1
|
Lim C, Seo D. Assessment of the carcinogenic potential of particulate matter generated from 3D printing devices in Balb/c 3T3-1-1 cells. Sci Rep 2024; 14:23981. [PMID: 39402095 PMCID: PMC11473660 DOI: 10.1038/s41598-024-75491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/07/2024] [Indexed: 10/17/2024] Open
Abstract
Recently, there have been reports of sarcoma occurring in a Korean science teachers who used a 3D printer with acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) filaments for educational purposes. However, limited toxicological research data on 3D printing make it challenging to confirm a causal relationship between 3D printing and cancer. Therefore, occupational accidents involving teachers who have developed sarcoma have not been officially recognized. To address this gap, we aimed to evaluate the carcinogenic potential of particulate matter produced from ABS and PLA filaments commonly used in 3D printing. We created a generator mimicking 3D printing to generate particulate matter, which was used as an experimental material. The collected particulate matter was exposed to an in vitro system to investigate genetic damage, effects on cell transformation, and changes in carcinogenesis-related genes. Various assays, such as the comet assay, cell transformation assays, microarray analysis, and glucose consumption measurement, were employed. Cytotoxicity tests performed to determine the exposure concentration for the comet assay showed that cell viability was 83.6, 62.6, 42.0, and 10.2% for ABS at exposure concentrations of 50, 100, 200, and 400 µg/mL, respectively. PLA showed 91.7, 80.3, 65.1, and 60.8% viability at exposure concentrations of 50, 100, 200, and 400 µg/mL, respectively. Therefore, 50 µg/mL was set as the highest concentration for both ABS and PLA, and 25 and 12.5 µg/mL were set as the medium and low concentrations, respectively. The comet assay showed no changes in genetic damage caused by the particulate matter. Cytotoxicity results performed to establish exposure concentrations in the transformation assay showed that ABS showed cell viability of 88.0, 77.4, 84.7, and 85.5% at concentrations of 1.25, 2.5, 5, and 10 µg/mL, respectively, but few cells survived at concentrations above 20 µg/mL. PLA showed minimal cytotoxicity up to a concentration of 20 µg/ml. Therefore, in the cell transformation assay, a concentration of 10 µg/mL for ABS and 20 µg/mL for PLA was set as the highest exposure concentration, followed by medium and low exposure concentrations with a common ratio of 2. In cell transformation assays, only one transformed focus each was observed for both ABS and PLA particulate matter-exposed cells. The microarray assay revealed changes in gene expression, with a 41.7% change at 10 µg/mL for ABS and an 18.6% change at 20 µg/mL for PLA compared to the positive control group. Analysis of carcinogenesis-related gene expression changes on days 1, 7, and 25 of the promotion phase revealed that in cells exposed to 5 µg/mL of ABS, RBM3 gene expression increased by 3.66, 3.26, and 3.74 times, respectively, while MPP6 gene expression decreased by 0.33, 0.28, and 0.38 times, respectively, compared to the negative control group. Additionally, the measurement of glucose consumption showed that it increased in cells exposed to ABS and PLA particulate matter. Our findings suggest that the carcinogenic potential of ABS- and PLA-derived particulate matter in 3D printing cannot be completely ruled out. Therefore, further research in other test systems and analysis of additional parameters related to carcinogenesis, are deemed necessary to evaluate the carcinogenic risk of 3D printers using these materials.
Collapse
Affiliation(s)
- CheolHong Lim
- Inhalation Toxicity Research Center, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 30, Expro-ro 339 beon-gil, Yuseong-gu, Daejeon, Republic of Korea
| | - DongSeok Seo
- Inhalation Toxicity Research Center, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, 30, Expro-ro 339 beon-gil, Yuseong-gu, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Hughes MF, Clapper HM, Tedla G, Sowers TD, Rogers KR. Simulated gastric leachate of 3D printer metal-fill filaments induces cytotoxic effects in rat and human intestinal models. Toxicol In Vitro 2024; 97:105805. [PMID: 38458500 PMCID: PMC11108593 DOI: 10.1016/j.tiv.2024.105805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Metals are used in 3-dimensional (3D) printer filaments in the manufacture of 3D printed objects. Exposure to the filaments, printed objects and emissions from printing may pose health risks from release of toxic metals. This study investigated the cytotoxicity of extruded 3D printer filament leachates in rat and human intestinal cells. Copper-, bronze-, and steel-fill extruded filaments were incubated in acidic media for 2 h. Leachates were adjusted to pH 7 and cells exposed for 4 or 24 h. Concentration- and time-dependent decreases in rat and human cell viability were observed using a colorimetric assay and confirmed by microscopy. Copper- and bronze-fill leachates were more cytotoxic than steel. Copper-fill leachates had the highest copper concentrations by ICP-MS. Exposure to CuSO4 resulted in concentration-dependent cytotoxicity in rat cells. The copper chelator bathocuproine disulphonate alleviated cytotoxicity of CuSO4 and copper-fill leachate, suggesting that copper ions have a role in the cytotoxicity. Hydrogen peroxide increased and glutathione decreased in rat cells exposed to copper-fill leachate, suggesting the formation of reactive oxygen species. Overall, our data indicate that metals released from the acidic exposure of print objects using metal-fill filaments, especially copper, are toxic to rat and human intestinal cells and additional studies are needed.
Collapse
Affiliation(s)
- Michael F Hughes
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America.
| | - Haley M Clapper
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC, United States of America
| | - Getachew Tedla
- Oak Ridge Institute for Science and Education, Research Triangle Park, NC, United States of America
| | - Tyler D Sowers
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| | - Kim R Rogers
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States of America
| |
Collapse
|
3
|
Korchevskiy AA, Hill WC, Hull M, Korchevskiy A. Using particle dimensionality-based modeling to estimate lung carcinogenicity of 3D printer emissions. J Appl Toxicol 2024; 44:564-581. [PMID: 37950573 DOI: 10.1002/jat.4561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
The use of 3D printing technologies by industry and consumers is expanding. However, the approaches to assess the risk of lung carcinogenesis from the emissions of 3D printers have not yet been developed. The objective of the study was to demonstrate a methodology for modeling lung cancer risk related to specific exposure levels as derived from an experimental study of 3D printer emissions for various types of filaments (ABS, PLA, and PETG). The emissions of 15 filaments were assessed at varying extrusion temperatures for a total of 23 conditions in a Class 1,000 cleanroom following procedures described by ANSI/CAN/UL 2904. Three approaches were utilized for cancer risk estimation: (a) calculation based on PM2.5 and PM10 concentrations, (b) a proximity assessment based on the pulmonary deposition fraction, and (c) modeling based on the mass-weighted aerodynamic diameter of particles. The combined distribution of emitted particles had the mass median aerodynamic diameter (MMAD) of 0.35 μm, GSD 2.25. The average concentration of PM2.5 was 25.21 μg/m3 . The spline-based function of aerodynamic diameter allowed us to reconstruct the carcinogenic potential of seven types of fine and ultrafine particles (crystalline silica, fine TiO2 , ultrafine TiO2 , ambient PM2.5 and PM10, diesel particulates, and carbon nanotubes) with a correlation of 0.999, P < 0.00001. The central tendency estimation of lung cancer risk for 3D printer emissions was found at the level of 14.74 cases per 10,000 workers in a typical exposure scenario (average cumulative exposure of 0.3 mg/m3 - years), with the lowest risks for PLA filaments, and the highest for PETG type.
Collapse
Affiliation(s)
| | - W Cary Hill
- ITA International, LLC, Blacksburg, Virginia, USA
| | - Matthew Hull
- Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, Virginia, USA
| | | |
Collapse
|
4
|
Olšovská E, Mikušová ML, Tulinská J, Rollerová E, Vilamová Z, Líšková A, Horváthová M, Szabová M, Svoboda L, Gabor R, Hajnyš J, Dvorský R, Kukutschová J, Lukán N. Immunotoxicity of stainless-steel nanoparticles obtained after 3D printing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116088. [PMID: 38350218 DOI: 10.1016/j.ecoenv.2024.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
This study aims to investigate the in vitro effects of nanoparticles (NPs) produced during the selective laser melting (SLM) of 316 L stainless steel metal powder on the immune response in a human blood model. Experimental data did not reveal effect on viability of 316 L NPs for the tested doses. Functional immune assays showed a significant immunosuppressive effect of NPs. There was moderate stimulation (117%) of monocyte phagocytic activity without significant changes in phagocytic activity and respiratory burst of granulocytes. A significant dose-dependent increase in the levels of the pro-inflammatory cytokine TNF-a was found in blood cultures treated with NPs. On the contrary, IL-8 chemokine levels were significantly suppressed. The levels of the pro-inflammatory cytokine IL-6 were reduced by only a single concentration of NPs. These new findings can minimise potential health risks and indicate the need for more research in this area.
Collapse
Affiliation(s)
- Eva Olšovská
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Material Science and Technology, Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic.
| | - Miroslava Lehotská Mikušová
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Jana Tulinská
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Eva Rollerová
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Zuzana Vilamová
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic; Faculty of Materials and Technology, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Aurélia Líšková
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Mira Horváthová
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Michaela Szabová
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| | - Ladislav Svoboda
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Roman Gabor
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jiří Hajnyš
- Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Richard Dvorský
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Jana Kukutschová
- Faculty of Material Science and Technology, Centre for Advanced Innovation Technologies, VSB-Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Norbert Lukán
- Institute of Immunology and Allergology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03, Slovakia
| |
Collapse
|
5
|
Karlsson HL, Vallabani NVS, Wang X, Assenhöj M, Ljunggren S, Karlsson H, Odnevall I. Health hazards of particles in additive manufacturing: a cross-disciplinary study on reactivity, toxicity and occupational exposure to two nickel-based alloys. Sci Rep 2023; 13:20846. [PMID: 38012238 PMCID: PMC10682021 DOI: 10.1038/s41598-023-47884-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
The increasing use of additive manufacturing (AM) techniques (e.g., 3D-printing) offers many advantages but at the same time presents some challenges. One concern is the possible exposure and health risk related to metal containing particles of different sizes. Using the nickel-based alloys Hastelloy X (HX) and Inconel 939 (IN939) as a case, the aim of this cross-disciplinary study was to increase the understanding on possible health hazards and exposure. This was done by performing in-depth characterization of virgin, reused and condensate powders, testing in vitro toxicity (cytotoxicity, genotoxicity, oxidative stress), and measuring occupational airborne exposure. The results showed limited metal release from both HX and IN939, and slightly different surface composition of reused compared to virgin powders. No or small effects on the cultured lung cells were observed when tested up to 100 µg/mL. Particle background levels in the printing facilities were generally low, but high transient peaks were observed in relation to sieving. Furthermore, during post processing with grinding, high levels of nanoparticles (> 100,000 particles/cm3) were noted. Urine metal levels in AM operators did not exceed biomonitoring action limits. Future studies should focus on understanding the toxicity of the nanoparticles formed during printing and post-processing.
Collapse
Affiliation(s)
- Hanna L Karlsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | - Xuying Wang
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, 100 44, Stockholm, Sweden
| | - Maria Assenhöj
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Helen Karlsson
- Occupational and Environmental Medicine Center in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Division of Surface and Corrosion Science, 100 44, Stockholm, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institutet and KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| |
Collapse
|
6
|
Pernetti R, Maffia S, Previtali B, Oddone E. Assessment of nanoparticle emission in additive manufacturing: Comparing wire and powder laser metal deposition processes. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:329-335. [PMID: 37115506 DOI: 10.1080/15459624.2023.2208649] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Additive manufacturing (AM), often referred to as 3D printing, is an emerging technology with a wide range of industrial applications and process typologies. Although the release of metal nanoparticles as by-products could occur, occupational exposure limits and cogent safety standards are not currently available due to the novelty of the technology. To support the definition of benchmarks, this study aims to provide a preliminary comparison between the nanoparticle release patterns of laser metal deposition, adopting different feedstocks, namely, metal wire and metal powder. The monitored device is a university research setup, and the work presents the results of two different processes with AISI 316 L as a feedstock in powder and wired form, respectively. The monitoring confirmed the outcomes of previous studies, with a high release of nanoparticles from the powder head on the device (average 138,713 n/cm3 during printing, with maximum values exceeding 106 n/cm3). Moreover, the results show a significant concentration of nanoparticles with a wire head during the printing phase (average release of 628,156 n/cm3 with a maximum of 1,114,987 n/cm3) and pauses (average of 32,633 n/cm3 and a maximum of 733,779 n/cm3). The monitored values during pauses are particularly relevant since no personal protection equipment was used in the wire processes and the operators could access the printing room during pauses for device interventions, thus being exposed to significant nanoparticle concentrations. This study presents a preliminary evaluation of the potential exposure during laser metal deposition while implementing different technologies and provides evidence for defining effective operational safety procedures for the operators.
Collapse
Affiliation(s)
- Roberta Pernetti
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Simone Maffia
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Barbara Previtali
- Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
| | - Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Unità Operativa Ospedaliera di Medicina del Lavoro (UOOML), ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
7
|
Scaramboni C, Campos MLAM, Dorta DJ, de Oliveira DP, de Medeiros SRB, de Oliveira Galvão MF, Dreij K. Reactive oxygen species-dependent transient induction of genotoxicity by retene in human liver HepG2 cells. Toxicol In Vitro 2023:105628. [PMID: 37302535 DOI: 10.1016/j.tiv.2023.105628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Retene is a polycyclic aromatic hydrocarbon (PAH) emitted mainly by biomass combustion, and despite its ubiquity in atmospheric particulate matter (PM), studies concerning its potential hazard to human health are still incipient. In this study, the cytotoxicity and genotoxicity of retene were investigated in human HepG2 liver cells. Our data showed that retene had minimal effect on cell viability, but induced DNA strand breaks, micronuclei formation, and reactive oxygen species (ROS) formation in a dose- and time-dependent manner. Stronger effects were observed at earlier time points than at longer, indicating transient genotoxicity. Retene activated phosphorylation of Checkpoint kinase 1 (Chk1), an indicator of replication stress and chromosomal instability, which was in accordance with increased formation of micronuclei. A protective effect of the antioxidant N-acetylcysteine (NAC) towards ROS generation and DNA damage signaling was observed, suggesting oxidative stress as a key mechanism of the observed genotoxic effects of retene in HepG2 cells. Altogether our results suggest that retene may contribute to the harmful effects caused by biomass burning PM and represent a potential hazard to human health.
Collapse
Affiliation(s)
- Caroline Scaramboni
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| | - Maria Lucia Arruda Moura Campos
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Daniel Junqueira Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara, SP, Brazil
| | | | | | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
8
|
Pernetti R, Galbusera F, Cattenone A, Bergamaschi E, Previtali B, Oddone E. Characterizing Nanoparticle Release Patterns of Laser Powder Bed Fusion in Metal Additive Manufacturing: First Step Towards Mitigation Measures. Ann Work Expo Health 2023; 67:252-265. [PMID: 36416452 DOI: 10.1093/annweh/wxac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Laser Powder Bed Fusion (L-PBF) is a well-known Additive Manufacturing (AM) technology with a wide range of industrial applications. Potential occupational exposures to metal nanoparticles (NP) as by-products could occur in these processes, and no cogent occupational exposure limits are available. To contribute to this assessment, a monitoring campaign to measure the NP release pattern in two metal L-PBF facilities was carried out in two academic laboratories adopting L-PBF technology for research purposes. The monitored processes deal with two devices and three feedstock types, namely stainless steel (AISI 316L), aluminium-silicon alloy (A357) and pure copper, which are associated with different levels of industrial maturity. Prolonged environmental and personal real-time monitoring of NP concentration and size were performed, temperature and relative humidity were also measured during environmental monitoring. The measurements reveal a controlled NP release of the monitored processes, resulting in an average reduced exposure of the operators during the whole working shift, in compliance with proposed limit values (20 000 n cm-3 for density >6000 kg m-3 or 40 000 n cm-3 for density <6000 kg m-3). Nonetheless, the monitoring results show release events with an increase in NP concentration and a decrease in NP size corresponding with several actions usually performed during warm-up and cleaning, leading to exposures over 40-50 000 n cm-3 during a considerable time interval, especially during the manufacturing of pure copper powder. The results show that the actions of the operators, boundary conditions (relative humidity) and set-up of the L-PBF device have an impact on the amount of NP released and their size. Several release events (significant increase in NP concentration and decrease in NP size) are identified and associated with specific job tasks of the workers as well as building conditions. These results contribute to the definition of NP release benchmarks in AM processes and provide information to improve the operational conditions of L-PBF processes as well as safety guidelines for operators.
Collapse
Affiliation(s)
- Roberta Pernetti
- Department of Public Health, Experimental and Forensic Medicine - University of Pavia, via Forlanini 2, 27100, Pavia, Italy
| | - Francesco Galbusera
- Department of Mechanical Engineering - Politecnico di Milano, Via La Masa 1, 20156, Milano, Italy
| | - Alberto Cattenone
- Department of Electrical, Computer and Biomedical Engineering - University of Pavia, via Ferrata 5, 27100, Pavia, Italy
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Barbara Previtali
- Department of Mechanical Engineering - Politecnico di Milano, Via La Masa 1, 20156, Milano, Italy
| | - Enrico Oddone
- Department of Public Health, Experimental and Forensic Medicine - University of Pavia, via Forlanini 2, 27100, Pavia, Italy.,Hospital Occupational Unit of Occupational Medicine (UOOML) - ICS Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| |
Collapse
|
9
|
Alijagic A, Scherbak N, Kotlyar O, Karlsson P, Wang X, Odnevall I, Benada O, Amiryousefi A, Andersson L, Persson A, Felth J, Andersson H, Larsson M, Hedbrant A, Salihovic S, Hyötyläinen T, Repsilber D, Särndahl E, Engwall M. A Novel Nanosafety Approach Using Cell Painting, Metabolomics, and Lipidomics Captures the Cellular and Molecular Phenotypes Induced by the Unintentionally Formed Metal-Based (Nano)Particles. Cells 2023; 12:281. [PMID: 36672217 PMCID: PMC9856453 DOI: 10.3390/cells12020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Nikolai Scherbak
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Patrik Karlsson
- Department of Mechanical Engineering, Örebro University, SE-701 82 Örebro, Sweden
| | - Xuying Wang
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
| | - Inger Odnevall
- KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, SE-100 44 Stockholm, Sweden
- AIMES—Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, 140 00 Prague, Czech Republic
| | - Ali Amiryousefi
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Lena Andersson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
- Department of Occupational and Environmental Medicine, Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Alexander Persson
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | | | | | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Alexander Hedbrant
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Samira Salihovic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| | - Dirk Repsilber
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
- Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
10
|
du Plessis J, du Preez S, Stefaniak AB. Identification of effective control technologies for additive manufacturing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:211-249. [PMID: 35758103 PMCID: PMC9420827 DOI: 10.1080/10937404.2022.2092569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Additive manufacturing (AM) refers to several types of processes that join materials to build objects, often layer-by-layer, from a computer-aided design file. Many AM processes release potentially hazardous particles and gases during printing and associated tasks. There is limited understanding of the efficacy of controls including elimination, substitution, administrative, and personal protective technologies to reduce or remove emissions, which is an impediment to implementation of risk mitigation strategies. The Medline, Embase, Environmental Science Collection, CINAHL, Scopus, and Web of Science databases and other resources were used to identify 42 articles that met the inclusion criteria for this review. Key findings were as follows: 1) engineering controls for material extrusion-type fused filament fabrication (FFF) 3-D printers and material jetting printers that included local exhaust ventilation generally exhibited higher efficacy to decrease particle and gas levels compared with isolation alone, and 2) engineering controls for particle emissions from FFF 3-D printers displayed higher efficacy for ultrafine particles compared with fine particles and in test chambers compared with real-world settings. Critical knowledge gaps identified included a need for data: 1) on efficacy of controls for all AM process types, 2) better understanding approaches to control particles over a range of sizes and gas-phase emissions, 3) obtained using a standardized collection approach to facilitate inter-comparison of study results, 4) approaches that go beyond the inhalation exposure pathway to include controls to minimize dermal exposures, and 5) to evaluate not just the engineering tier, but also the prevention-through-design and other tiers of the hierarchy of controls.
Collapse
Affiliation(s)
- Johan du Plessis
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Sonette du Preez
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Aleksandr B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
11
|
Vallabani NVS, Karlsson HL. Primary and Secondary Genotoxicity of Nanoparticles: Establishing a Co-Culture Protocol for Assessing Micronucleus Using Flow Cytometry. FRONTIERS IN TOXICOLOGY 2022; 4:845987. [PMID: 35295219 PMCID: PMC8915829 DOI: 10.3389/ftox.2022.845987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/17/2022] [Indexed: 01/15/2023] Open
Abstract
Genotoxicity is an important endpoint to assess for understanding the risks associated with nanoparticles (NPs). Most genotoxicity studies performed on NPs have focused on primary genotoxicity analyzed by comet- or micronuclei (MN) assay using microscopic scoring. Here, we established a protocol for a more efficient version of MN assessment using flow cytometry and, importantly, both primary and secondary (inflammation-driven) genotoxicity was assessed. Human bronchial epithelial cells (HBEC-3kt) were exposed to nickel oxide (NiO) NPs directly or indirectly. The indirect exposure was done to assess secondary genotoxicity, and in this case immune cells (THP-1 derived macrophages) were exposed on inserts and the HBEC were cultured in the lower compartment. The results in monocultures showed that no increased MN formation was observed in the HBEC cells but instead a clear MN induction was noted in THP-1 cells indicating higher sensitivity. No MN formation was either observed when the HBEC were indirectly exposed, but an increase in DNA strand breaks was detected using the comet assay. Taken together, the present study emphasizes the feasibility of assessing primary and secondary genotoxicity and, furthermore, shows a clear MN induction in THP-1 monoculture following NiO NPs exposure.
Collapse
|