed using models of gastrointestinal disorders. Despite the scarcity of studies on the topic, all agree that nutraceuticals have the potential to be an interesting alternative in the prevention and/or treatment of enteric gliopathies (of systemic or local etiology) and their associated gastrointestinal conditions.
Collapse
|
11
|
Wang D, Geng M, Gan D, Han G, Gao G, Xing A, Cui Y, Hu Y. Effect of resveratrol on mouse ovarian vitrification and transplantation. Reprod Biol Endocrinol 2021; 19:54. [PMID: 33836793 PMCID: PMC8033708 DOI: 10.1186/s12958-021-00735-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND After ovarian tissue transplantation, ischemia-reperfusion injury and free radicals cause follicle depletion and apoptosis. Therefore, the use of antioxidants to reduce the production of free radicals is an important method to address the consequences of ischemia-reperfusion injury. Resveratrol is a natural active polyphenol compound with anti-inflammatory, antitumor, strong antioxidant and anti-free radical properties. The aim of this study was to investigate whether resveratrol could improve the effect of autologous ovarian transplantation after cryopreserve-thawn mouse ovarian tissue. METHODS Whole-ovary vitrification and autotransplantation models were used to investigate the effects of resveratrol. Six-week-old female mice from the Institute of Cancer Research (ICR) were subjected to vitrification. All ovaries were preserved in liquid nitrogen for 1 week before being thawed. After thawing, ovarian tissues were autotransplanted in the bilateral kidney capsules. Mice (n = 72) were randomly divided into four groups to determine the optimal concentration of resveratrol (experiment I). Treatments were given as follows: saline, 5 mg/kg resveratrol, 15 mg/kg resveratrol and 45 mg/kg resveratrol, which were administered orally for one week. Grafted ovaries were collected for analysis on days 3, 7, and 21 after transplantation. Ovarian follicle morphology was assessed by hematoxylin and eosin staining. Serum FSH and E2 levels were measured to estimate the transplanted ovarian reserve and endocrine function. Other mice were randomly divided into two groups-saline and 45 mg/kg resveratrol to further evaluate the effect of resveratrol and explore the mechanisms underlying this effect (experiment II). Ovarian follicle apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assays. Immunohistochemistry, qRT-PCR and western blotting (MDA, SOD, NF-κB, IL-6 and SIRT1) were used to explore the mechanisms of resveratrol. Moreover, oocytes derived from autotransplanted ovaries at 21 days were cultured and fertilized in vitro. RESULTS The proportions of morphologically normal (G1) follicles at 3, 7 and 21 days were significantly higher in the 45 mg/kg resveratrol group than in the saline group. The TUNEL-stained follicles (%) at 7 days were significantly decreased in the 45 mg/kg resveratrol group compared with the saline group. Western blot analysis revealed that SOD2 and SIRT1 levels were significantly higher in the 45 mg/kg resveratrol group than in the saline group at day 7 and that MDA and NF-κB levels were lower in the saline group on day 3. Likewise, IL-6 was lower in the saline group on day 7. These results are basically consistent with the qRT-PCR results. In addition, the mean number of retrieved oocytes and fertilization and cleavage were significantly increased in the 45 mg/kg resveratrol group compared with the saline group. CONCLUSIONS Administration of resveratrol could improve the quality of cryopreserved mouse ovarian tissue after transplantation and the embryo outcome, through anti-inflammatory and antioxidative mechanisms.
Collapse
Affiliation(s)
- Dalin Wang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
- Department of Obstetrics and Gynecology, Clinical Medical School of Yangzhou University, Yangzhou, 225000, Jiangsu Province, China
| | - Menghui Geng
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Dongying Gan
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Gege Han
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Gao Gao
- The kangda college of Nanjing medical university, Nanjing, 210029, Jiangsu Province, China
| | - Aying Xing
- Department of Obstetrics and Gynecology, Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yanqiu Hu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
- Reproductive Medicine Center of Northern Jiangsu People's Hospital, Yangzhou University, Yangzhou, 225000, Jiangsu Province, China.
| |
Collapse
|
12
|
Abstract
The field of nanomedicine continues to grow with new technologies and formulations in development for several disease states. Much research focuses on the use of injectable nanomedicines for treatment of neoplasms; however, there are several formulations in development that use nanotechnology that can be administered enterally for noncancer indications. These nanomedicine treatments have been developed for systemic drug delivery or local drug delivery along the gastrointestinal tract. This Review gives a brief overview of the alimentary canal and highlights new research in nanomedicine in noncancer disease states delivered via enteral routes of administration. Relevant recent research is summarized on the basis of the targeted site of action or absorption, including the buccal, sublingual, stomach, small intestine, and large intestine areas of the alimentary canal. The benefits of nanodrug delivery are discussed as well as barriers and challenges for future development in the field.
Collapse
Affiliation(s)
- Brianna Cote
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| | - Deepa Rao
- School of Pharmacy, Pacific University, 222 SE 8th Avenue, Suite 451, Hillsboro, Oregon 97123, United States
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| |
Collapse
|
13
|
He S, Chen L, He Y, Chen F, Ma Y, Xiao D, He J. Resveratrol alleviates heat stress-induced impairment of intestinal morphology, barrier integrity and inflammation in yellow-feather broilers. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Context
Heat stress is one of the problems commonly found in broiler industry in tropic and subtropic regions that results in impairment of intestinal integrity, leading to inflammation and poor performance.
Aims
This study aimed to investigate the effect of dietary resveratrol supplementation on growth performance, intestinal morphology and barrier integrity, and inflammation response of yellow-feather broilers under heat stress.
Methods
In total, 288 birds (28-day-old) were randomly allotted to three treatment groups, with six replicates. A thermo-neutral group (24 ± 2°C) received a basal diet and two heat-stressed groups (37 ± 2°C for 8 h/day and 24 ± 2°C for the remaining time) were fed the basal diet (HT) or basal diet supplemented with 500 mg/kg resveratrol for 14 consecutive days.
Key results
Compared with the thermo-neutral group, birds in the HT group had a decreased (P < 0.05) average daily feed intake, average daily gain, villus height, villus height to crypt depth ratio, mRNA concentrations of mucin-2, secreted immunoglobulin A (sIgA), claudin-1,zona occludens-1 and serum concentrations of interferon γ, and increased (P < 0.05) feed to gain ratio, crypt depth, mRNA levels of expression of heat-shock protein (HSP) 70, HSP90, nuclear factor kappa B, mucin-4, claudin-2 and serum concentrations of endotoxin, interleukin (IL)-1β, IL-4, IL-6 and tumour necrosis factor (TNF)-α on Day 3 and Day 14, except for claudin-1 on Day 14 and TNF-α on Day 3 (P > 0.05). Compared with HT group, birds in HT supplemented with resveratrol group decreased (P < 0.05) crypt depth (in jejunum on Day 3, ileum on Day 14), mRNA levels of expression of HSP70, HSP90, nuclear factor kappa B, mucin-4, claudin-2 and serum concentrations of endotoxin, IL-1β, IL-4, IL-6 and TNF-α, and increased (P < 0.05) average daily feed intake (+11%), average daily gain (+22%) and villus height, villus height to crypt depth ratio, mRNA levels of expression of mucin-2, sIgA, claudin-1,zona occludens-1 and serum concentrations of interferon γ, although with few fluctuations between Day 3 and Day 14.
Conclusions
Dietary supplementation of resveratrol was effective in partially alleviating the adverse effects of heat stress on growth performance and intestinal barrier function in yellow-feather broilers, by restoring the impaired villus-crypt structure, altering the mRNA expression of intestinal HSPs, mucins, sIgA and tight junction-related gene, and inhibiting secretion of pro-inflammation cytokines.
Implications
Dietary resveratrol supplementation is a considerable nutritional strategy to anti-stress in animal production.
Collapse
|
14
|
Parlar A, Arslan SO. Resveratrol Normalizes the Deterioration of Smooth Muscle Contractility after Intestinal Ischemia and Reperfusion in Rats Associated With an Antioxidative Effect and Modulating Tumor Necrosis Factor Alpha Activity. Ann Vasc Surg 2019; 61:416-426. [DOI: 10.1016/j.avsg.2019.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/02/2023]
|
15
|
Ahmadi Z, Mohammadinejad R, Ashrafizadeh M. Drug delivery systems for resveratrol, a non-flavonoid polyphenol: Emerging evidence in last decades. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.03.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Zhou J, Cheng W, Liu T, Li J, Li X. Preparation, characterization, and in vitro antioxidant activity of pH-sensitive resveratrol microcapsule in simulated intestinal fluids. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1610432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jun Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
| | - Wenhao Cheng
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
| | - Tiantian Liu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
| | - Jiexin Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, P.R. China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha, P.R. China
| |
Collapse
|
17
|
Alrafas HR, Busbee PB, Nagarkatti M, Nagarkatti PS. Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells. J Leukoc Biol 2019; 106:467-480. [PMID: 30897248 DOI: 10.1002/jlb.3a1218-476rr] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammatory diseases of the gastrointestinal tract are often associated with microbial dysbiosis. Thus, dietary interactions with intestinal microbiota, to maintain homeostasis, play a crucial role in regulation of clinical disorders such as colitis. In the current study, we investigated if resveratrol, a polyphenol found in a variety of foods and beverages, would reverse microbial dysbiosis induced during colitis. Administration of resveratrol attenuated colonic inflammation and clinical symptoms in the murine model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Resveratrol treatment in mice with colitis led to an increase in CD4+ FOXP3+ and CD4+ IL-10+ T cells, and a decrease in CD4+ IFN-γ+ and CD4+ IL-17+ T cells. 16S rRNA gene sequencing to investigate alterations in the gut microbiota revealed that TNBS caused significant dysbiosis, which was reversed following resveratrol treatment. Analysis of cecal flush revealed that TNBS administration led to an increase in species such as Bacteroides acidifaciens, but decrease in species such as Ruminococcus gnavus and Akkermansia mucinphilia, as well as a decrease in SCFA i-butyric acid. However, resveratrol treatment restored the gut bacteria back to homeostatic levels, and increased production of i-butyric acid. Fecal transfer experiments confirmed the protective role of resveratrol-induced microbiota against colitis inasmuch as such recipient mice were more resistant to TNBS-colitis and exhibited polarization toward CD4+ FOXP3+ T cells and decreases in CD4+ IFN-γ+ and CD4+ IL-17+ T cells. Collectively, these data demonstrate that resveratrol-mediated attenuation of colitis results from reversal of microbial dysbiosis induced during colitis and such microbiota protect the host from colonic inflammation by inducing Tregs while suppressing inflammatory Th1/Th17 cells.
Collapse
Affiliation(s)
- Haider Rasheed Alrafas
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Philip B Busbee
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
18
|
Wang Z, Yan Y, Wang Y, Tong F. The interaction between CSE/H 2S and the iNOS/NO-mediated resveratrol/poly(ethylene glycol)-poly(phenylalanine) complex alleviates intestinal ischemia/reperfusion injuries in diabetic rats. Biomed Pharmacother 2019; 112:108736. [PMID: 30970526 DOI: 10.1016/j.biopha.2019.108736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION The purpose of the experiment was to survey the therapeutic function of resveratrol (RES)-loaded poly(ethylene glycol)-poly(phenylalanine) (PEG-PPhe) on intestinal ischemia/reperfusion injury (II/RI) via the interaction between CSE/H2S and iNOS/NO compared to free RES in diabetic rats. METHODS Diabetic rats were pretreated with 20 mg/kg of RES or the RES/PEG-PPhe complex and then subjected to 1 h of ischemia and 3 h of reperfusion. Blood and intestines were collected, intestinal pathological injury was estimated, and the contents of body weight, weights of different tissues, blood glucose, serum insulin, HOMA index, serum nitric oxide (NO) and serum sulfureted hydrogen (H2S) were observed. The dry/wet intestine ratios, the activity of superoxide dismutase (SOD); the contents of methane dicarboxylic aldehyde (MDA), glutathione (GSH), H2S, and NO; and the concentrations of inducible nitric oxide synthase (iNOS) and cystathionine-γ-lyase (CSE) were observed in the intestinal tissues. RESULTS A significant reduction of weights of different tissues, blood glucose, pathological damage, dry/wet ratios, MDA, NO, iNOS expression and a significant increasement of body weight, serum insulin, HOMA index, SOD, GSH, H2S, CSE expression were observed in both treatment groups. However, a greater reduction of weights of different tissues, blood glucose (7.49-13.49 mmol/L for 72 h vs. the control) and pathological damage, iNOS expression, dry/wet ratios (6.14 ± 0.29 vs. 8.51 ± 0.42), MDA (5.01 ± 0.71 nmol vs. 9.98 ± 0.67 nmol), NO (0.52 ± 0.09 μmol vs. 0.99 ± 0.08 μmol in intestinal tissue; 19.29 ± 0.89 μmol vs. 45.23 ± 1.17 μmol in serum) was observed in the RES/PEG-PPhe group relative to the I/R (P < 0.01 for all); a greater increasement of body weight, serum insulin, HOMA index, SOD (39.79±1.78 U vs. 11.84 ± 1.02 U), GSH (31.25 ± 1.19 mg vs. 10.13 ± 0.64 mg), H2S (39.52 ± 1.32 nmol vs. 13.02 ± 1.03 nmol in intestinal tissue; 9.78 ± 0.79 μmol vs. 3.11 ± 0.85 μmol in serum), CSE expression was observed in the RES/PEG-PPhe group relative to the I/R (P < 0.01 for all). In addition, aminoguanidine (AMI, iNOS inhibitor) reduced I/R injury, and dl-propargylglycine (PAG, CSE inhibitor) increased I/R injury. CONCLUSIONS The interaction between CSE/H2S and the iNOS/NO-mediated resveratrol/poly(ethylene glycol)-poly(phenylalanine) complex alleviates intestinal ischemia/reperfusion injuries in diabetic rats.
Collapse
Affiliation(s)
- Zhongchao Wang
- Cardiovascular medicine, Shanxi Cardiovascular Disease Hospital, Taiyuan, Shanxi, China
| | - Ying Yan
- Department of Rehabilitation Medicine, Zhejiang Chinese Medical University, The Third Clinical Medicine, Hangzhou, Zhejiang, China
| | - Yini Wang
- Department of Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Fei Tong
- Department of Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China; Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.
| |
Collapse
|
19
|
Xu H, Hua Y, Zhong J, Li X, Xu W, Cai Y, Mao Y, Lu X. Resveratrol Delivery by Albumin Nanoparticles Improved Neurological Function and Neuronal Damage in Transient Middle Cerebral Artery Occlusion Rats. Front Pharmacol 2018; 9:1403. [PMID: 30564121 PMCID: PMC6288361 DOI: 10.3389/fphar.2018.01403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/15/2018] [Indexed: 01/27/2023] Open
Abstract
Human serum albumin (HSA) is an intrinsic protein and important carrier that transports endogenous as well as exogenous substances. It is demonstrated in this study that the regional accumulation of albumin in the ischemia-reperfusion (I/R) brain may lead in the application of HSA based nanoparticles in the study of cerebral I/R injury. Resveratrol (RES) is potential in the treatment of cerebral I/R injury but is restricted for its water insolubility and short half-life in vivo. In our study, RES loaded HSA nanoparticles (RES-HSA-NPs) were prepared to facilitate the application of RES in protection from cerebral I/R injury. RES-HSA-NPs demonstrated spherical shape, a diameter about 100 nm, a highest RES encapsulation efficiency of 60.9 ± 5.07%, and controlled release pattern with the maximum release ratio of 50.2 ± 4.91% [in pH = 5.0 phosphate buffered saline (PBS)] and 26. 2 ± 2.73% (in pH = 7.4 PBS), respectively, after 90 h incubation at 37°C. After intravenous injection into transient middle cerebral artery occlusion (tMCAO) rats, RES-HSA-NPs improved neurological score and decreased infarct volume at 24 h after tMCAO in a dose dependent manner. A single dose of 20 mg/kg RES-HSA-NPs via tail vein improved neurological outcomes and decreased infarct volume at 24 and 72 h in tMCAO rats. I/R increased oxidative stress (indicated by products of lipid peroxidation, MDA) and neuronal apoptosis (indicated by yellow-brown TUNEL-positive cells), RES-HSA-NPs significantly attenuated oxidative stress and neuronal apoptosis. These results demonstrated the potential of RES-HSA-NPs in the therapy of cerebral I/R injury.
Collapse
Affiliation(s)
- Huae Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ye Hua
- Department of Neurology, The Affiliated Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - Jie Zhong
- School of Foreign Languages, Nanjing University of Finance and Economics, Nanjing, China
| | - Xiaolin Li
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Xu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingyuan Cai
- Department of Geriatric Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Medical Image Science, Xuzhou Medical University, Xuzhou, China
| | - Xiaowei Lu
- Department of Geriatric Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|