1
|
A Deep Learning Approach with Data Augmentation to Predict Novel Spider Neurotoxic Peptides. Int J Mol Sci 2021; 22:ijms222212291. [PMID: 34830173 PMCID: PMC8619404 DOI: 10.3390/ijms222212291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 11/17/2022] Open
Abstract
As major components of spider venoms, neurotoxic peptides exhibit structural diversity, target specificity, and have great pharmaceutical potential. Deep learning may be an alternative to the laborious and time-consuming methods for identifying these peptides. However, the major hurdle in developing a deep learning model is the limited data on neurotoxic peptides. Here, we present a peptide data augmentation method that improves the recognition of neurotoxic peptides via a convolutional neural network model. The neurotoxic peptides were augmented with the known neurotoxic peptides from UniProt database, and the models were trained using a training set with or without the generated sequences to verify the augmented data. The model trained with the augmented dataset outperformed the one with the unaugmented dataset, achieving accuracy of 0.9953, precision of 0.9922, recall of 0.9984, and F1 score of 0.9953 in simulation dataset. From the set of all RNA transcripts of Callobius koreanus spider, we discovered neurotoxic peptides via the model, resulting in 275 putative peptides of which 252 novel sequences and only 23 sequences showing homology with the known peptides by Basic Local Alignment Search Tool. Among these 275 peptides, four were selected and shown to have neuromodulatory effects on the human neuroblastoma cell line SH-SY5Y. The augmentation method presented here may be applied to the identification of other functional peptides from biological resources with insufficient data.
Collapse
|
2
|
Han Q, Huang L, Li J, Wang Z, Gao H, Yang Z, Zhou Z, Liu Z. Neurotoxins in the venom gland of Calommata signata, a burrowing spider. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100871. [PMID: 34315107 DOI: 10.1016/j.cbd.2021.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/06/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022]
Abstract
Calommata signata, a burrowing spider, represents a special type of predation mode in spiders, and its utilization of toxins is different from that of web-weaving spiders and wandering spiders. The existing researches on spider toxins are mainly focused on the web-weaving and wandering spiders, but little attention on that of the burrowing spiders. Through transcriptome sequencing of C. signata venom gland and the remaining part as the counterpart tissue, 25 putative neurotoxin precursors were identified. These most neurotoxins were novel because their low similarities with the known sequences except for that of over 50% similarities in four neuropeptide toxins. The 25 neuropeptide toxins were divided into five families according to the constitution of cysteines for the possible disulfide bonds and the similarities of the deduced amino acid sequences. Besides neuropeptide toxins, other potential toxins in the venom gland were also analyzed. Unlike web-weaving spiders and wandering spiders, only a few neurotoxin genes were significantly expressed in the venom gland of C. signata. In the non-peptide toxin genes, only CsTryp_SPc-1, CsPA2-1, CsVa5-2 and four PDI genes were abundantly expressed in the venom gland. The present study provided an improved understanding on the spider toxin diversity and useful information for the exploitation of spider toxins.
Collapse
Affiliation(s)
- Qianqian Han
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Lixin Huang
- Department of Applied Microbiology, Jiangsu Lixiahe District Institute of Agricultural Sciences/National Agricultural Experimental Station for Agricultural Microbiology, Yangzhou 225007, China
| | - Jingjing Li
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhaoying Wang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Haoli Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhiming Yang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zhangjin Zhou
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Weigang 1, Nanjing 210095, China.
| |
Collapse
|
3
|
Hull JJ, Gross RJ, Brent CS, Christie AE. Filling in the gaps: A reevaluation of the Lygus hesperus peptidome using an expanded de novo assembled transcriptome and molecular cloning. Gen Comp Endocrinol 2021; 303:113708. [PMID: 33388363 DOI: 10.1016/j.ygcen.2020.113708] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides are the largest and most diverse class of molecules modulating physiology and behavior. Previously, we predicted a peptidome for the western tarnished plant bug, Lygus hesperus, using transcriptomic data produced from whole individuals. A potential limitation of that analysis was the masking of underrepresented genes, in particular tissue-specific transcripts. Here, we reassessed the L. hesperus peptidome using a more comprehensive dataset comprised of the previous transcriptomic data as well as tissue-specific reads produced from heads and accessory glands. This augmented assembly significantly improves coverage depth providing confirmatory transcripts for essentially all of the previously identified families and new transcripts encoding a number of new peptide precursors corresponding to 14 peptide families. Several families not targeted in our initial study were identified in the expanded assembly, including agatoxin-like peptide, CNMamide, neuropeptide-like precursor 1, and periviscerokinin. To increase confidence in the in silico data, open reading frames of a subset of the newly identified transcripts were amplified using RT-PCR and sequence validated. Further PCR-based profiling of the putative L. hesperus agatoxin-like peptide precursor revealed evidence of alternative splicing with near ubiquitous expression across L. hesperus development, suggesting the peptide serves functional roles beyond that of a toxin. The peptides predicted here, in combination with those identified in our earlier study, expand the L. hesperus peptidome to 42 family members and provide an improved platform for initiating molecular and physiological investigations into peptidergic functionality in this non-model agricultural pest.
Collapse
Affiliation(s)
- J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA.
| | - Roni J Gross
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Colin S Brent
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
Paiva ALB, Mudadu MA, Pereira EHT, Marri CA, Guerra-Duarte C, Diniz MRV. Transcriptome analysis of the spider Phoneutria pertyi venom glands reveals novel venom components for the genus Phoneutria. Toxicon 2019; 163:59-69. [PMID: 30902682 DOI: 10.1016/j.toxicon.2019.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 11/24/2022]
Abstract
Phoneutria nigriventer spider venom has been studied for more than 40 years and several components with pharmacological potential have been described in it. However, studies on venoms from other species of the Phoneutria genus are scarce. In this work, a conventional cDNA library from the species Phoneutria pertyi venom glands was constructed, aiming to identify novel putative cysteine-rich peptide toxins for the genus Phoneutria. 296 unique sequences were identified and 51 sequences corresponded to putative cysteine-rich peptide toxins. Besides cysteine-rich peptide toxins, other putative venom components such as protease inhibitors, defensins and serine proteinases were identified. Furthermore, by manual curation of the sequences with no match at UniProt, we were able to identify glycine-rich proteins (GRP), a class of venom component never described in Phoneutria genus. This work describes the first complete sequences of toxins from the venom of P. pertyi and reveals that, despite most of the retrieved toxins show a high identity to toxins identified in Phoneutria genus, novel putative toxins remains to be described.
Collapse
Affiliation(s)
- Ana L B Paiva
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil.
| | - Mauricio A Mudadu
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine H T Pereira
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Camila A Marri
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo R V Diniz
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
5
|
Diniz MRV, Paiva ALB, Guerra-Duarte C, Nishiyama MY, Mudadu MA, de Oliveira U, Borges MH, Yates JR, Junqueira-de-Azevedo IDL. An overview of Phoneutria nigriventer spider venom using combined transcriptomic and proteomic approaches. PLoS One 2018; 13:e0200628. [PMID: 30067761 PMCID: PMC6070231 DOI: 10.1371/journal.pone.0200628] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 06/29/2018] [Indexed: 01/23/2023] Open
Abstract
Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventer spider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventer venom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- High-Throughput Nucleotide Sequencing
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Peptides/metabolism
- Proteomics
- Sequence Alignment
- Sequence Analysis, DNA
- Spider Venoms/metabolism
- Spiders/genetics
- Spiders/metabolism
- Toxins, Biological/genetics
- Toxins, Biological/metabolism
- Transcriptome
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Marcelo R. V. Diniz
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Ana L. B. Paiva
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Milton Y. Nishiyama
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | | | - Ursula de Oliveira
- Laboratório Especial de Toxinologia Aplicada, CeTICS, Instituto Butantan, São Paulo, SP, Brazil
| | - Márcia H. Borges
- Laboratório de Toxinologia Molecular, Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - John R. Yates
- Department of Chemical Physiology and Molecular and Cellular Neurobiology, The Scripps Research Institute, La Jolla, California, United States of America
| | | |
Collapse
|
6
|
Nadezhdin KD, Romanovskaia DD, Sachkova MY, Oparin PB, Kovalchuk SI, Grishin EV, Arseniev AS, Vassilevski AA. Modular toxin from the lynx spider Oxyopes takobius: Structure of spiderine domains in solution and membrane-mimicking environment. Protein Sci 2017; 26:611-616. [PMID: 27997708 DOI: 10.1002/pro.3101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/20/2016] [Accepted: 12/08/2016] [Indexed: 12/24/2022]
Abstract
We have recently demonstrated that a common phenomenon in evolution of spider venom composition is the emergence of so-called modular toxins consisting of two domains, each corresponding to a "usual" single-domain toxin. In this article, we describe the structure of two domains that build up a modular toxin named spiderine or OtTx1a from the venom of Oxyopes takobius. Both domains were investigated by solution NMR in water and detergent micelles used to mimic membrane environment. The N-terminal spiderine domain OtTx1a-AMP (41 amino acid residues) contains no cysteines. It is disordered in aqueous solution but in micelles, it assumes a stable amphiphilic structure consisting of two α-helices separated by a flexible linker. On the contrary, the C-terminal domain OtTx1a-ICK (59 residues) is a disulfide-rich polypeptide reticulated by five S-S bridges. It presents a stable structure in water and its core is the inhibitor cystine knot (ICK) or knottin motif that is common among single-domain neurotoxins. OtTx1a-ICK structure is the first knottin with five disulfide bridges and it represents a good reference for the whole oxytoxin family. The affinity of both domains to membranes was measured with NMR using titration by liposome suspensions. In agreement with biological tests, OtTx1a-AMP was found to show high membrane affinity explaining its potent antimicrobial properties.
Collapse
Affiliation(s)
- Kirill D Nadezhdin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per, Dolgoprudny, Moscow Region, 141700, Russia
| | - Daria D Romanovskaia
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per, Dolgoprudny, Moscow Region, 141700, Russia
| | - Maria Y Sachkova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Peter B Oparin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Sergey I Kovalchuk
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Eugene V Grishin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| | - Alexander S Arseniev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia.,Moscow Institute of Physics and Technology (State University), 9 Institutskiy per, Dolgoprudny, Moscow Region, 141700, Russia
| | - Alexander A Vassilevski
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya, Moscow, 117997, Russia
| |
Collapse
|
7
|
Logashina YA, Mosharova IV, Korolkova YV, Shelukhina IV, Dyachenko IA, Palikov VA, Palikova YA, Murashev AN, Kozlov SA, Stensvåg K, Andreev YA. Peptide from Sea Anemone Metridium senile Affects Transient Receptor Potential Ankyrin-repeat 1 (TRPA1) Function and Produces Analgesic Effect. J Biol Chem 2017; 292:2992-3004. [PMID: 28077580 DOI: 10.1074/jbc.m116.757369] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/03/2017] [Indexed: 11/06/2022] Open
Abstract
The transient receptor potential ankyrin-repeat 1 (TRPA1) is an important player in pain and inflammatory pathways. It is a promising target for novel drug development for the treatment of a number of pathological states. A novel peptide producing a significant potentiating effect on allyl isothiocyanate- and diclofenac-induced currents of TRPA1 was isolated from the venom of sea anemone Metridium senile. It is a 35-amino acid peptide cross-linked by two disulfide bridges named τ-AnmTX Ms 9a-1 (short name Ms 9a-1) according to a structure similar to other sea anemone peptides belonging to structural group 9a. The structures of the two genes encoding the different precursor proteins of Ms 9a-1 were determined. Peptide Ms 9a-1 acted as a positive modulator of TRPA1 in vitro but did not cause pain or thermal hyperalgesia when injected into the hind paw of mice. Intravenous injection of Ms 9a-1 (0.3 mg/kg) produced a significant decrease in the nociceptive and inflammatory response to allyl isothiocyanate (the agonist of TRPA1) and reversed CFA (Complete Freund's Adjuvant)-induced inflammation and thermal hyperalgesia. Taken together these data support the hypothesis that Ms 9a-1 potentiates the response of TRPA1 to endogenous agonists followed by persistent functional loss of TRPA1-expressing neurons. We can conclude that TRPA1 potentiating may be useful as a therapeutic approach as Ms 9a-1 produces significant analgesic and anti-inflammatory effects in mice models of pain.
Collapse
Affiliation(s)
- Yulia A Logashina
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia.,the Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya St. 8, Bldg. 2, 119991 Moscow, Russia
| | - Irina V Mosharova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia
| | - Yulia V Korolkova
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia
| | - Irina V Shelukhina
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia
| | - Igor A Dyachenko
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia, and
| | - Victor A Palikov
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia, and
| | - Yulia A Palikova
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia, and
| | - Arkadii N Murashev
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia, and
| | - Sergey A Kozlov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia
| | - Klara Stensvåg
- the Norwegian College of Fishery Science, University of Tromsø, N9037 Tromsø, Norway
| | - Yaroslav A Andreev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10,117997 Moscow, Russia, .,the Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya St. 8, Bldg. 2, 119991 Moscow, Russia
| |
Collapse
|
8
|
Transcriptome Analysis to Understand the Toxicity of Latrodectus tredecimguttatus Eggs. Toxins (Basel) 2016; 8:toxins8120378. [PMID: 27999389 PMCID: PMC5198572 DOI: 10.3390/toxins8120378] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/02/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Latrodectus tredecimguttatus is a kind of highly venomous black widow spider, with toxicity coming from not only venomous glands but also other parts of its body as well as newborn spiderlings and eggs. Up to date, although L. tredecimguttatus eggs have been demonstrated to be rich in proteinaceous toxins, there is no systematic investigation on such active components at transcriptome level. In this study, we performed a high-throughput transcriptome sequencing of L. tredecimguttatus eggs with Illumina sequencing technology. As a result, 53,284 protein-coding unigenes were identified, of which 14,185 unigenes produced significant hits in the available databases, including 280 unigenes encoding proteins or peptides homologous to known proteinaceous toxins. GO term and KEGG pathway enrichment analyses of the 280 unigenes showed that 375 GO terms and 18 KEGG pathways were significantly enriched. Functional analysis indicated that these unigene-coded toxins have the bioactivities to degrade tissue proteins, inhibit ion channels, block neuromuscular transmission, provoke anaphylaxis, induce apoptosis and hyperalgesia, etc. No known typical proteinaceous toxins in L. tredecimguttatus venomous glands, such as latrotoxins, were identified, suggesting that the eggs have a different toxicity mechanism from that of the venom. Our present transcriptome analysis not only helps to reveal the gene expression profile and toxicity mechanism of the L. tredecimguttatus eggs, but also provides references for the further related researches.
Collapse
|
9
|
Structure of purotoxin-2 from wolf spider: modular design and membrane-assisted mode of action in arachnid toxins. Biochem J 2016; 473:3113-26. [DOI: 10.1042/bcj20160573] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/12/2016] [Indexed: 01/28/2023]
Abstract
Traditionally, arachnid venoms are known to contain two particularly important groups of peptide toxins. One is disulfide-rich neurotoxins with a predominance of β-structure that specifically target protein receptors in neurons or muscle cells. The other is linear cationic cytotoxins that form amphiphilic α-helices and exhibit rather non-specific membrane-damaging activity. In the present paper, we describe the first 3D structure of a modular arachnid toxin, purotoxin-2 (PT2) from the wolf spider Alopecosa marikovskyi (Lycosidae), studied by NMR spectroscopy. PT2 is composed of an N-terminal inhibitor cystine knot (ICK, or knottin) β-structural domain and a C-terminal linear cationic domain. In aqueous solution, the C-terminal fragment is hyper-flexible, whereas the knottin domain is very rigid. In membrane-mimicking environment, the C-terminal domain assumes a stable amphipathic α-helix. This helix effectively tethers the toxin to membranes and serves as a membrane-access and membrane-anchoring device. Sequence analysis reveals that the knottin + α-helix architecture is quite widespread among arachnid toxins, and PT2 is therefore the founding member of a large family of polypeptides with similar structure motifs. Toxins from this family target different membrane receptors such as P2X in the case of PT2 and calcium channels, but their mechanism of action through membrane access may be strikingly similar.
Collapse
|
10
|
Mikov AN, Kozlov SA. [Structural Features of Cysteine-Stabilized Polypeptides from Sea Anemones Venoms]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016; 41:511-23. [PMID: 26762088 DOI: 10.1134/s1068162015050088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nowadays, venom-based drug discovery becomes popular again: pharmaceutical companies evaluate animal venom potential as a combinatory library of biologically-active compounds. Collaborations with research groups from academia are intensified, new toxins are being investigated, among which polypeptides are of paramount importance. Sea anemones produce the most diversified, from structural point of view, polypep- tide venom components among other animals. This particular review considers known polypeptide toxins from sea anemones, basically taking into account its classification by primary structural features. The most important functional characteristics are analyzed in each structural class.
Collapse
|
11
|
Sturm S, Ramesh D, Brockmann A, Neupert S, Predel R. Agatoxin-like peptides in the neuroendocrine system of the honey bee and other insects. J Proteomics 2016; 132:77-84. [DOI: 10.1016/j.jprot.2015.11.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/13/2015] [Accepted: 11/21/2015] [Indexed: 02/04/2023]
|
12
|
ω-Tbo-IT1-New Inhibitor of Insect Calcium Channels Isolated from Spider Venom. Sci Rep 2015; 5:17232. [PMID: 26611444 PMCID: PMC4661699 DOI: 10.1038/srep17232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/27/2015] [Indexed: 11/08/2022] Open
Abstract
Novel disulfide-containing polypeptide toxin was discovered in the venom of the Tibellus oblongus spider. We report on isolation, spatial structure determination and electrophysiological characterization of this 41-residue toxin, called ω-Tbo-IT1. It has an insect-toxic effect with LD50 19 μg/g in experiments on house fly Musca domestica larvae and with LD50 20 μg/g on juvenile Gromphadorhina portentosa cockroaches. Electrophysiological experiments revealed a reversible inhibition of evoked excitatory postsynaptic currents in blow fly Calliphora vicina neuromuscular junctions, while parameters of spontaneous ones were not affected. The inhibition was concentration dependent, with IC50 value 40 ± 10 nM and Hill coefficient 3.4 ± 0.3. The toxin did not affect frog neuromuscular junctions or glutamatergic and GABAergic transmission in rat brains. Ca(2+) currents in Calliphora vicina muscle were not inhibited, whereas in Periplaneta americana cockroach neurons at least one type of voltage gated Ca(2+) current was inhibited by ω-Tbo-IT1. Thus, the toxin apparently acts as an inhibitor of presynaptic insect Ca(2+) channels. Spatial structure analysis of the recombinant ω-Tbo-IT1 by NMR spectroscopy in aqueous solution revealed that the toxin comprises the conventional ICK fold containing an extended β-hairpin loop and short β-hairpin loop which are capable of making "scissors-like mutual motions".
Collapse
|
13
|
Abstract
Over a period of more than 300 million years, spiders have evolved complex venoms containing an extraordinary array of toxins for prey capture and defense against predators. The major components of most spider venoms are small disulfide-bridged peptides that are highly stable and resistant to proteolytic degradation. Moreover, many of these peptides have high specificity and potency toward molecular targets of therapeutic importance. This unique combination of bioactivity and stability has made spider-venom peptides valuable both as pharmacological tools and as leads for drug development. This review describes recent advances in spider-venom-based drug discovery pipelines. We discuss spider-venom-derived peptides that are currently under investigation for treatment of a diverse range of pathologies including pain, stroke and cancer.
Collapse
|
14
|
Kozlov SA, Lazarev VN, Kostryukova ES, Selezneva OV, Ospanova EA, Alexeev DG, Govorun VM, Grishin EV. Comprehensive analysis of the venom gland transcriptome of the spider Dolomedes fimbriatus. Sci Data 2014; 1:140023. [PMID: 25977780 PMCID: PMC4322566 DOI: 10.1038/sdata.2014.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/09/2014] [Indexed: 01/03/2023] Open
Abstract
A comprehensive transcriptome analysis of an expressed sequence tag (EST) database of the spider Dolomedes fimbriatus venom glands using single-residue distribution analysis (SRDA) identified 7,169 unique sequences. Mature chains of 163 different toxin-like polypeptides were predicted on the basis of well-established methodology. The number of protein precursors of these polypeptides was appreciably numerous than the number of mature polypeptides. A total of 451 different polypeptide precursors, translated from 795 unique nucleotide sequences, were deduced. A homology search divided the 163 mature polypeptide sequences into 16 superfamilies and 19 singletons. The number of mature toxins in a superfamily ranged from 2 to 49, whereas the diversity of the original nucleotide sequences was greater (2-261 variants). We observed a predominance of inhibitor cysteine knot toxin-like polypeptides among the cysteine-containing structures in the analyzed transcriptome bank. Uncommon spatial folds were also found.
Collapse
Affiliation(s)
- Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| | - Vassili N. Lazarev
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Elena S. Kostryukova
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Oksana V. Selezneva
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
| | - Elena A. Ospanova
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
| | - Dmitry G. Alexeev
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Vadim M. Govorun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
- Scientific Research Institute of Physical-Chemical Medicine of the Federal Medical and Biological Agency of Russian Federation, 1a, Malaya Pirogovskaya st., Moscow 119435, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Eugene V. Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences ul. Miklukho-Maklaya, 16/10, Moscow 117997, Russia
| |
Collapse
|
15
|
Vassilevski AA, Sachkova MY, Ignatova AA, Kozlov SA, Feofanov AV, Grishin EV. Spider toxins comprising disulfide-rich and linear amphipathic domains: a new class of molecules identified in the lynx spider Oxyopes takobius. FEBS J 2014; 280:6247-61. [PMID: 24118933 DOI: 10.1111/febs.12547] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 09/22/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022]
Abstract
In addition to the conventional neurotoxins and cytotoxins, venom of the lynx spider Oxyopes takobius was found to contain two-domain modular toxins named spiderines: OtTx1a, 1b, 2a and 2b. These toxins show both insecticidal activity (a median lethal dose against flesh fly larvae of 75 μg·g(-1)) and potent antimicrobial effects (minimal inhibitory concentrations in the range 0.1-10 μm). Full sequences of the purified spiderines were established by a combination of Edman degradation, mass spectrometry and cDNA cloning. They are relatively large molecules (~ 110 residues, 12.0-12.5 kDa) and consist of two distinct modules separated by a short linker. The N-terminal part (~ 40 residues) contains no cysteine residues, is highly cationic, forms amphipathic α-helical structures in a membrane-mimicking environment, and shows potent cytolytic effects on cells of various origins. The C-terminal part (~ 60 residues) is disulfide-rich (five S-S bonds), and contains the inhibitor cystine knot (ICK/knottin) signature. The N-terminal part of spiderines is very similar to linear cytotoxic peptides found in various organisms, whereas the C-terminal part corresponds to the usual spider neurotoxins. We synthesized the modules of OtTx1a and compared their activity to that of full-length mature toxin produced recombinantly, highlighting the importance of the N-terminal part, which retained full-length toxin activity in both insecticidal and antimicrobial assays. The unique structure of spiderines completes the range of two-domain spider toxins.
Collapse
Affiliation(s)
- Alexander A Vassilevski
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
16
|
Osmakov DI, Kozlov SA, Andreev YA, Koshelev SG, Sanamyan NP, Sanamyan KE, Dyachenko IA, Bondarenko DA, Murashev AN, Mineev KS, Arseniev AS, Grishin EV. Sea anemone peptide with uncommon β-hairpin structure inhibits acid-sensing ion channel 3 (ASIC3) and reveals analgesic activity. J Biol Chem 2013; 288:23116-27. [PMID: 23801332 PMCID: PMC3743484 DOI: 10.1074/jbc.m113.485516] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/24/2013] [Indexed: 01/14/2023] Open
Abstract
Three novel peptides were isolated from the venom of the sea anemone Urticina grebelnyi. All of them are 29 amino acid peptides cross-linked by two disulfide bridges, with a primary structure similar to other sea anemone peptides belonging to structural group 9a. The structure of the gene encoding the shared precursor protein of the identified peptides was determined. One peptide, π-AnmTX Ugr 9a-1 (short name Ugr 9-1), produced a reversible inhibition effect on both the transient and the sustained current of human ASIC3 channels expressed in Xenopus laevis oocytes. It completely blocked the transient component (IC50 10 ± 0.6 μM) and partially (48 ± 2%) inhibited the amplitude of the sustained component (IC50 1.44 ± 0.19 μM). Using in vivo tests in mice, Ugr 9-1 significantly reversed inflammatory and acid-induced pain. The other two novel peptides, AnmTX Ugr 9a-2 (Ugr 9-2) and AnmTX Ugr 9a-3 (Ugr 9-3), did not inhibit the ASIC3 current. NMR spectroscopy revealed that Ugr 9-1 has an uncommon spatial structure, stabilized by two S-S bridges, with three classical β-turns and twisted β-hairpin without interstrand disulfide bonds. This is a novel peptide spatial structure that we propose to name boundless β-hairpin.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow
| | - Sergey A. Kozlov
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow
| | - Yaroslav A. Andreev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow
| | - Sergey G. Koshelev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow
| | - Nadezhda P. Sanamyan
- the Kamchatka Branch of the Pacific Institute of Geography, Far-Eastern Branch of the Russian Academy of Sciences, ul. Partizanskaya 6, 683000 Petropavlovsk-Kamchatsky, and
| | - Karen E. Sanamyan
- the Kamchatka Branch of the Pacific Institute of Geography, Far-Eastern Branch of the Russian Academy of Sciences, ul. Partizanskaya 6, 683000 Petropavlovsk-Kamchatsky, and
| | - Igor A. Dyachenko
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia
| | - Dmitry A. Bondarenko
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia
| | - Arkadii N. Murashev
- the Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, 142290 Pushchino, Moscow, Russia
| | - Konstantin S. Mineev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow
| | - Alexander S. Arseniev
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow
| | - Eugene V. Grishin
- From the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow
| |
Collapse
|
17
|
Kuzmenkov AI, Fedorova IM, Vassilevski AA, Grishin EV. Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:724-31. [PMID: 23088912 DOI: 10.1016/j.bbamem.2012.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 10/07/2012] [Accepted: 10/15/2012] [Indexed: 02/03/2023]
Abstract
Venom of Lachesana tarabaevi (Zodariidae, "ant spiders") exhibits high insect toxicity and serves a rich source of potential insecticides. Five new peptide toxins active against insects were isolated from the venom by means of liquid chromatography and named latartoxins (LtTx). Complete amino acid sequences of LtTx (60-71 residues) were established by a combination of Edman degradation, mass spectrometry and selective proteolysis. Three toxins have eight cysteine residues that form four intramolecular disulfide bridges, and two other molecules contain an additional cystine; three LtTx are C-terminally amidated. Latartoxins can be allocated to two groups with members similar to CSTX and LSTX toxins from Cupiennius salei (Ctenidae) and Lycosa singoriensis (Lycosidae). The interesting feature of the new toxins is their modular organization: they contain an N-terminal cysteine-rich (knottin or ICK) region as in many neurotoxins from spider venoms and a C-terminal linear part alike some cytolytic peptides. The C-terminal fragment of one of the most abundant toxins LtTx-1a was synthesized and shown to possess membrane-binding activity. It was found to assume amphipathic α-helical conformation in membrane-mimicking environment and exert antimicrobial activity at micromolar concentrations. The tails endow latartoxins with the ability to bind and damage membranes; LtTx show cytolytic activity in fly larvae neuromuscular preparations. We suggest a membrane-dependent mode of action for latartoxins with their C-terminal linear modules acting as anchoring devices.
Collapse
Affiliation(s)
- Alexey I Kuzmenkov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | | | | | | |
Collapse
|
18
|
King GF, Hardy MC. Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. ANNUAL REVIEW OF ENTOMOLOGY 2012; 58:475-96. [PMID: 23020618 DOI: 10.1146/annurev-ento-120811-153650] [Citation(s) in RCA: 271] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Spider venoms are an incredibly rich source of disulfide-rich insecticidal peptides that have been tuned over millions of years to target a wide range of receptors and ion channels in the insect nervous system. These peptides can act individually, or as part of larger toxin cabals, to rapidly immobilize envenomated prey owing to their debilitating effects on nervous system function. Most of these peptides contain a unique arrangement of disulfide bonds that provides them with extreme resistance to proteases. As a result, these peptides are highly stable in the insect gut and hemolymph and many of them are orally active. Thus, spider-venom peptides can be used as stand-alone bioinsecticides, or transgenes encoding these peptides can be used to engineer insect-resistant crops or enhanced entomopathogens. We critically review the potential of spider-venom peptides to control insect pests and highlight their advantages and disadvantages compared with conventional chemical insecticides.
Collapse
Affiliation(s)
- Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | | |
Collapse
|
19
|
Kabanova NV, Vassilevski AA, Rogachevskaja OA, Bystrova MF, Korolkova YV, Pluzhnikov KA, Romanov RA, Grishin EV, Kolesnikov SS. Modulation of P2X3 receptors by spider toxins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2868-75. [PMID: 22842000 DOI: 10.1016/j.bbamem.2012.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 12/17/2022]
Abstract
Recently, the novel peptide named purotoxin-1 (PT1) has been identified in the venom of the spider Geolycosa sp. and shown to exert marked modulatory effects on P2X3 receptors in rat sensory neurons. Here we studied another polypeptide from the same spider venom, purotoxin-2 (PT2), and demonstrated that it also affected activity of mammalian P2X3 receptors. The murine and human P2X3 receptors were heterologously expressed in cells of the CHO line, and nucleotide-gated currents were stimulated by CTP and ATP, respectively. Both PT1 and PT2 negligibly affected P2X3-mediated currents elicited by brief pulses of the particular nucleotide. When subthreshold CTP or ATP was added to the bath to exert the high-affinity desensitization of P2X3 receptors, both spider toxins strongly enhanced the desensitizing action of the ambient nucleotides. At the concentration of 50nM, PT1 and PT2 elicited 3-4-fold decrease in the IC(50) dose of ambient CTP or ATP. In contrast, 100nM PT1 and PT2 negligibly affected nucleotide-gated currents mediated by mP2X2 receptors or mP2X2/mP2X3 heteromers. Altogether, our data point out that the PT1 and PT2 toxins specifically target the fast-desensitizing P2X3 receptor, thus representing a unique tool to manipulate its activity.
Collapse
Affiliation(s)
- Natalia V Kabanova
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Expression of a recombinant Phoneutria toxin active in calcium channels. Toxicon 2012; 60:907-18. [PMID: 22659539 DOI: 10.1016/j.toxicon.2012.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/24/2012] [Accepted: 05/24/2012] [Indexed: 11/20/2022]
Abstract
PnTx3-4 is a toxin isolated from the venom of the spider Phoneutria nigriventer that blocks N-, P/Q-, and R-type voltage-gated calcium channels and has great potential for clinical applications. In this report we used the SUMO system to express large amounts of recombinant PnTx3-4 peptide, which was found in both soluble and insoluble fractions of bacterial extracts. We purified the recombinant toxin from both fractions and showed that the recombinant peptide showed biological activity similar to the native PnTx3-4. In silico analysis of the primary sequence of PnTx3-4 indicated that the peptide conforms to all the criteria of a knottin scaffold. Additionally, circular dichroism spectrum analysis of the recombinant PnTx3-4 predicted that the toxin structure is composed of approximately 53% turns/unordered, 31% α-helix and 16% β-strand, which is consistent with predicted model of the PnTx3-4 knottin scaffold available at the knottin database (http://knottin.cbs.cnrs.fr). These studies provide the basis for future large scale production and structure-function investigation of PnTx3-4.
Collapse
|
21
|
Kozlov S, Grishin E. Convenient nomenclature of cysteine-rich polypeptide toxins from sea anemones. Peptides 2012; 33:240-4. [PMID: 22222611 DOI: 10.1016/j.peptides.2011.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 01/25/2023]
Abstract
Polypeptide toxins are the main constituents of natural venoms. Considerable progress in the study of these molecules has resulted in the determination of a large number of structurally related sequences. To classify newly discovered molecules, a rational nomenclature for naming peptide toxins was developed, which takes into account toxin biological activity, the species name, and structural peculiarities of the polypeptide. Herein, we suggest modifications to this nomenclature for cysteine-rich polypeptide toxins from sea anemones and describe 11 novel polypeptide structures deduced after common database revision.
Collapse
Affiliation(s)
- Sergey Kozlov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | | |
Collapse
|
22
|
Kozlov S, Grishin E. The mining of toxin-like polypeptides from EST database by single residue distribution analysis. BMC Genomics 2011; 12:88. [PMID: 21281459 PMCID: PMC3040730 DOI: 10.1186/1471-2164-12-88] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 01/31/2011] [Indexed: 11/20/2022] Open
Abstract
Background Novel high throughput sequencing technologies require permanent development of bioinformatics data processing methods. Among them, rapid and reliable identification of encoded proteins plays a pivotal role. To search for particular protein families, the amino acid sequence motifs suitable for selective screening of nucleotide sequence databases may be used. In this work, we suggest a novel method for simplified representation of protein amino acid sequences named Single Residue Distribution Analysis, which is applicable both for homology search and database screening. Results Using the procedure developed, a search for amino acid sequence motifs in sea anemone polypeptides was performed, and 14 different motifs with broad and low specificity were discriminated. The adequacy of motifs for mining toxin-like sequences was confirmed by their ability to identify 100% toxin-like anemone polypeptides in the reference polypeptide database. The employment of novel motifs for the search of polypeptide toxins in Anemonia viridis EST dataset allowed us to identify 89 putative toxin precursors. The translated and modified ESTs were scanned using a special algorithm. In addition to direct comparison with the motifs developed, the putative signal peptides were predicted and homology with known structures was examined. Conclusions The suggested method may be used to retrieve structures of interest from the EST databases using simple amino acid sequence motifs as templates. The efficiency of the procedure for directed search of polypeptides is higher than that of most currently used methods. Analysis of 39939 ESTs of sea anemone Anemonia viridis resulted in identification of five protein precursors of earlier described toxins, discovery of 43 novel polypeptide toxins, and prediction of 39 putative polypeptide toxin sequences. In addition, two precursors of novel peptides presumably displaying neuronal function were disclosed.
Collapse
Affiliation(s)
- Sergey Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | | |
Collapse
|
23
|
Peptide neurotoxins that affect voltage-gated calcium channels: a close-up on ω-agatoxins. Toxins (Basel) 2011; 3:17-42. [PMID: 22069688 PMCID: PMC3210452 DOI: 10.3390/toxins3010017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/23/2010] [Accepted: 12/30/2010] [Indexed: 12/02/2022] Open
Abstract
Peptide neurotoxins found in animal venoms have gained great interest in the field of neurotransmission. As they are high affinity ligands for calcium, potassium and sodium channels, they have become useful tools for studying channel structure and activity. Peptide neurotoxins represent the clinical potential of ion-channel modulators across several therapeutic fields, especially in developing new strategies for treatment of ion channel-related diseases. The aim of this review is to overview the latest updates in the domain of peptide neurotoxins that affect voltage-gated calcium channels, with a special focus on ω-agatoxins.
Collapse
|
24
|
Vassilevski AA, Fedorova IM, Maleeva EE, Korolkova YV, Efimova SS, Samsonova OV, Schagina LV, Feofanov AV, Magazanik LG, Grishin EV. Novel class of spider toxin: active principle from the yellow sac spider Cheiracanthium punctorium venom is a unique two-domain polypeptide. J Biol Chem 2010; 285:32293-302. [PMID: 20657014 DOI: 10.1074/jbc.m110.104265] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Venom of the yellow sac spider Cheiracanthium punctorium (Miturgidae) was found unique in terms of molecular composition. Its principal toxic component CpTx 1 (15.1 kDa) was purified, and its full amino acid sequence (134 residues) was established by protein chemistry and mass spectrometry techniques. CpTx 1 represents a novel class of spider toxin with modular architecture. It consists of two different yet homologous domains (modules) each containing a putative inhibitor cystine knot motif, characteristic of the widespread single domain spider neurotoxins. Venom gland cDNA sequencing provided precursor protein (prepropeptide) structures of three CpTx 1 isoforms (a-c) that differ by single residue substitutions. The toxin possesses potent insecticidal (paralytic and lethal), cytotoxic, and membrane-damaging activities. In both fly and frog neuromuscular preparations, it causes stable and irreversible depolarization of muscle fibers leading to contracture. This effect appears to be receptor-independent and is inhibited by high concentrations of divalent cations. CpTx 1 lyses cell membranes, as visualized by confocal microscopy, and destabilizes artificial membranes in a manner reminiscent of other membrane-active peptides by causing numerous defects of variable conductance and leading to bilayer rupture. The newly discovered class of modular polypeptides enhances our knowledge of the toxin universe.
Collapse
Affiliation(s)
- Alexander A Vassilevski
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shlyapnikov YM, Kozlov SA, Fedorov AA, Grishin EV. A comparison of polypeptide compositions of individual Agelena orientalis spider venoms. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2010. [DOI: 10.1134/s1068162010010073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Matavel A, Fleury C, Oliveira LC, Molina F, de Lima ME, Cruz JS, Cordeiro MN, Richardson M, Ramos CHI, Beirão PSL. Structure and activity analysis of two spider toxins that alter sodium channel inactivation kinetics. Biochemistry 2009; 48:3078-88. [PMID: 19231838 DOI: 10.1021/bi802158p] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, Phoneutria nigriventer toxins PnTx2-5 and PnTx2-6 were shown to markedly delay the fast inactivation kinetics of neuronal-type sodium channels. Furthermore, our data show that they have significant differences in their interaction with the channel. PnTx2-6 has an affinity 6 times higher than that of PnTx2-5, and its effects are not reversible within 10-15 min of washing. PnTx2-6 partially (59%) competes with the scorpion alpha-toxin AaHII, but not with the scorpion beta-toxin CssIV, thus suggesting a mode of action similar to that of site 3 toxins. However, PnTx2-6 is not removed by strong depolarizing pulses, as in the known site 3 toxins. We have also established the correct PnTx2-5 amino acid sequence and confirmed the sequence of PnTx2-6, in both cases establishing that the cysteines are in their oxidized form. A structural model of each toxin is proposed. They show structures with poor alpha-helix content. The model is supported by experimental and theoretical tests. A likely binding region on PnTx2-5 and PnTx2-6 is proposed on the basis of their different affinities and sequence differences.
Collapse
Affiliation(s)
- Alessandra Matavel
- Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang M, Liu Q, Luo H, Li J, Tang J, Xiao Y, Liang S. Jingzhaotoxin-II, a novel tarantula toxin preferentially targets rat cardiac sodium channel. Biochem Pharmacol 2008; 76:1716-27. [DOI: 10.1016/j.bcp.2008.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/26/2022]
|
28
|
Wang M, Diao J, Li J, Tang J, Lin Y, Hu W, Zhang Y, Xiao Y, Liang S. JZTX-IV, a unique acidic sodium channel toxin isolated from the spider Chilobrachys jingzhao. Toxicon 2008; 52:871-80. [PMID: 18848955 DOI: 10.1016/j.toxicon.2008.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 08/27/2008] [Accepted: 08/29/2008] [Indexed: 11/27/2022]
Abstract
Neurotoxins are important tools to explore the structure and function relationship of different ion channels. From the venom of Chinese spider Chilobrachys jingzhao, a novel toxin, Jingzhaotoxin-IV (JZTX-IV), is isolated and characterized. It consists of 34 amino acid residues including six acidic residues clustered with negative charge (pI=4.29). The full-length cDNA of JZTX-IV encodes an 86-amino acid precursor containing a signal peptide of 21 residues, a mature peptide of 34 residues and an intervening sequence of 29 residues with terminal Lys-Gly as the signal of amidation. Under whole-cell patch clamp conditions, JZTX-IV inhibits current and slows the inactivation of sodium channels by shifting the voltage dependence of activation to more depolarized potentials on DRG neurons, therefore, differs from the classic site 4 toxins that shift voltage dependence of activation in the opposite direction. In addition, JZTX-IV shows a slowing inactivation of sodium channel with a hyperpolarizing shift of the steady-state inactivation on acutely isolated rat cardiac cell and DRG neurons, differs from the classic site 3 toxins that do not affect the steady-state of inactivation. At high concentration, JZTX-IV has no significant effect on tetrodotoxin-resistant (TTX-R) sodium channels on rat DRG neurons and tetrodotoxin-sensitive (TTX-S) sodium channels on hippocampal neurons. Our data establish that, contrary to known toxins, JZTX-IV neither binds to the previously characterized classic site 4, nor site 3 by modifying channel gating, thus making it a novel probe of channel gating in sodium channels with potential to shed new light on this process.
Collapse
Affiliation(s)
- Meichi Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education, The College of Life Science, Hunan Normal University, Lushan Road, Yuelu District, Changsha, Hunan 410081, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
King GF, Gentz MC, Escoubas P, Nicholson GM. A rational nomenclature for naming peptide toxins from spiders and other venomous animals. Toxicon 2008; 52:264-76. [DOI: 10.1016/j.toxicon.2008.05.020] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 11/25/2022]
|
30
|
Estrada G, Villegas E, Corzo G. Spider venoms: a rich source of acylpolyamines and peptides as new leads for CNS drugs. Nat Prod Rep 2007; 24:145-61. [PMID: 17268611 DOI: 10.1039/b603083c] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advances in NMR and mass spectrometry as well as in peptide biochemistry coupled to modern methods in electrophysiology have permitted the isolation and identification of numerous products from spider venoms, previously explored due to technical limitations. The chemical composition of spider venoms is diverse, ranging from low molecular weight organic compounds such as acylpolyamines to complex peptides. First, acylpolyamines (< 1000 Da) have an aromatic moiety linked to a hydrophilic lateral chain. They were characterized for the first time in spider venoms and are ligand-gated ion channel antagonists, which block mainly postsynaptic glutamate receptors in invertebrate and vertebrate nervous systems. Acylpolyamines represent the vast majority of organic components from the spider venom. Acylpolyamine analogues have proven to suppress hippocampal epileptic discharges. Moreover, acylpolyamines could suppress excitatory postsynaptic currents inducing Ca+ accumulation in neurons leading to protection against a brain ischemic insult. Second, short spider peptides (< 6000 Da) modulate ionic currents in Ca2+, Na+, or K+ voltage-gated ion channels. Such peptides may contain from three to four disulfide bridges. Some spider peptides act specifically to discriminate among Ca2+, Na+, or K+ ion channel subtypes. Their selective affinities for ion channel subfamilies are functional for mapping excitable cells. Furthermore, several of these peptides have proven to hyperpolarize peripheral neurons, which are associated with supplying sensation to the skin and skeletal muscles. Some spider N-type calcium ion channel blockers may be important for the treatment of chronic pain. A special group of spider peptides are the amphipathic and positively charged peptides. Their secondary structure is alpha-helical and they insert into the lipid cell membrane of eukaryotic or prokaryotic cells leading to the formation of pores and subsequently depolarizing the cell membrane. Acylpolyamines and peptides from spider venoms represent an interesting source of molecules for the design of novel pharmaceutical drugs.
Collapse
Affiliation(s)
- Georgina Estrada
- Instituto de Biotecnología, UNAM, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | | | | |
Collapse
|
31
|
Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin EV. Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem 2006; 281:20983-20992. [PMID: 16735513 DOI: 10.1074/jbc.m602168200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Seven novel short linear antimicrobial and cytolytic peptides named latarcins were purified from the venom of the spider Lachesana tarabaevi. These peptides were found to produce lytic effects on cells of diverse origin (Gram-positive and Gram-negative bacteria, erythrocytes, and yeast) at micromolar concentrations. In addition, five novel peptides that share considerable structural similarity with the purified latarcins were predicted from the L. tarabaevi venom gland expressed sequence tag data base. Latarcins were shown to adopt amphipathic alpha-helical structure in membrane-mimicking environment by CD spectroscopy. Planar lipid bilayer studies indicated that the general mode of action was scaled membrane destabilization at the physiological membrane potential consistent with the "carpet-like" model. Latarcins represent seven new structural groups of lytic peptides and share little homology with other known peptide sequences. For every latarcin, a precursor protein sequence was identified. On the basis of structural features, latarcin precursors were split into three groups: simple precursors with a conventional prepropeptide structure; binary precursors with a typical modular organization; and complex precursors, which were suggested to be cleaved into mature chains of two different types.
Collapse
Affiliation(s)
- Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia.
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Alexei V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Andrey Y Surovoy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry V Karpunin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Eugene V Grishin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| |
Collapse
|