1
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
2
|
Carrillo-Beltrán D, Osorio JC, Blanco R, Oliva C, Boccardo E, Aguayo F. Interaction between Cigarette Smoke and Human Papillomavirus 16 E6/E7 Oncoproteins to Induce SOD2 Expression and DNA Damage in Head and Neck Cancer. Int J Mol Sci 2023; 24:ijms24086907. [PMID: 37108069 PMCID: PMC10138975 DOI: 10.3390/ijms24086907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/29/2023] Open
Abstract
Even though epidemiological studies suggest that tobacco smoking and high-risk human papillomavirus (HR-HPV) infection are mutually exclusive risk factors for developing head and neck cancer (HNC), a portion of subjects who develop this heterogeneous group of cancers are both HPV-positive and smokers. Both carcinogenic factors are associated with increased oxidative stress (OS) and DNA damage. It has been suggested that superoxide dismutase 2 (SOD2) can be independently regulated by cigarette smoke and HPV, increasing adaptation to OS and tumor progression. In this study, we analyzed SOD2 levels and DNA damage in oral cells ectopically expressing HPV16 E6/E7 oncoproteins and exposed to cigarette smoke condensate (CSC). Additionally, we analyzed SOD2 transcripts in The Cancer Genome Atlas (TCGA) Head and Neck Cancer Database. We found that oral cells expressing HPV16 E6/E7 oncoproteins exposed to CSC synergistically increased SOD2 levels and DNA damage. Additionally, the SOD2 regulation by E6, occurs in an Akt1 and ATM-independent manner. This study suggests that HPV and cigarette smoke interaction in HNC promotes SOD2 alterations, leading to increased DNA damage and, in turn, contributing to development of a different clinical entity.
Collapse
Affiliation(s)
- Diego Carrillo-Beltrán
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Julio C Osorio
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Carolina Oliva
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil
| | - Francisco Aguayo
- Departamento de Biomedicina, Facultad de Medicina, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
3
|
Li W, Long X, Li F, Cao Y, Liu J, Fu S, Guo W, Hu G. Lysine stimulates the development of the murine mammary gland at puberty via PI3K/AKT/mTOR signalling axis. J Anim Physiol Anim Nutr (Berl) 2022; 106:1420-1430. [PMID: 35923149 DOI: 10.1111/jpn.13756] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/21/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Lysine is one of the essential amino acids. The effect of lysine on milk protein and milk fat anabolism has been reported, but the effect on mammary glands development has not been studied in detail. The normal development of the mammary glands at puberty is crucial to lactation of mammals. In this study, to explore the effect of lysine on mammary glands development, we fed different concentrations of lysine (0.025%, 0.05%, 0.1%) to pubertal mice and found that the addition of 0.1% lysine to drinking water significantly promoted mammary glands development. Furthermore, we treated mMECs (mouse mammary epithelial cells) with different concentrations of lysine (0, 0.2, 0.4, 0.6, 0.8 and 1 mM) to explore the underlying mechanism, and found that lysine promoted the proliferation of mMECs and development of mammary glands through PI3K/AKT/mTOR signalling pathway in pubertal mice. Overall, the results of this study revealed that lysine activated the PI3K/AKT/mTOR signal axis, elevated protein concentrations of cell proliferation markers, such as PCNA, Cyclin D1 and D3, and enhanced the proliferation of mMECs, finally promoted the murine mammary glands development at puberty.
Collapse
Affiliation(s)
- Wen Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaoyu Long
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yu Cao
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Juxiong Liu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Shoupeng Fu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Wenjin Guo
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guiqiu Hu
- Department of Theoretic Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
4
|
Analysis of Distributions of HPV Infection in Females with Cervical Lesions in the Western District of Beijing Chaoyang Hospital. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5422748. [PMID: 35320994 PMCID: PMC8938050 DOI: 10.1155/2022/5422748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022]
Abstract
Objective To analyze the distribution of human papilloma virus (HPV) infection in women with cervical lesions of different grades and analyze the relationship of high-risk HPV and cervical lesions in order to facilitate targeted prevention. Methods The infection status of HPV subtype was statistically analyzed in patients who underwent colposcopy examination from April 2017 to June 2019. Results The infection rate of HPV was 81.4% in chronic cervicitis, 82.9% in 1ow-grade squamous intraepithelial lesion (LSIL), 63.7% in HSIL (high-grade squamous intraepithelial lesion), and 50% in cervical squamous cell carcinoma (CSCC). Among the 16 high-risk HPV types, the top six HPV types with the comprehensive infection rates were HPV16 > HPV52 > HPV58 > HPV18 > HPV51 > HPV53 in turn, and the infection rates were 23.3%, 14.8%, 13.3%, 9.8%, 9.2%, and 8.8%, respectively. The infection rates of HPV16 in chronic cervicitis group, LSIL group, and HSIL group were significantly different. There was no significant difference in the injection rates of HPV52, HPV58, and HPV18 among the three groups. HPV infection rates were highest in the 31–40 years old group, followed by the 41–50 years old group. Conclusion The distribution of different types of HPV varies in different tissue types, which can be used to develop relevant vaccines to achieve better prevention and treatment of cervical cancer.
Collapse
|
5
|
Leng X, Kan H, Wu Q, Li C, Zheng Y, Peng G. Inhibitory Effect of Salvia miltiorrhiza Extract and Its Active Components on Cervical Intraepithelial Neoplastic Cells. Molecules 2022; 27:1582. [PMID: 35268683 PMCID: PMC8911905 DOI: 10.3390/molecules27051582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The effective treatment of cervical intraepithelial neoplasia (CIN) can prevent cervical cancer. Salvia miltiorrhiza is a medicinal and health-promoting plant. To identify a potential treatment for CIN, the effect of S. miltiorrhiza extract and its active components on immortalized cervical epithelial cells was studied in vitro. The H8 cell was used as a CIN model. We found that S. miltiorrhiza extract effectively inhibited H8 cells through the CCK8 method. An HPLC-MS analysis revealed that S. miltiorrhiza extract contained salvianolic acid H, salvianolic acid A, salvianolic acid B, monomethyl lithospermate, 9‴-methyl lithospermate B, and 9‴-methyl lithospermate B/isomer. Salvianolic acid A had the best inhibitory effect on H8 cells with an IC50 value of 5.74 ± 0.63 μM. We also found that the combination of salvianolic acid A and oxysophoridine had a synergistic inhibitory effect on H8 cells at molar ratios of 4:1, 2:1, 1:1, 1:2, and 1:4, with salvianolic acid A/oxysophoridine = 1:2 having the best synergistic effect. Using Hoechst33342, flow cytometry, and Western blotting analysis, we found that the combination of salvianolic acid A and oxysophoridine can induce programmed apoptosis of H8 cells and block the cell cycle in the G2/M phase, which was correlated with decreased cyclinB1 and CDK1 protein levels. In conclusion, S. miltiorrhiza extract can inhibit the growth of H8 cells, and the combination of salvianolic acid A (its active component) and oxysophoridine has a synergistic inhibitory effect on H8 cells and may be a potential treatment for cervical intraepithelial neoplasia.
Collapse
Affiliation(s)
| | | | | | | | | | - Guoping Peng
- College of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (X.L.); (H.K.); (Q.W.); (C.L.); (Y.Z.)
| |
Collapse
|
6
|
Wang H, Chen L, Zhou T, Zhang Z, Zeng C. Nicotine Promotes WRL68 Cells Proliferation Due to the Mutant p53 Gain-of-Function by Activating CDK6-p53-RS-PIN1-STAT1 Signaling Pathway. Chem Res Toxicol 2020; 33:2361-2373. [PMID: 32820905 DOI: 10.1021/acs.chemrestox.0c00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is an important organ with many tasks, such as dealing with drugs, alcohol and other toxins to remove them from the body. Nicotine is the more abundant component in cigarette smoking, which is first metabolized in liver and increases the risk of developing hepatocellular carcinoma (HCC). Also, genotoxic potential of nicotine has been extensively studied in vitro. However, the carcinogenic action of nicotine on the HCC needs to be elucidated. The current study demonstrated that chronic exposure to nicotine significantly promotes human normal fetal hepatic cell line (WRL68 cells) proliferation in a time- and concentration-dependent manner resulting from G0/G1-S-phase transition. Also remarkably, nicotine induced the level of p53 mutation at Ser249 (p53-RS). Note as well that the level of STAT1 protein was increased along with p53-RS owing to the prolonged half-life of STAT1. Furthermore, it is suggested that CDK6-dependent binding between phosphorylation of p53-RS at Ser249 and PIN1 by nicotine treatment leads to the nucleus translocation, followed by interacting with STAT1 and subsequent activation of STAT1 via the improvement of its stability, which is involved in cellular growth and colony formation after nicotine treatment. Simply put, these findings indicated that nicotine induces mutant p53 gain-of function (GOF), activating CDK6-p53-RS-PIN1-STAT1 signaling pathway and promoting cell proliferation, which could contribute to HCC for smokers.
Collapse
Affiliation(s)
- Huai Wang
- School of Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China
| | - Lu Chen
- Wuhan Taisheng Biological Technology Co., Ltd., No. 10 West Yezhihu Road, Wuhan, Hubei 430074, P. R. of China
| | - Tong Zhou
- School of Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China
| | - Zhongwei Zhang
- School of Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China
| | - Canwei Zeng
- Wuhan Taisheng Biological Technology Co., Ltd., No. 10 West Yezhihu Road, Wuhan, Hubei 430074, P. R. of China
| |
Collapse
|
7
|
Aguayo F, Muñoz JP, Perez-Dominguez F, Carrillo-Beltrán D, Oliva C, Calaf GM, Blanco R, Nuñez-Acurio D. High-Risk Human Papillomavirus and Tobacco Smoke Interactions in Epithelial Carcinogenesis. Cancers (Basel) 2020; 12:E2201. [PMID: 32781676 PMCID: PMC7465661 DOI: 10.3390/cancers12082201] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
Cervical, anogenital, and some head and neck cancers (HNC) are etiologically associated with high-risk human papillomavirus (HR-HPV) infection, even though additional cofactors are necessary. Epidemiological studies have established that tobacco smoke (TS) is a cofactor for cervical carcinogenesis because women who smoke are more susceptible to cervical cancer when compared to non-smokers. Even though such a relationship has not been established in HPV-related HNC, a group of HPV positive patients with this malignancy are smokers. TS is a complex mixture of more than 4500 chemical compounds and approximately 60 of them show oncogenic properties such as benzo[α]pyrene (BaP) and nitrosamines, among others. Some of these compounds have been evaluated for carcinogenesis through experimental settings in collaboration with HR-HPV. Here, we conducted a comprehensive review of the suggested molecular mechanisms involved in cooperation with both HR-HPV and TS for epithelial carcinogenesis. Furthermore, we propose interaction models in which TS collaborates with HR-HPV to promote epithelial cancer initiation, promotion, and progression. More studies are warranted to clarify interactions between oncogenic viruses and chemical or physical environmental factors for epithelial carcinogenesis.
Collapse
Affiliation(s)
- Francisco Aguayo
- Universidad de Tarapacá, Arica 1000000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Medicina, Universidad de Chile, Santiago 8330024, Chile
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Francisco Perez-Dominguez
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Diego Carrillo-Beltrán
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Carolina Oliva
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Rances Blanco
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| | - Daniela Nuñez-Acurio
- Laboratorio Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (F.P.-D.); (D.C.-B.); (C.O.); (R.B.); (D.N.-A.)
| |
Collapse
|
8
|
Zhang C, Lin Y, Liu Q, He J, Xiang P, Wang D, Hu X, Chen J, Zhu W, Yu H. Growth differentiation factor 11 promotes differentiation of MSCs into endothelial-like cells for angiogenesis. J Cell Mol Med 2020; 24:8703-8717. [PMID: 32588524 PMCID: PMC7412688 DOI: 10.1111/jcmm.15502] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family. It has multiple effects on development, physiology and diseases. However, the role of GDF11 in the development of mesenchymal stem cells (MSCs) is not clear. To explore the effects of GDF11 on the differentiation and pro-angiogenic activities of MSCs, mouse bone marrow-derived MSCs were engineered to overexpress GDF11 (MSCGDF11 ) and their capacity for differentiation and paracrine actions were examined both in vitro and in vivo. Expression of endothelial markers CD31 and VEGFR2 at the levels of both mRNA and protein was significantly higher in MSCGDF11 than control MSCs (MSCVector ) during differentiation. More tube formation was observed in MSCGDF11 as compared with controls. In an in vivo angiogenesis assay with Matrigel plug, MSCGDF11 showed more differentiation into CD31+ endothelial-like cells and better pro-angiogenic activity as compared with MSCVector . Mechanistically, the enhanced differentiation by GDF11 involved activation of extracellular-signal-related kinase (ERK) and eukaryotic translation initiation factor 4E (EIF4E). Inhibition of either TGF-β receptor or ERK diminished the effect of GDF11 on MSC differentiation. In summary, our study unveils the function of GDF11 in the pro-angiogenic activities of MSCs by enhancing endothelial differentiation via the TGFβ-R/ERK/EIF4E pathway.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Pingping Xiang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Dianliang Wang
- Stem Cell and Tissue Engineering Research Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|