1
|
Shaker Kordedeh Z, Ghorbani S, Ahmadi S, Soleimani Mehranjani M. Silymarin mitigates toxic effects of cyclophosphamide on testicular tissue and sperm parameters in mice. Reprod Biol 2024; 24:100946. [PMID: 39217820 DOI: 10.1016/j.repbio.2024.100946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Cyclophosphamide, a chemotherapy drug, increases oxidative stress in sperm and testicular tissue. This study evaluated the effect of silymarin, a potent antioxidant, on the quality of sperm and testicular tissue in mice treated with cyclophosphamide. NMRI adult male mice were divided into four groups: control; cyclophosphamide (intraperitoneal injection, 100 mg/kg, once a week); cyclophosphamide + silymarin; and silymarin (intraperitoneal injection, 200 mg/kg, every other day). After a 35-day treatment period, the caudal region of the epididymis was examined for sperm parameters, the right testis was used for stereological studies, and the left testis was used to assess biochemical factors. The data were statistically analyzed using SPSS software, one-way ANOVA and Tukey's test. In the cyclophosphamide group, there was a significant reduction in the mean total volume of testicular tissue, the average volume of seminiferous tubules and their components, and the average volume of interstitial tissue. Additionally, there was a notable decrease (p < 0.001) in the average number of Leydig cells, Sertoli cells, and sperm parameters. The mean concentration of testosterone hormone (p < 0.05) and total antioxidant capacity (TAC) level (p < 0.01) also significantly decreased, while the malondialdehyde (MDA) level increased significantly (p < 0.05). However, these adverse changes were mitigated in the cyclophosphamide + silymarin group compared to the cyclophosphamide group. Our results showed that silymarin as an antioxidant can mitigate the adverse effects of cyclophosphamide on testicular tissue and sperm parameters.
Collapse
Affiliation(s)
| | - Saeid Ghorbani
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Sepideh Ahmadi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | | |
Collapse
|
2
|
Saleh DO, Abo El Nasr NME, Hussien YA, El-Baset MA, Ahmed KA. Cyclophosphamide-induced testicular injury: the role of chrysin in mitigating iron overload and ferroptosis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03519-4. [PMID: 39565397 DOI: 10.1007/s00210-024-03519-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 10/06/2024] [Indexed: 11/21/2024]
Abstract
This study evaluated the beneficial effects of chrysin against cyclophosphamide (CP)-induced testicular toxicity in rats across several parameters, including hormones, oxidative stress, inflammation, apoptosis, and protein expression. Rats were pretreated with oral doses of chrysin at 25, 50, or 100 mg/kg daily for 7 days. On the 8th day, all groups except controls received CP (200 mg/kg) injection. Chrysin doses continued for 7 more days. Hormones, oxidative stress markers, inflammatory cytokines, apoptosis regulators, and iron regulatory proteins were assessed. CP decreased testosterone, inhibin B, GSH, and GPx4 and increased FSH, cholesterol, MDA, IL-6, and BAX. It also drastically reduced TfR1, liprin, and IREB2. Chrysin dose-dependently counteracted these effects. The highest 100 mg/kg chrysin dose increased testosterone, inhibin B, GSH, GPx4, BCL2, TfR1, liprin, and IREB2 while decreasing FSH, cholesterol, MDA, IL-6, and BAX close to control levels. There were also significant incremental benefits for testosterone, inhibin B, and other parameters with higher chrysin doses. Chrysin dose-dependently attenuated CP-induced hormonal dysfunction, oxidative stress, inflammation, apoptosis, and iron-regulatory protein suppression. The maximum dose showed the most optimal protective effects in restoring the testicular toxicity markers. These results validate the promising spermatoprotective properties of chrysin against chemotherapeutic germ cell damage.
Collapse
Affiliation(s)
- Dalia O Saleh
- Pharmacology Depatrment, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Nesma M E Abo El Nasr
- Pharmacology Depatrment, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt.
| | - Yosra A Hussien
- Pharmacology Depatrment, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Marawan Abd El-Baset
- Pharmacology Depatrment, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Yang K, Tang J, Li H, Zhang H, Ding J, Li Z, Luo J. LncRNAs in Kawasaki disease and Henoch-Schönlein purpura: mechanisms and clinical applications. Mol Cell Biochem 2024; 479:1969-1984. [PMID: 37639198 DOI: 10.1007/s11010-023-04832-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Kawasaki disease (KD) and Henoch-Schönlein purpura (HSP) are the two most predominant types of childhood vasculitis. In childhood vasculitis, factors such as lack of sensitive diagnostic indicators and adverse effects of drug therapy may cause multiorgan system involvement and complications and even death. Many studies suggest that long noncoding RNAs (lncRNAs) are involved in the mechanism of vasculitis development in children and can be used to diagnose or predict prognosis by lncRNAs. In existing drug therapies, lncRNAs are also involved in drug-mediated treatment mechanisms and are expected to improve drug toxicity. The aim of this review is to summarize the link between lncRNAs and the pathogenesis of KD and HSP. In addition, we review the potential applications of lncRNAs in multiple dimensions, such as diagnosis, treatment, and prognosis prediction. This review highlights that targeting lncRNAs may be a novel therapeutic strategy to improve and treat KD and HSP.
Collapse
Affiliation(s)
- Kangping Yang
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Jiayao Tang
- School of Pharmacy, Nanchang University, Nanchang, China
| | - Haoying Li
- Queen Mary School of Nanchang University, Nanchang, China
| | - Hejin Zhang
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jiatong Ding
- The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Zelin Li
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinghua Luo
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Rajpoot A, Yadav K, Yadav A, Mishra RK. Shilajit mitigates chemotherapeutic drug-induced testicular toxicity: Study on testicular germ cell dynamics, steroidogenesis modulation, and Nrf-2/Keap-1 signaling. J Ayurveda Integr Med 2024; 15:100930. [PMID: 39121783 PMCID: PMC11362644 DOI: 10.1016/j.jaim.2024.100930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/27/2024] [Accepted: 04/03/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Medications, including chemotherapeutic drugs, contribute to male infertility as external factors by inducing oxidative stress in testicular cells. Shilajit is a naturally occurring bioactive antioxidant used in Ayurvedic medicine to treat a variety of ailments. OBJECTIVE This study examines the potential of Shilajit to counteract the negative effects of the chemotherapeutic drug cyclophosphamide (CPA) on testicular germ cell dynamics. MATERIAL AND METHODS Male Parkes mice received single intraperitoneal CPA injection (200 mg/kg BW) on day one, followed by daily supplementation of Shilajit (100 and 200 mg/kg BW) for one spermatogenic cycle. RESULTS CPA adversely affected testicular germ cell dynamics by inhibiting the conversion of spermatogonia-to-spermatids, altering testicular histoarchitecture, impairing Sertoli cell function and testicular steroidogenesis, and disturbing the testicular oxido-apoptotic balance. Shilajit supplementation restores testicular germ cell dynamics in CPA-exposed mice, as evidenced by improved histoarchitecture of the testis. Shilajit improves testicular daily production and sperm quality by promoting the conversion of spermatogonia (2C) into spermatids (1C), stimulating germ cell proliferation (PCNA), improving Sertoli cell function (N-Cadherin and β-Catenin), and maintaining the Bax/Bcl2 ratio. Additionally, Shilajit enhances testosterone biosynthesis by activating enzymes like 3β-HSD, and 17β-HSD. Shilajit also reduces testicular oxidative stress by increasing antioxidant enzyme activity (SOD) and decreasing lipid peroxidation (LPO). These effects are mediated by upregulation of the antioxidant protein Nrf-2 and downregulation of Keap-1. CONCLUSION The findings underscore the potent androgenic and antioxidant characteristics of Shilajit, as well as its ability to enhance fertility in cases of testicular damage caused by chemotherapeutic drugs.
Collapse
Affiliation(s)
- Arti Rajpoot
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kiran Yadav
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Anupam Yadav
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Raghav Kumar Mishra
- Male Reproductive Physiology Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Mohyeldin RH, Alaaeldin R, Sharata EE, Attya ME, Elhamadany EY, Fathy M. LCZ696 attenuates sepsis-induced liver dysfunction in rats; the role of oxidative stress, apoptosis, and JNK1/2-P38 signaling pathways. Life Sci 2023; 334:122210. [PMID: 37883863 DOI: 10.1016/j.lfs.2023.122210] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
AIM Sepsis is a serious inflammatory response to infection with an annual incidence rate of >48 million cases and 11 million fatalities worldwide. Furthermore, sepsis remains the world's fifth-greatest cause of death. For the first time, the current study aims to evaluate the possible hepatoprotective benefits of LCZ696, a combination of an angiotensin receptor blocker (valsartan) and a neprilysin inhibitor prodrug (sacubitril), on cecal ligation and puncture (CLP)-induced sepsis in rats. MAIN METHODS CLP was employed to induce sepsis. Hepatic malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin-6 (IL-6), IL-1β, tumor necrosis factor-alpha (TNF-α), and caspase 3 were assessed using ELISA. Serum alanine transaminase (ALT) and aspartate transaminase (AST) were also measured. Western blot assay was used to determine the expression of JNK1/2 and P38 proteins. The histology of liver tissues was also examined. KEY FINDINGS CLP resulted in significant elevation of AST, ALT, MDA, IL-6, IL-1β, TNF-α, and caspase 3 levels, and up-regulation of p/t JNK1/2, and p/t P38 proteins, as compared to the sham group. However, level of GSH, and SOD activity were reduced in CLP group. LCZ696 significantly improved all the previously mentioned biochemical and histological abnormalities better than using valsartan alone. SIGNIFICANCE LCZ696 substantially ameliorated CLP-induced liver damage, compared to valsartan, by reducing proinflammatory mediators, inhibiting the JNK1/2 and P38 signaling pathway, and attenuating apoptosis.
Collapse
Affiliation(s)
- Reham H Mohyeldin
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Eyad Y Elhamadany
- Innovative Research Center, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
| |
Collapse
|
6
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Endoplasmic reticulum homeostasis: a potential target for diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1182848. [PMID: 37383398 PMCID: PMC10296190 DOI: 10.3389/fendo.2023.1182848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/31/2023] [Indexed: 06/30/2023] Open
Abstract
The endoplasmic reticulum (ER) is the most vigorous organelle in intracellular metabolism and is involved in physiological processes such as protein and lipid synthesis and calcium ion transport. Recently, the abnormal function of the ER has also been reported to be involved in the progression of kidney disease, especially in diabetic nephropathy (DN). Here, we reviewed the function of the ER and summarized the regulation of homeostasis through the UPR and ER-phagy. Then, we also reviewed the role of abnormal ER homeostasis in residential renal cells in DN. Finally, some ER stress activators and inhibitors were also summarized, and the possibility of maintaining ER homeostasis as a potential therapeutic target for DN was discussed.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
7
|
Khallaf WAI, Sharata EE, Attya ME, Abo-Youssef AM, Hemeida RAM. LCZ696 (sacubitril/valsartan) mitigates cyclophosphamide-induced premature ovarian failure in rats; the role of TLR4/NF-κB/NLRP3/Caspase-1 signaling pathway. Life Sci 2023; 326:121789. [PMID: 37201697 DOI: 10.1016/j.lfs.2023.121789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/06/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
AIM Cyclophosphamide (CP) is used to treat a variety of cancers and autoimmune illnesses. CP has been found to frequently cause premature ovarian failure (POF). The study's objective was to assess LCZ696's potential for protection against CP-induced POF in a rat model. MAIN METHODS Rats were randomly assigned into seven groups as follows: control, valsartan (VAL), LCZ696, CP, CP + VAL, CP + LCZ696, and CP + triptorelin (TRI). Ovarian malondialdehyde (MDA), reduced glutathione (GSH), superoxide dismutase (SOD), interleukin-18 (IL-18), IL-1β, and tumor necrosis factor-alpha (TNF-α) were assessed using ELISA. Serum anti-mullerian hormone (AMH), estrogen, follicle-stimulating hormone (FSH), and luteinizing hormone (LH) were also measured using ELISA. The expression of NLRP3/Caspase-1/GSDMD C-NT and TLR4/MYD88/NF-B P65 proteins was estimated using western blot assay. The histopathology of the ovaries was also investigated. The estrous cycle, body, and ovarian weights were also monitored. KEY FINDINGS CP treatment significantly elevated levels of MDA, IL-18, IL-1β, TNF-α, FSH, LH, and up-regulated TLR4/NF-κB/NLRP3/Caspase-1 proteins, as compared to the control group, however, ovarian follicles count, and levels of GSH, SOD, AMH, and estrogen were reduced with CP administration. All the aforementioned biochemical and histological abnormalities were considerably alleviated by the LCZ696 therapy compared to valsartan alone. SIGNIFICANCE LCZ696 effectively mitigated CP-induced POF, offering promising protection that could be related to its suppression power on NLRP3-induced pyroptosis and TLR4/NF-B P65 pathway.
Collapse
Affiliation(s)
- Waleed A I Khallaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut branch, Assiut 71524, Egypt.
| |
Collapse
|
8
|
Khamis T, Hegazy AA, El-Fatah SSA, Abdelfattah ER, Abdelfattah MMM, Fericean LM, Arisha AH. Hesperidin Mitigates Cyclophosphamide-Induced Testicular Dysfunction via Altering the Hypothalamic Pituitary Gonadal Axis and Testicular Steroidogenesis, Inflammation, and Apoptosis in Male Rats. Pharmaceuticals (Basel) 2023; 16:301. [PMID: 37259444 PMCID: PMC9966503 DOI: 10.3390/ph16020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Cyclophosphamide (CP) is a cytotoxic, cell cycle, non-specific, and antiproliferative drug. This study aimed to address the toxic effects of CP on male fertility and the possible ameliorative role of hesperidin (HSP). Thirty-two adult albino rats were randomly divided into four groups, namely, the negative control, HSP, CP-treated, and CP+HSP-treated groups. The CP-treated rats showed a significant reduction in the levels of serum LH, FSH, testosterone, prolactin, testicular glutathione peroxidase (GPx), and total antioxidant capacity (TAC) with an elevation in levels of malondialdehyde (MDA), and p53, and iNOS immune expression, compared to the control group. A significant downregulation in hypothalamic KISS-1, KISS-1r, and GnRH, hypophyseal GnRHr, and testicular mRNA expression of steroidogenesis enzymes, PGC-1α, PPAR-1, IL10, and GLP-1, as well as a significant upregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP-treated group in comparison to that in the control group. The administration of HSP in CP-treated rats significantly improved the levels of serum LH, FSH, testosterone, prolactin, testicular GPx, and TAC, with a reduction in levels of MDA, and p53, and iNOS immune expression compared to the CP-treated group. A significant upregulation in hypophyseal GnRHr, and testicular mRNA expression of CYP19A1 enzymes, PPAR-1, IL10, and GLP-1, as well as a significant downregulation in testicular mRNA of P53 and IL1β mRNA expression, were detected in the CP+HSP-treated group in comparison to that in the CP-treated group. In conclusion, HSP could be a potential auxiliary agent for protection from the development of male infertility.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Abdelmonem Awad Hegazy
- Anatomy and Embryology, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Samaa Salah Abd El-Fatah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman Ramadan Abdelfattah
- Human Anatomy & Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Liana Mihaela Fericean
- Biology Department, Faculty of Agriculture, University of Life Sciences “King Michael I of Romania” from Timisoara, Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
9
|
Mohany M, Ahmed MM, Al-Rejaie SS. The Role of NF-κB and Bax/Bcl-2/Caspase-3 Signaling Pathways in the Protective Effects of Sacubitril/Valsartan (Entresto) against HFD/STZ-Induced Diabetic Kidney Disease. Biomedicines 2022; 10:2863. [PMID: 36359384 PMCID: PMC9717728 DOI: 10.3390/biomedicines10112863] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 08/30/2023] Open
Abstract
LCZ696 (valsartan/sacubitril) has the potential to slow the progression of diabetic kidney disease (DKD) according to previous reports. However, the renoprotective mechanism underlying LCZ696 remains unknown. This study aimed to investigate the therapeutic potential and underlying mechanism of LCZ696 in DKD in a type 2 diabetic (T2D) rat model. This model was established in this experiment by feeding a high-fat diet (HFD) for six weeks with a single dose of streptozotocin (STZ, 30 mg/kg body weight). Valsartan or LCZ696 was orally administered to T2D animals for eight weeks. HFD/STZ rats showed hyperglycemia, impaired insulin secretion, significant increases in urea, creatinine, cytokines, nuclear factor kappa B (NF-κB), oxidative stress, caspase-3 activity, glomerular and tubular damage, glomerulsclerosis, Bax and caspese-3 expressions along with a significant decline in IL-10, antioxidant markers, and Bcl-2 expression. The administration of LCZ696 to diabetic rats reduced the serum concentrations of glucose, urea, and creatinine. In addition, ELISA results demonstrated that diabetic rats treated with LCZ696 exhibited a reduction in inflammatory (IL-1β, TNF-α, IL-6) and an increase in anti-inflammatory (IL-10) cytokine levels. In addition, a notable decrease in NF-κB and caspase-3 activity was observed. At the level of renal tissue homogenate, diabetic animals treated with LCZ696 demonstrated clear restorations in GSH content and other antioxidant enzyme levels, in addition to a significant decrease in TBARS levels. In addition, LCZ696 inhibited the expression of the Bax and cleaved caspase-3 proteins and enhanced the expression of the Bcl-2 protein. Improvements in histopathological changes in kidney tissues confirmed and significantly supported these biochemical findings. In summary, LCZ696 alleviated DKD with possible mechanisms including inhibition of inflammation and apoptosis.
Collapse
Affiliation(s)
| | | | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 1145, Saudi Arabia; (M.M.); (M.M.A.)
| |
Collapse
|
10
|
Chi YN, Ye RJ, Yang JM, Hai DM, Liu N, Ren JW, Du J, Lan XB, Yu JQ, Ma L. Geniposide attenuates spermatogenic dysfunction via inhibiting endoplasmic reticulum stress in male mice. Chem Biol Interact 2022; 366:110144. [PMID: 36063855 DOI: 10.1016/j.cbi.2022.110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Spermatogenesis dysfunction is common in clinically infertile patients. Geniposide (GP) is one of the important active ingredients extracted from Eucommia ulmoides. However, the protective effect and mechanism of GP in the treatment of spermatogenic dysfunction is not known yet. METHODS After cyclophosphamide-induced spermatogenic dysfunction was established in male mice, we gavaged GP for 4 weeks to evaluate spermatogenic function and anti-apoptotic effects by fertility, testicular weight, sperm quality, endoplasmic reticulum stress (ER stress), comet assay and serum testosterone level. RESULTS GP can improve the damage of fertility and reproductive organs induced by cyclophosphamide and increase the number and activity of sperm. In comet assay, it was found that GP administration could alleviate sperm DNA damage induced by cyclophosphamide. In addition, GP treatment can significantly reduce ThT fluorescence intensity and improve endoplasmic reticulum stress induced by cyclophosphamide. Besides, TUNEL staining and WB showed that GP could inhibit the excessive apoptosis of cells and protect testis. (p < 0.05, p < 0.01, p < 0.001). CONCLUSION The protective effect of Geniposide on cyclophosphamide-induced spermatogenic dysfunction in mice is related to the inhibition of endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Yan-Nan Chi
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui-Juan Ye
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Jia-Mei Yang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Dong-Mei Hai
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Liu
- Key Laboratory of Hui Ethnic Medicine Modernization, The Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Jia-Wei Ren
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Du
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiao-Bing Lan
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| | - Lin Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
11
|
Alsemeh AE, Abdullah DM. Protective effect of alogliptin against cyclophosphamide-induced lung toxicity in rats: Impact on PI3K/Akt/FoxO1 pathway and downstream inflammatory cascades. Cell Tissue Res 2022; 388:417-438. [PMID: 35107620 PMCID: PMC9035424 DOI: 10.1007/s00441-022-03593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
Cyclophosphamide (CP)-induced lung toxicity is a remaining obstacle against the beneficial use of this chemotherapeutic agent. More considerations were given to the role of Alogliptin (ALO) in ameliorating CP-induced toxicities in many tissues. We designed this study to clarify the protective potential of ALO against CP-induced lung toxicity in rats. ALO was administered for 7 days. Single-dose CP was injected on the 2nd day (200 mg/kg: i.p.) to induce lung toxicity. Rats were divided into four groups: control, ALO-treated, CP-treated and ALO + CP-treated group. Leucocytic count, total proteins, LDH activity, TNF-α, and IL-6 were estimated in the bronchoalveolar lavage fluid (BALF). The oxidative/antioxidants (MDA, Nrf2, TAO and GSH), inflammatory (NFκB), fibrotic (TGF-β1) and apoptotic (PI3K/Akt/FoxO1) markers in pulmonary homogenates were biochemically evaluated. Rat lung sections were examined histologically (light and electron microscopic examination) and immunohistochemically (for iNOS and CD68 positive alveolar macrophages). CP significantly increased oxidative stress, inflammation, fibrosis, and apoptosis markers as well as deteriorated the histopathological pulmonary architecture. These hazardous effects were significantly ameliorated by ALO treatment. ALO protected against CP-induced lung toxicity by mitigating the oxidative, inflammatory and fibrotic impacts making it a promising pharmacological therapy for mitigating CP-induced lung toxicity.
Collapse
Affiliation(s)
- Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
12
|
The Novel Competing Endogenous Long Noncoding RNA SM2 Regulates Gonadotropin Secretion in the Hu Sheep Anterior Pituitary by Targeting the Oar-miR-16b/TGF-β/SMAD2 Signaling Pathway. Cells 2022; 11:cells11060985. [PMID: 35326436 PMCID: PMC8947352 DOI: 10.3390/cells11060985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/27/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Pituitary gonadotropins play a pivotal role in reproduction. Long noncoding RNAs (lncRNAs) have been identified as important regulators in the hypothalamic−pituitary−ovarian (HPO) axis associated with reproduction. However, the contributions of lncRNAs to pituitary gonadotropin secretion remain largely unknown. Therefore, this work was performed to uncover the functional mechanisms of the novel lncRNA TCONS_00083279 (lncRNA SM2) and its potential targeting pathway oar-miR-16b/TGF-beta/SMAD2, which is associated with gonadotropin secretion in sheep pituitary cells. In the present study, the lncRNA SM2 showed high expression levels in the sheep pituitary gland, and it was located in both the nucleus and the cytoplasm of pituitary cells. lncRNA SM2 knockdown inhibited pituitary cell proliferation and FSH and LH secretion. The function of the lncRNA SM2 was sponged by oar-miR-16b, and this regulated the growth and gonadotropin secretion of pituitary cells by modulating SMAD2, as shown by the dual-luciferase reporter assay. FSH and LH levels were both upregulated by SMAD2 overexpression. Moreover, the levels of the lncRNA SM2, SMAD2 and TGFR1, as well as FSH and LH, in sheep pituitary cells increased significantly under gonadotropin-releasing hormone (GnRH) stimulation (p < 0.05). This work illustrates that the lncRNA SM2 regulates gonadotropin secretion in the Hu sheep anterior pituitary by targeting the oar-miR-16b/TGF-β/SMAD2 signaling pathway, providing a valuable resource for understanding the molecular mechanisms underlying sheep reproduction.
Collapse
|
13
|
Abdullah DM, Alsemeh AE, Khamis T. Semaglutide early intervention attenuated testicular dysfunction by targeting the GLP-1-PPAR-α-Kisspeptin-Steroidogenesis signaling pathway in a testicular ischemia-reperfusion rat model. Peptides 2022; 149:170711. [PMID: 34920048 DOI: 10.1016/j.peptides.2021.170711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022]
Abstract
Testicular torsion is a serious emergency and a well-known cause of male infertility. It represents 10 %-15 % of scrotal diseases in children. Kisspeptin (KISS1) is a hormone secreted from the hypothalamic nuclei and testis, but its role in testis is not fully understood. Semaglutide is a novel antidiabetic glucagon-like peptide 1 (GLP-1) analog. Hence, we designed the current study to elucidate the possible ameliorative effect of semaglutide on ischemia/reperfusion-induced testicular dysfunction in rats and highlight the role of the testicular GLP-1/PCG-1α-PPAR-α-KISS1 signaling pathway. We randomly divided 50 male Sprague Dawley into five equal groups (10 rats each): SHAM, exendin 9-39 -treated (EX), testicular torsion/detorsion (T/D), testicular torsion/detorsion and semaglutide-treated (SEM + T/D), and testicular torsion/detorsion, exendin, and semaglutide-treated (EX + SEM + T/D). We quantified serum follicle-stimulating hormone, luteinizing hormone, total testosterone, testicular oxidative stress markers, testicular gene expression of GLP-1/KISS1 pathway-related genes (KISS1, KISS1R, GLP-1, GLP-1R, PGC-1α, PPAR-α), steroidogenesis pathway-related genes (STAR, CYP11A1, CYP17A1, HSD17B3, CYP19A1), HO-1, Nrf-2, and testicular protein expression of HIF-1α, TNF-α, NF-κβ, Caspase-3, FAS, proliferating cell nuclear antigen, and KISS1 through testicular histopathology and immunohistochemistry assays. Testicular torsion/detorsion markedly elevated proapoptotic, proinflammatory, and oxidative stress marker levels, noticeably downregulating the expression of GLP-1/KISS1 and steroidogenesis pathway-related proteins. Semaglutide administration significantly ameliorated all these deleterious effects. Nevertheless, injecting exendin, a GLP1-R antagonist, before semaglutide abolished all the documented improvements. We concluded that semaglutide ameliorated ischemia/reperfusion-induced testicular dysfunction by modulating the GLP-1/PGC-1α-PPAR-α/KISS1/steroidogenesis signaling pathway, improving testicular oxidative state, and suppressing testicular inflammation and apoptosis.
Collapse
Affiliation(s)
- Doaa M Abdullah
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt; Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| |
Collapse
|
14
|
Piccini I, Brunken L, Chéret J, Ghatak S, Ramot Y, Alam M, Purba TS, Hardman J, Erdmann H, Jimenez F, Paus R, Bertolini M. PPARγ signaling protects hair follicle stem cells from chemotherapy-induced apoptosis and epithelial-mesenchymal transition. Br J Dermatol 2021; 186:129-141. [PMID: 34496034 DOI: 10.1111/bjd.20745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Permanent chemotherapy-induced alopecia (pCIA), for which preventive interventions remain limited, can manifest with scarring. While the underlying pathomechanisms of pCIA are unclear, depletion of epithelial hair follicle (HF) stem cells (eHFSCs) is likely to play a role. OBJECTIVES To explore the hypothesis that eHFSCs undergo pathological epithelial-mesenchymal transition (EMT) besides apoptosis in pCIA, thus explaining the scarring phenotype. Furthermore, we tested whether a PPARγ modulator can prevent pCIA-associated pathomechanisms. METHODS Organ-cultured human scalp HFs were treated with the cyclophosphamide metabolite, 4-hydroperoxycyclophosphamide (4-HC). Additionally, HFs were pre-treated with the agnostic PPARγ modulator, N-Acetyl-GED-0507-34-Levo (NAGED), which we had previously shown to promote K15 expression and antagonize EMT in eHFSCs. RESULTS In accordance with anticipated hair bulb cytotoxicity, dystrophy and catagen induction, 4-HC promoted apoptosis along with increased p53 expression, DNA damage and pathological EMT in keratin 15+ (K15) bulge eHFSCs, as evidenced by decreased E-cadherin expression and the appearance of fibronectin- and vimentin-positive cells in the bulge. Pre-treatment with NAGED protected from 4-HC-induced hair bulb cytotoxicity/dystrophy, and halted apoptosis, p53 up-regulation, and EMT in the bulge, thereby significantly preventing the depletion of K15+ human eHFSCs ex vivo. CONCLUSIONS A cyclophosphamide metabolite alone suffices to damage and deplete human scalp eHFSCs by promoting apoptosis, DNA damage, and EMT ex vivo. Therefore, pCIA-therapeutic strategies need to target these pathological processes. Our data introduce the stimulation of PPARγ signaling as a novel intervention strategy for the prevention of pCIA, given the ability of NAGED to prevent chemotherapy-induced eHFSCs damage ex vivo.
Collapse
Affiliation(s)
- I Piccini
- Monasterium Laboratory, Münster, Germany
| | - L Brunken
- Monasterium Laboratory, Münster, Germany
| | - J Chéret
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S Ghatak
- Monasterium Laboratory, Münster, Germany
| | - Y Ramot
- Department of Dermatology, Hadassah Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - M Alam
- Monasterium Laboratory, Münster, Germany.,Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Dept. of Dermatology & Venereology, Hamad Medical Corporation, Doha, Qatar.,Translational Research Institute, Academic Health System, Doha, Qatar
| | - T S Purba
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | - J Hardman
- Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK.,St John's Institute of Dermatology, King's College London, London, United Kingdom
| | | | - F Jimenez
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.,Mediteknia Dermatology Clinic, Las Palmas de Gran Canaria, Spain
| | - R Paus
- Monasterium Laboratory, Münster, Germany.,Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, NIHR Biomedical Research Centre, Manchester, UK
| | | |
Collapse
|
15
|
Salama RM, Nasr MM, Abdelhakeem JI, Roshdy OK, ElGamal MA. Alogliptin attenuates cyclophosphamide-induced nephrotoxicity: a novel therapeutic approach through modulating MAP3K/JNK/SMAD3 signaling cascade. Drug Chem Toxicol 2020; 45:1254-1263. [PMID: 32869669 DOI: 10.1080/01480545.2020.1814319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclophosphamide (CP) is widely used as a chemotherapy against various types of cancers. However, CP is accompanied with multiple organ toxicity due to production of reactive oxygen species (ROS), induction of inflammation and consequently apoptosis. Alogliptin (Alo) is a dipeptidyl peptidase 4 (DPP-IV) inhibitor, which is booming as an antidiabetic agent. Interestingly, gliptins are currently studied for their counter-regulatory effects against oxidative stress and inflammation via multiple pathways, among which is the mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinase (JNK) pathway. This cascade can reduce inflammation via mitigating the activity of mothers against decapentaplegic homolog 3 (SMAD3) and c-Jun. However, Alo effect against CP-induced kidney injury has not been previously elucidated. This tempted us to investigate the possible beneficial effect of Alo against CP-induced kidney injury via modulating the MAP3K/JNK/SMAD3 signaling cascade. Thirty-two male Wistar rats were randomly allocated into four groups. CP-treated group received a single dose of CP (200 mg/kg; i.p.). Alo-treated group received Alo (20 mg/kg/day; p.o.) for 7 days with single CP injection on day 2. Marked decrease in renal injury was observed upon Alo treatment, as evidenced through declined serum kidney function markers, oxidative stress and apoptosis markers, MAP3K expression, phospho (p)-SMAD3, p-JNK, and p-c-Jun levels. These cellular effects were reflected in reduced transforming growth factor beta (TGF-β) and tumor necrosis factor alpha (TNF-α) fibrotic and inflammatory mediators, coinciding with improved histopathological portrait. In conclusion, the current study provides novel application of Alo as a therapeutic modality against CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.,Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Merihane M Nasr
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.,Pharmacy Practice and Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Jannatullah I Abdelhakeem
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Omar K Roshdy
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Mohamed A ElGamal
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| |
Collapse
|