1
|
Mahdy A, Mostafa OMS, Aboueldahab MM, Nigm AH. Antiparasitic activity of Cerastes cerastes venom on Schistosoma mansoni infected mice. Exp Parasitol 2024; 268:108866. [PMID: 39617195 DOI: 10.1016/j.exppara.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/17/2024] [Accepted: 11/26/2024] [Indexed: 12/09/2024]
Abstract
This study investigates whether Cerastes cerastes venom (CCV) administrated at different doses (3 and 6μg/mouse) and times (a week pre-infection, the first week post-infection, and the fifth week post-infection) possesses antischistosomal activity on Schistosoma mansoni infected mice. The results showed that treatment with half lethal dose (6 μg/mouse) of CCV, at various time schedules, led to a significant decrease in the total worm burden. However, quarter lethal dose (3μg/mouse) of CCV showed a significant decrease in the total worm burden only when administered a week pre-infection. The total number of deposited eggs by females of S. mansoni was significantly decreased in the liver and the intestine of mice treated with 3μg/mouse or 6μg/mouse CCV, associated with significant alterations in the oogram pattern with significant elevation in dead eggs levels and significant decrease in the number of mature eggs. Histological examinations illustrated a significant decrease in the number and diameter of hepatic granulomas in high dose (6μg/mouse) CCV-treated groups, while it was significant only a week pre-infection in low dose (3μg/mouse) CCV-treated groups. CCV also caused several tegumental changes in treated female and male worms, including loss of the normal surface architecture, tubercular destruction, loss of tubercles' spines, oedema, erosion, membrane blebbing, and swelling. S. mansoni-infected mice groups treated with CCV (6μg/mouse) a week before infection and at fifth week post-infection had, in all individuals up to a dilution of 1:1600, higher levels of antibodies against adult worm antigen. The current investigation found that C. cerastes venom has potential antischistosomal action in a time and dose-dependent manner (more enhanced antischistosomal effects at a dose of 6 μg and in the group treated in a week before infection), in addition to its potential immunomodulatory effect against schistosomiasis infection. More studies will be required to identify the venom's active ingredients that affect the host's immunology. This information could be used in the future to develop novel antischistosomal therapies.
Collapse
Affiliation(s)
- Asmaa Mahdy
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Osama M S Mostafa
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Marwa M Aboueldahab
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| | - Ahmed H Nigm
- Department of Zoology, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Chaniad P, Phuwajaroanpong A, Plirat W, Konyanee A, Septama AW, Punsawad C. Assessment of antimalarial activity of crude extract of Chan-Ta-Lee-La and Pra-Sa-Chan-Dang formulations and their plant ingredients for new drug candidates of malaria treatment: In vitro and in vivo experiments. PLoS One 2024; 19:e0296756. [PMID: 38206944 PMCID: PMC10783769 DOI: 10.1371/journal.pone.0296756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024] Open
Abstract
The emergence and spread of antimalarial drug resistance have become a significant problem worldwide. The search for natural products to develop novel antimalarial drugs is challenging. Therefore, this study aimed to assess the antimalarial and toxicological effects of Chan-Ta-Lee-La (CTLL) and Pra-Sa-Chan-Dang (PSCD) formulations and their plant ingredients. The crude extracts of CTLL and PSCD formulations and their plant ingredients were evaluated for in vitro antimalarial activity using Plasmodium lactate dehydrogenase enzyme and toxicity to Vero and HepG2 cells using the tetrazolium salt method. An extract from the CTLL and PSCD formulations exhibiting the highest selectivity index value was selected for further investigation using Peter's 4-day suppressive test, curative test, prophylactic test, and acute oral toxicity in mice. The phytochemical constituents were characterized using gas chromatography-mass spectrometry (GC-MS). Results showed that ethanolic extracts of CTLL and PSCD formulations possessed high antimalarial activity (half maximal inhibitory concentration = 4.88, and 4.19 g/mL, respectively) with low cytotoxicity. Ethanolic extracts of the CTLL and PSCD formulations demonstrated a significant dose-dependent decrease in parasitemia in mice. The ethanolic CTLL extract showed the greatest suppressive effect after 4 days of suppressive (89.80%) and curative (35.94%) testing at a dose of 600 mg/kg. Moreover, ethanolic PSCD extract showed the highest suppressive effect in the prophylactic test (65.82%) at a dose of 600 mg/kg. There was no acute toxicity in mice treated with ethanolic CTLL and PSCD extracts at 2,000 mg/kg bodyweight. GC-MS analysis revealed that the most abundant compounds in the ethanolic CTLL extract were linderol, isoborneol, eudesmol, linoleic acid, and oleic acid, whereas ethyl 4-methoxycinnamate was the most commonly found compound in the ethanolic PSCD extract, followed by 3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one, flamenol, oleic acid amide, linoleic acid, and oleic acid. In conclusions, ethanolic CTLL and PSCD extracts exhibited high antimalarial efficacy in vitro. The ethanolic CTLL extract at a dose of 600 mg/kg exhibited the highest antimalarial activity in the 4-day suppressive and curative tests, whereas the ethanolic PSCD extract at a dose of 600 mg/kg showed the highest antimalarial activity in the prophylactic test.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Arisara Phuwajaroanpong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Walaiporn Plirat
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Atthaphon Konyanee
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, Cibinong Science Center, National Research and Innovation Agency (BRIN), West Java, Indonesia
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
3
|
Salimo ZM, Barros AL, Adrião AAX, Rodrigues AM, Sartim MA, de Oliveira IS, Pucca MB, Baia-da-Silva DC, Monteiro WM, de Melo GC, Koolen HHF. Toxins from Animal Venoms as a Potential Source of Antimalarials: A Comprehensive Review. Toxins (Basel) 2023; 15:375. [PMID: 37368676 DOI: 10.3390/toxins15060375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Malaria is an infectious disease caused by Plasmodium spp. and it is mainly transmitted to humans by female mosquitoes of the genus Anopheles. Malaria is an important global public health problem due to its high rates of morbidity and mortality. At present, drug therapies and vector control with insecticides are respectively the most commonly used methods for the treatment and control of malaria. However, several studies have shown the resistance of Plasmodium to drugs that are recommended for the treatment of malaria. In view of this, it is necessary to carry out studies to discover new antimalarial molecules as lead compounds for the development of new medicines. In this sense, in the last few decades, animal venoms have attracted attention as a potential source for new antimalarial molecules. Therefore, the aim of this review was to summarize animal venom toxins with antimalarial activity found in the literature. From this research, 50 isolated substances, 4 venom fractions and 7 venom extracts from animals such as anurans, spiders, scorpions, snakes, and bees were identified. These toxins act as inhibitors at different key points in the biological cycle of Plasmodium and may be important in the context of the resistance of Plasmodium to currently available antimalarial drugs.
Collapse
Affiliation(s)
- Zeca M Salimo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - André L Barros
- Setor de Medicina Veterinária, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Asenate A X Adrião
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Aline M Rodrigues
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| | - Marco A Sartim
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Pro-Reitoria de Pesquisa e Pós-Graduação, Universidade Nilton Lins, Manaus 69058-030, Brazil
| | - Isadora S de Oliveira
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Manuela B Pucca
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Faculdade de Medicina, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Roraima, Boa Vista 69317-810, Brazil
| | - Djane C Baia-da-Silva
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
- Faculdade de Farmácia, Universidade Nilton Lins, Manaus 69058-030, Brazil
- Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus 69057-070, Brazil
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Federal do Amazonas, Manaus 69080-900, Brazil
| | - Wuelton M Monteiro
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Gisely C de Melo
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, Brazil
| | - Hector H F Koolen
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus 69040-000, Brazil
- Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia-Rede BIONORTE, Universidade do Estado do Amazonas, Manaus 69065-001, Brazil
| |
Collapse
|
4
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
5
|
Lomonte B. Lys49 myotoxins, secreted phospholipase A 2-like proteins of viperid venoms: A comprehensive review. Toxicon 2023; 224:107024. [PMID: 36632869 DOI: 10.1016/j.toxicon.2023.107024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Muscle necrosis is a potential clinical complication of snakebite envenomings, which in severe cases can lead to functional or physical sequelae such as disability or amputation. Snake venom proteins with the ability to directly damage skeletal muscle fibers are collectively referred to as myotoxins, and include three main types: cytolysins of the "three-finger toxin" protein family expressed in many elapid venoms, the so-called "small" myotoxins found in a number of rattlesnake venoms, and the widespread secreted phospholipase A2 (sPLA2) molecules. Among the latter, protein variants that conserve the sPLA2 structure, but lack such enzymatic activity, have been increasingly found in the venoms of many viperid species. Intriguingly, these sPLA2-like proteins are able to induce muscle necrosis by a mechanism independent of phospholipid hydrolysis. They are commonly referred to as "Lys49 myotoxins" since they most often present, among other substitutions, the replacement of the otherwise invariant residue Asp49 of sPLA2s by Lys. This work comprehensively reviews the historical developments and current knowledge towards deciphering the mechanism of action of Lys49 sPLA2-like myotoxins, and points out main gaps to be filled for a better understanding of these multifaceted snake venom proteins, to hopefully lead to improved treatments for snakebites.
Collapse
Affiliation(s)
- Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, 11501, Costa Rica.
| |
Collapse
|
6
|
Chaniad P, Techarang T, Phuwajaroanpong A, Plirat W, Viriyavejakul P, Septama AW, Punsawad C. Antimalarial efficacy and toxicological assessment of medicinal plant ingredients of Prabchompoothaweep remedy as a candidate for antimalarial drug development. BMC Complement Med Ther 2023; 23:12. [PMID: 36653791 PMCID: PMC9847039 DOI: 10.1186/s12906-023-03835-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Drug resistance exists in almost all antimalarial drugs currently in use, leading to an urgent need to identify new antimalarial drugs. Medicinal plant use is an alternative approach to antimalarial chemotherapy. This study aimed to explore potent medicinal plants from Prabchompoothaweep remedy for antimalarial drug development. METHODS Forty-eight crude extracts from Prabchompoothaweep remedy and its 23 plants ingredients were investigated in vitro for antimalarial properties using Plasmodium lactate dehydrogenase (pLDH) enzyme against Plasmodium falciparum K1 strain and toxicity effects were evaluated in Vero cells. The plant with promising antimalarial activity was further investigated using gas chromatography-mass spectrometry (GC-MS) to identify phytochemicals. Antimalarial activity in mice was evaluated using a four-day suppressive test against Plasmodium berghei ANKA at dose of 200, 400, and 600 mg/kg body weight, and acute toxicity was analyzed. RESULTS Of the 48 crude extracts, 13 (27.08%) showed high antimalarial activity against the K1 strain of P. falciparum (IC50 < 10 μg/ml) and 9 extracts (18.75%) were moderately active (IC50 = 11-50 μg/ml). Additionally, the ethanolic extract of Prabchompoothaweep remedy showed moderate antimalarial activity against the K1 strain of P. falciparum (IC50 = 14.13 μg/ml). Based on in vitro antimalarial and toxicity results, antimalarial activity of the aqueous fruit extract of Terminalia arjuna (IC50 = 4.05 μg/ml and CC50 = 219.6 μg/ml) was further studied in mice. GC-MS analysis of T. arjuna extract identified 22 compounds. The most abundant compounds were pyrogallol, gallic acid, shikimic acid, oleamide, 5-hydroxymethylfurfural, 1,1-diethoxy-ethane, quinic acid, and furfural. Analysis of the four-day suppressive test indicated that T. arjuna extract at dose of 200, 400, and 600 mg/kg body weight significantly suppressed the Plasmodium parasites by 28.33, 45.77, and 67.95%, respectively. In the acute toxicity study, T. arjuna extract was non-toxic at 2000 mg/kg body weight. CONCLUSIONS The aqueous fruit extract of T. arjuna exerts antimalarial activity against Plasmodium parasites found in humans (P. falciparum K1) and mice (P. berghei ANKA). Acute toxicity studies showed that T. arjuna extract did not show any lethality or adverse effects up to a dose of 2000 mg/kg.
Collapse
Affiliation(s)
- Prapaporn Chaniad
- grid.412867.e0000 0001 0043 6347Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand ,grid.412867.e0000 0001 0043 6347Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Tachpon Techarang
- grid.412867.e0000 0001 0043 6347Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand ,grid.412867.e0000 0001 0043 6347Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Arisara Phuwajaroanpong
- grid.412867.e0000 0001 0043 6347Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand ,grid.412867.e0000 0001 0043 6347Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Walaiporn Plirat
- grid.412867.e0000 0001 0043 6347Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand ,grid.412867.e0000 0001 0043 6347Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| | - Parnpen Viriyavejakul
- grid.10223.320000 0004 1937 0490Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, Cibinong, West Java 16915 Indonesia
| | - Chuchard Punsawad
- grid.412867.e0000 0001 0043 6347Department of Medical Science, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand ,grid.412867.e0000 0001 0043 6347Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160 Thailand
| |
Collapse
|
7
|
Frihling BEF, Boleti APDA, de Oliveira CFR, Sanches SC, Cardoso PHDO, Verbisck N, Macedo MLR, Rita PHS, Carvalho CME, Migliolo L. Purification, Characterization and Evaluation of the Antitumoral Activity of a Phospholipase A2 from the Snake Bothrops moojeni. Pharmaceuticals (Basel) 2022; 15:ph15060724. [PMID: 35745643 PMCID: PMC9230114 DOI: 10.3390/ph15060724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Nature presents a wide range of biomolecules with pharmacological potential, including venomous animal proteins. Among the protein components from snake venoms, phospholipases (PLA2) are of great importance for the development of new anticancer compounds. Thus, we aimed to evaluate the PLA2 anticancer properties from Bothrops moojeni venom. The crude venom was purified through three chromatographic steps, monitored by enzymatic activity and SDS-PAGE (12%). The purified PLA2 denominated BmPLA2 had its molecular mass and N-terminal sequence identified by mass spectrometry and Edman degradation, respectively. BmPLA2 was assayed against human epithelial colorectal adenocarcinoma cells (Caco-2), human rhabdomyosarcoma cells (RD) and mucoepidermoid carcinoma of the lung (NCI-H292), using human fibroblast cells (MRC-5) and microglia cells (BV-2) as a cytotoxicity control. BmPLA2 presented 13,836 Da and a 24 amino acid-residue homologue with snake PLA2, which showed a 90% similarity with other Bothrops moojeni PLA2. BmPLA2 displayed an IC50 of 0.6 µM against Caco-2, and demonstrated a selectivity index of 1.85 (compared to MRC-5) and 6.33 (compared to BV-2), supporting its selectivity for cancer cells. In conclusion, we describe a new acidic phospholipase, which showed antitumor activity and is a potential candidate in the development of new biotechnological tools.
Collapse
Affiliation(s)
- Breno Emanuel Farias Frihling
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ana Paula de Araújo Boleti
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Caio Fernando Ramalho de Oliveira
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Simone Camargo Sanches
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Pedro Henrique de Oliveira Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | | | - Maria Lígia Rodrigues Macedo
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande 79603-011, MS, Brazil; (C.F.R.d.O.); (M.L.R.M.)
| | - Paula Helena Santa Rita
- Biotério e Serpentário, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil;
| | - Cristiano Marcelo Espinola Carvalho
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande 79117-900, MS, Brazil; (B.E.F.F.); (A.P.d.A.B.); (S.C.S.); (P.H.d.O.C.); (C.M.E.C.)
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
- Correspondence:
| |
Collapse
|
8
|
Analyzing the influence of age and sex in Bothrops pauloensis snake venom. Toxicon 2022; 214:78-90. [DOI: 10.1016/j.toxicon.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 11/22/2022]
|
9
|
Antiprotozoal Effect of Snake Venoms and Their Fractions: A Systematic Review. Pathogens 2021; 10:pathogens10121632. [PMID: 34959587 PMCID: PMC8707848 DOI: 10.3390/pathogens10121632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Protozoal infection is a lingering public health issue of great concern, despite efforts to produce drugs and vaccines against it. Recent breakthrough research has discovered alternative antiprotozoal agents encompassing the use of snake venoms and their components to cure these infections. This study collated the existing literature to examine the antiprotozoal effect of snake venoms and their fractions. Methods: We conducted a systematic review following the PRISMA guidelines. The PubMed and Embase databases were searched from their inception until 13 October 2021. Articles were screened at the title, abstract and full-text phases. Some additional studies were obtained through the manual search process. Results: We identified 331 studies via the electronic database and manual searches, of which 55 reporting the antiprotozoal effect of snake venoms and their components were included in the review. Around 38% of studies examined the effect of whole crude venoms, and a similar percentage evaluated the effect of a proportion of enzymatic phospholipase A2 (PLA2). In particular, this review reports around 36 PLA2 activities and 29 snake crude venom activities. We also report the notable phenomenon of synergism with PLA2 isoforms of Bothrops asper. Importantly, limited attention has been given so far to the antiprotozoal efficacies of metalloproteinase, serine protease and three-finger toxins, although these venom components have been identified as significant components of the dominant venom families. Conclusion: This study highlights the impact of snake venoms and their fractions on controlling protozoal infections and suggests the need to examine further the effectiveness of other venom components, such as metalloproteinase, serine protease and three-finger toxins. Future research questions in this field must be redirected toward synergism in snake venom components, based on pharmacological usage and in the context of toxicology. Ascertaining the effects of snake venoms and their components on other protozoal species that have not yet been studied is imperative.
Collapse
|
10
|
Teixeira SC, da Silva MS, Gomes AAS, Moretti NS, Lopes DS, Ferro EAV, Rodrigues VDM. Panacea within a Pandora's box: the antiparasitic effects of phospholipases A 2 (PLA 2s) from snake venoms. Trends Parasitol 2021; 38:80-94. [PMID: 34364805 DOI: 10.1016/j.pt.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Parasitic diseases affect millions of individuals worldwide, mainly in low-income regions. There is no cure for most of these diseases, and the treatment relies on drugs that have side effects and lead to drug resistance, emphasizing the urgency to find new treatments. Snake venom has been gaining prominence as a rich source of molecules with antiparasitic potentials, such as phospholipases A2 (PLA2s). Here, we compile the findings involving PLA2s with antiparasitic activities against helminths, Plasmodium, Toxoplasma, and trypanosomatids. We indicate their molecular features, highlighting the possible antiparasitic mechanisms of action of these proteins. We also demonstrate interactions between PLA2s and some parasite membrane components, shedding light on potential targets for drug design that may provide better treatment for the illnesses caused by parasites.
Collapse
Affiliation(s)
- Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil.
| | - Marcelo Santos da Silva
- DNA Replication and Repair Laboratory (DRRL), Department of Chemical and Biological Sciences, Biosciences Institute, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | | | - Nilmar Silvio Moretti
- Laboratório de Biologia Molecular de Patógenos (LBMP), Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Daiana Silva Lopes
- Multidisciplinary Institute of Health, Anísio Teixeira Campus, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Science, Federal University of Uberlândia, Uberlândia (UFU), MG, Brazil
| | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| |
Collapse
|
11
|
Hatakeyama DM, Jorge Tasima L, da Costa Galizio N, Serino-Silva C, Fabri Bittencourt Rodrigues C, Rodrigues Stuginski D, Stefanini Sant’Anna S, Fernandes Grego K, Tashima AK, Nishiduka ES, de Morais-Zani K, Tanaka-Azevedo AM. From birth to adulthood: An analysis of the Brazilian lancehead (Bothrops moojeni) venom at different life stages. PLoS One 2021; 16:e0253050. [PMID: 34111213 PMCID: PMC8191990 DOI: 10.1371/journal.pone.0253050] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
The Brazilian lancehead (Bothrops moojeni) has a wide distribution in Brazil and represents a serious public health hazard. Previous works reported that the symptoms of snakebites caused by B. moojeni juveniles’ bites were mainly related to coagulation, while those caused by adults’ bites had a more prominent local damage. In this work, we analyzed the venoms of B. moojeni at different life stages to better understand the ontogeny shift in this species. Snakes were grouped by age and sex, and venom pools were formed accordingly. Compositional analyses by one-dimensional electrophoresis (1-DE), chromatography, and mass spectrometry revealed that ontogenetic changes might be mostly related to phospholipase A2 (PLA2) and metalloproteases. Regarding the venoms functional aspect, proteolytic, L-amino acid oxidase, PLA2, and coagulant in vitro activities were assayed, but only the first and the last ones showed age-related changes, with the venom of snakes up to 1 year-old displaying lower proteolytic and higher coagulant activities, while those from 2 years-old onward presented the opposite relation. The venoms of 3 years-old snakes were exceptions to the compositional and functional pattern of adults as both venoms presented profiles similar to neonates. Sex-related differences were observed in specific groups and were not age-related. In vivo experiments (median lethal dose and hemorrhagic activity) were statistically similar between neonates and adults, however we verified that the adult venom killed mice faster comparing to the neonates. All venoms were mostly recognized by the antibothropic serum and displayed similar profiles to 1-DE in western blotting. In conclusion, the Brazilian lancehead venom showed ontogenetic shift in its composition and activities. Furthermore, this change occurred in snakes from 1 to 2 years-old, and interestingly the venom pools from 3 years-old snakes had particular characteristics, which highlights the importance of comprehensive studies to better understand venom variability.
Collapse
Affiliation(s)
- Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Lídia Jorge Tasima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Nathália da Costa Galizio
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | | | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil
- Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
- * E-mail:
| |
Collapse
|