1
|
Li M, Li H. Research progress on inhibitors and inhibitory mechanisms of mycotoxin biosynthesis. Mycotoxin Res 2024; 40:483-494. [PMID: 39164466 DOI: 10.1007/s12550-024-00553-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Mycotoxins are secondary metabolites produced by fungi with harmful effects such as carcinogenicity, teratogenicity, nephrotoxicity, and hepatotoxicity. They cause widespread contamination of plant products such as crops, food, and feed, posing serious threats to the life and health of human beings and animals. It has been found that many traditionally synthesized and natural compounds are capable of inhibiting the growth of fungi and their secondary metabolite production. Natural compounds have attracted much attention due to their safety, environmental, and health friendly features. In this paper, compounds of plant origin with inhibitory effects on ochratoxins, aflatoxins, Fusarium toxins, and Alternaria toxins, including cinnamaldehyde, citral, magnolol, eugenol, pterostilbene, curcumin, and phenolic acid, are reviewed, and the inhibitory mechanisms of different compounds on the toxin production of fungi are also elucidated, with the aim of providing application references to reduce the contamination of fungal toxins, thus safeguarding the health of human beings and animals.
Collapse
Affiliation(s)
- Mengjie Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China
| | - Honghua Li
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, P. R. China.
| |
Collapse
|
2
|
Xu L, Luo ML, Dai JJ, Zhu H, Li P, Wang D, Yang FQ. Applications of nanomaterials with enzyme-like activity for the detection of phytochemicals and hazardous substances in plant samples. Chin Med 2024; 19:140. [PMID: 39380087 PMCID: PMC11462967 DOI: 10.1186/s13020-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing methods to ensure their safety and quantify their active components are of significant importance. Recently, nanomaterials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including colorimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings and challenges of the actual sample analysis were discussed.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Jing-Jing Dai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Huan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
3
|
Hu Y, Dai L, Xu Y, Niu D, Yang X, Xie Z, Shen P, Li X, Li H, Zhang L, Min J, Guo RT, Chen CC. Functional characterization and structural basis of an efficient ochratoxin A-degrading amidohydrolase. Int J Biol Macromol 2024; 278:134831. [PMID: 39163957 DOI: 10.1016/j.ijbiomac.2024.134831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Ochratoxin A (OTA) contamination in various agro-products poses a serious threat to the global food safety and human health, leading to enormous economic losses. Enzyme-mediated OTA degradation is an appealing strategy, and the search for more efficient enzymes is a prerequisite for achieving this goal. Here, a novel amidohydrolase, termed PwADH, was demonstrated to exhibit 7.3-fold higher activity than that of the most efficient OTA-degrading ADH3 previously reported. Cryo-electron microscopy structure analysis indicated that additional hydrogen-bond interactions among OTA and the adjacent residue H163, the more compact substrate-binding pocket, and the wider entry to the substrate-access cavity might account for the more efficient OTA-degrading activity of PwADH compared with that of ADH3. We conducted a structure-guided rational design of PwADH and obtained an upgraded variant, G88D, whose OTA-degrading activity was elevated by 1.2-fold. In addition, PwADH and the upgraded G88D were successfully expressed in the industrial yeast Pichia pastoris, and their catalytic activities were compared to those of their counterparts produced in E. coli, revealing the feasibility of producing PwADH and its variants in industrial yeast strains. These results illustrate the structural basis of a novel, efficient OTA-degrading amidohydrolase and will be beneficial for the development of high-efficiency OTA-degrading approaches.
Collapse
Affiliation(s)
- Yumei Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Longhai Dai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Sinofn (Tianjin) Pharmaceutical Technology Co., Ltd, Tianjin 300308, PR China
| | - Yuhang Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Du Niu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xuechun Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Panpan Shen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xian Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Hao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jian Min
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Chun-Chi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China; Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
4
|
Chu CS, Chen YT, Liang WZ. Investigation of the mechanisms behind ochratoxin A-induced cytotoxicity in human astrocytes and the protective effects of N-acetylcysteine. J Appl Toxicol 2024; 44:1454-1465. [PMID: 38812125 DOI: 10.1002/jat.4652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/09/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Ochratoxin A (OTA) is a type of mycotoxin commonly found in raw and processed foods. It is essential to be aware of this toxin, as it can harm your health if consumed in high quantities. OTA can induce toxic effects in various cell models. However, a more comprehensive understanding of the harmful effects of OTA on human astrocytes is required. This study evaluated OTA's neurotoxic effects on the Gibco® Human Astrocyte (GHA) cell line, its underlying mechanisms, and the antioxidant N-acetylcysteine (NAC) ability to prevent them. OTA exposure within 5-30 μM has induced concentration-dependent cytotoxicity. In the OTA-treated cells, the levels of reactive oxygen species (ROS) were found to be significantly increased, while the glutathione (GSH) contents were found to decrease considerably. The western blotting of OTA-treated cells has revealed increased Bax, cleaved caspase-9/caspase-3 protein levels, and increased Bax/Bcl-2 ratio. In addition, exposure to OTA has resulted in the induction of antioxidant responses associated with the protein expressions of Nrf2, HO-1, and NQO1. On the other hand, the pretreatment with NAC has partially alleviated the significant toxic effects of OTA. In conclusion, our findings suggest that oxidative stress and apoptosis are involved in the OTA-induced cytotoxicity in GHA cells. NAC could act as a protective agent against OTA-induced oxidative damage.
Collapse
Affiliation(s)
- Che-Sheng Chu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ying-Tso Chen
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County, Taiwan
| |
Collapse
|
5
|
Li X, Li T, Zhang J, Zhang Q, Deng K, Ma R, Wang J, Kong W. Establishment of a Dual-Signal Enhanced Fluorescent Aptasensor for Highly Sensitive Detection of Ochratoxin A. ACS OMEGA 2024; 9:21035-21041. [PMID: 38764623 PMCID: PMC11097185 DOI: 10.1021/acsomega.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
A robust and versatile dual-signal enhanced fluorescent aptasensor was developed for ochratoxin A (OTA) detection based on fluorescence resonance energy transfer between 5-carboxyfluorescein (FAM) and Super Green I (SG) fluorophores as the donor and graphene oxide (GO) nanosheet as the acceptor. Abundant SG probes were adsorbed into the FAM-complementary DNA (cDNA)-aptamer double-stranded structure to achieve remarkably enhanced fluorescence responses. Without OTA, the FAM-cDNA-SG conjugates coexisted with GO nanosheets, exhibiting strong fluorescence signals. In the presence of OTA, it was captured by the aptamers to release cDNA-FAM and SG probes, which were adsorbed by GO, leading to OTA-dependent fluorescence quenching. The changed fluorescence intensity was measured for accurate quantitation of OTA. Under optimum conditions, the dual-signal enhanced fluorescent aptasensor realized fascinating sensitivity with a limit of detection of 0.005 ng/mL and a wide concentration range of 0.02-20 ng/mL, as well as high selectivity for OTA over other interfering substances, excellent accuracy with average recoveries of 91.37-116.83% in the fortified malt matrices, and superior reliability and practicability in actual samples. This FAM-cDNA-aptamer-SG/GO nanosheet-based aptasensing platform could be extended to monitor other contaminants or trace molecules in food, environmental, and diagnostic fields by altering the corresponding aptamers.
Collapse
Affiliation(s)
- Xueying Li
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Te Li
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Jiahuai Zhang
- Center
for Clinical Laboratory, Capital Medical
University, Beijing 100069, China
| | - Qing Zhang
- Key
Laboratory of Modern Preparation of TCM, Ministry of Education, Pharmacy
College, Jiangxi University of Traditional
Chinese Medicine, Nanchang 330004, China
| | - Kai Deng
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Runran Ma
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Jiabo Wang
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
| | - Weijun Kong
- School
of Traditional Chinese Medicine, Capital
Medical University, Beijing 100069, China
- Laboratory
for Clinical Medicine, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Zhao Y, Valis M, Wang X, Nepovimova E, Wu Q, Kuca K. HIF-1α is a "brake" in JNK-mediated activation of amyloid protein precursor and hyperphosphorylation of tau induced by T-2 toxin in BV2 cells. Mycotoxin Res 2024; 40:223-234. [PMID: 38319535 DOI: 10.1007/s12550-024-00525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Mycotoxins have been shown to activate multiple mechanisms that may potentially lead to the progression of Alzheimer's disease (AD). Overexpression/aberrant cleavage of amyloid precursor protein (APP) and hyperphosphorylation of tau (P-tau) is hallmark pathologies of AD. Recent advances suggest that the neurotoxic effects of mycotoxins involve c-Jun N-terminal kinase (JNK) and hypoxia-inducible factor-1α (HIF-1α) signaling, which are closely linked to the pathogenesis of AD. Due to the high toxicity and broad contamination of T-2 toxin, we assessed how T-2 toxin exposure alters APP and P-tau formation in BV2 cells and determined the underlying roles of HIF-1α and JNK signaling. The findings revealed that T-2 toxin stimulated the expression of HIF-1α and hypoxic stress factors in addition to increasing the expression of APP and P-tau. Additionally, HIF-1α acted as a "brake" on the induction of APP and P-tau expression by negatively regulating these proteins. Notably, T-2 toxin activated JNK signaling, which broke this "brake" to promote the formation of APP and P-tau. Furthermore, the cytoskeleton was an essential target for T-2 toxin to exert cytotoxicity, and JNK/HIF-1α participated in this damage. Collectively, when the T-2 toxin induces the production of APP and P-tau, JNK might interfere with HIF-1α's protective function. This study will provide clues for further research on the neurotoxicity of mycotoxins.
Collapse
Affiliation(s)
- Yingying Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Kralove and University Hospital, Hradec Králové, Czech Republic
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 50003, Hradec Králové, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, 18071, Granada, Spain.
| |
Collapse
|
7
|
Wang Y, Wang X, Zhu YC, Wang D, Lv L, Chen L, Jin Y. Co-exposure ochratoxin A and triadimefon influenced the hepatic glucolipid metabolism and intestinal micro-environment in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169339. [PMID: 38103602 DOI: 10.1016/j.scitotenv.2023.169339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin, and triadimefon (TDF) is a triazole fungicide. These compounds are prevalent in the environment, and their residues have been detected in crops. However, the precise health risks associated with mycotoxins and fungicides are not fully elucidated. In this work, five-week-old mice were gavage with OTA (0.3 and 1.5 mg/kg/day), TDF (10 and 50 mg/kg/day), and OTA + TDF (0.3 + 10 and 1.5 + 50 mg/kg/day) for 28 days. Exposure to OTA, TDF, and OTA + TDF led to significant alterations in liver total cholesterol (TC), triglyceride (TG), and glucose (GLU) levels, as well as in genes associated with glycolipid metabolism in mice. Reduced acylcarnitine levels in serum indicated that OTA, TDF, and co-exposure inhibited fatty acid (FA) β-oxidation. Furthermore, OTA and TDF disrupted the integrality of the gut barrier function and altered the structure of the intestinal microbiota. These findings suggested that OTA, TDF, and their co-exposure might disrupt the intestinal barrier, alter the structure of the microbiota, and subsequently inhibit FA β-oxidation, indicating the interference of OTA and TDF with glycolipid-related intestinal barrier dysfunction. Moreover, our data revealed a toxic additive effect between OTA and TDF, providing a foundation for assessing the combined toxicity risk of mycotoxins and fungicides.
Collapse
Affiliation(s)
- Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Xiaofang Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, PR China
| | - Yu-Cheng Zhu
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Quality and Standard for Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, PR China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, PR China.
| |
Collapse
|
8
|
Tsilioni I, Theoharides TC. Ochratoxin A stimulates release of IL-1β, IL-18 and CXCL8 from cultured human microglia. Toxicology 2024; 502:153738. [PMID: 38301823 DOI: 10.1016/j.tox.2024.153738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/17/2024] [Accepted: 01/28/2024] [Indexed: 02/03/2024]
Abstract
Exposure to mycotoxins has been associated with the development of neuropsychiatric symptoms and Ochratoxin A (OTA) has emerged as one of the main mycotoxins associated with neurotoxicity. However, the mechanism via OTA exerts its neurotoxic effects is not well understood, especially the importance of activated microglia and their contribution to neuroinflammation. Here we report the effect of OTA on cultured immortalized human microglia-SV40, as compared to the effect of neurotensin (NT) and lipopolysaccharide (LPS) used as "positive" triggers. OTA (1, 10 and 100 nM for 24 hrs) stimulated microglia to release in the supernatant fluids statistically significant amounts of IL-1β, IL-18 and CXCL8 assayed with ELISA. Preventing or inhibiting OTA-stimulated activation of microglia by luteolin could be an important way to limit mycotoxin-induced neuroinflammation and improve associated neuropsychiatric diseases.
Collapse
Affiliation(s)
- Irene Tsilioni
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL 33759, USA.
| |
Collapse
|