1
|
Jiang X, Miao J, Li J, Ye Y. Characterization of Lophiotoma leucotropis Mitochondrial Genome of Family Turridae and Phylogenetic Considerations within the Neogastropoda. Animals (Basel) 2024; 14:192. [PMID: 38254362 PMCID: PMC11326093 DOI: 10.3390/ani14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Neogastropoda is a group of marine organisms with an extremely wide distribution that is rich in species and economic and ornamental values, the classification of species in this order has been ongoing for a long time, but there is still a great controversy about whether this order is monophyletic. In this study, we obtained the complete mitogenome of Lophiotoma leucotropis by next-generation sequencing and analyzed the basic structural features of the genome, and we found that the number of genes was consistent with that of most of the Neogastropoda snails, containing 37 genes, including 13 protein-coding genes (PCGs), 2 rRNAs, and 22 tRNAs. Analyzing base content, amino acid content, codon usage preference, and tRNA structure, the mitogenomes of eight species of Turridae were selected for analysis of selection pressures, and it was found that the evolution of species in this family was affected by purifying selection. In addition, by analyzing the rearrangement characteristics, it was found that the sequence of L. leucotropis was consistent with the Conoidea consensus order, and four of the eight species involved in the analysis showed rearrangements. Finally, we constructed a phylogenetic tree by combining PCGs of 60 species within Caenogastropoda and found Neogastropoda to be a monophyletic group, validating the results of morphological classification. The results will provide more references for the classification and species evolution of Neogastropoda, as well as phylogenetic analysis.
Collapse
Affiliation(s)
- Xinqin Jiang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
- College of Fisheries, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Miao
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
2
|
Ghiselli F, Gomes-Dos-Santos A, Adema CM, Lopes-Lima M, Sharbrough J, Boore JL. Molluscan mitochondrial genomes break the rules. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200159. [PMID: 33813887 DOI: 10.1098/rstb.2020.0159] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The first animal mitochondrial genomes to be sequenced were of several vertebrates and model organisms, and the consistency of genomic features found has led to a 'textbook description'. However, a more broad phylogenetic sampling of complete animal mitochondrial genomes has found many cases where these features do not exist, and the phylum Mollusca is especially replete with these exceptions. The characterization of full mollusc mitogenomes required considerable effort involving challenging molecular biology, but has created an enormous catalogue of surprising deviations from that textbook description, including wide variation in size, radical genome rearrangements, gene duplications and losses, the introduction of novel genes, and a complex system of inheritance dubbed 'doubly uniparental inheritance'. Here, we review the extraordinary variation in architecture, molecular functioning and intergenerational transmission of molluscan mitochondrial genomes. Such features represent a great potential for the discovery of biological history, processes and functions that are novel for animal mitochondrial genomes. This provides a model system for studying the evolution and the manifold roles that mitochondria play in organismal physiology, and many ways that the study of mitochondrial genomes are useful for phylogeny and population biology. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Italy
| | - André Gomes-Dos-Santos
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, and Department of Biology, Faculty of Sciences, University of Porto, Portugal
| | - Coen M Adema
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, USA
| | - Manuel Lopes-Lima
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Jeffrey L Boore
- Providence St Joseph Health and the Institute for Systems Biology, Seattle, USA
| |
Collapse
|
3
|
Du L, Cai S, Liu J, Liu R, Zhang H. The complete mitochondrial genome of a cold seep gastropod Phymorhynchus buccinoides (Neogastropoda: Conoidea: Raphitomidae). PLoS One 2020; 15:e0242541. [PMID: 33253261 PMCID: PMC7703994 DOI: 10.1371/journal.pone.0242541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 11/04/2020] [Indexed: 11/18/2022] Open
Abstract
Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.
Collapse
Affiliation(s)
- Lvpei Du
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shanya Cai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Jun Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ruoyu Liu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haibin Zhang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
4
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
5
|
Abstract
Dipetalonema gracile is a common parasite in squirrel monkeys (Saimiri sciureus), which can cause malnutrition and progressive wasting of the host, and lead to death in the case of massive infection. This study aimed to identify a suspected D. gracile worm from a dead squirrel monkey by means of molecular biology, and to amplify its complete mitochondrial genome by polymerase chain reaction (PCR) and sequence analysis. The results identified the worm as D. gracile, and the full length of its complete mitochondrial genome was 13,584 bp, which contained 22 tRNA genes, 12 protein-coding genes, two rRNA genes, one AT-rich region and one small non-coding region. The nucleotide composition included A (16.89%), G (20.19%), T (56.22%) and C (6.70%), among which A + T = 73.11%. The 12 protein-coding genes used TTG and ATT as start codons, and TAG and TAA as stop codons. Among the 22 tRNA genes, only trnS1AGN and trnS2UCN exhibited the TΨC-loop structure, while the other 20 tRNAs showed the TV-loop structure. The rrnL (986 bp) and rrnS (685 bp) genes were single-stranded and conserved in secondary structure. This study has enriched the mitochondrial gene database of Dipetalonema and laid a scientific basis for further study on classification, and genetic and evolutionary relationships of Dipetalonema nematodes.
Collapse
|
6
|
Uribe JE, Zardoya R, Puillandre N. Phylogenetic relationships of the conoidean snails (Gastropoda: Caenogastropoda) based on mitochondrial genomes. Mol Phylogenet Evol 2018; 127:898-906. [DOI: 10.1016/j.ympev.2018.06.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/02/2023]
|
7
|
Guo Z, Jiang Z, Han L, Ding Y, Hou X. Characterisation of the complete mitochondrial genome of the black-footed abalone Haliotis iris. NEW ZEALAND JOURNAL OF ZOOLOGY 2018. [DOI: 10.1080/03014223.2018.1495655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zhansheng Guo
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| | - Zhaoyang Jiang
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| | - Leng Han
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| | - Yi Ding
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| | - Xuguang Hou
- Marine College, Shandong University at Weihai, Weihai, People’s Republic of China
| |
Collapse
|
8
|
Wang JG, Zhang D, Jakovlić I, Wang WM. Sequencing of the complete mitochondrial genomes of eight freshwater snail species exposes pervasive paraphyly within the Viviparidae family (Caenogastropoda). PLoS One 2017; 12:e0181699. [PMID: 28742843 PMCID: PMC5526530 DOI: 10.1371/journal.pone.0181699] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/04/2017] [Indexed: 11/21/2022] Open
Abstract
Phylogenetic relationships among snails (Caenogastropoda) are still unresolved, and many taxonomic categories remain non-monophyletic. Paraphyly has been reported within a large family of freshwater snails, Viviparidae, where the taxonomic status of several species remains questionable. As many endemic Chinese viviparid species have become endangered during the last few decades, this presents a major obstacle for conservation efforts. Mitochondrial genomes (mitogenomes) carry a large amount of data, so they can often provide a much higher resolution for phylogenetic analyses in comparison to the traditionally used molecular markers. To help resolve their phylogenetic relationships, the complete mitogenomes of eight Chinese viviparid snails, Viviparus chui, Cipangopaludina chinensis, C. ussuriensis, C. dianchiensis (endangered), Margarya melanioides (endangered), M. monodi (critically endangered), Bellamya quadrata and B. aeruginosa, were sequenced and compared to almost all of the available caenogastropod mitogenomes. Viviparidae possess the largest mitogenomes (16 392 to 18 544 bp), exhibit the highest A+T bias (72.5% on average), and some exhibit unique gene orders (a rearrangement of the standard MYCWQGE box), among the Caenogastropoda. Apart from the Vermetidae family and Cerithioidea superfamily, which possessed unique gene orders, the remaining studied caenogastropod mitogenomes exhibited highly conserved gene order, with minimal variations. Maximum likelihood and Bayesian inference analyses, used to reconstruct the phylogenetic relationships among 49 almost complete (all 37 genes) caenogastropod mitogenomes, produced almost identical tree topologies. Viviparidae were divided into three clades: a) Margarya and Cipangopaludina (except C. ussuriensis), b) Bellamya and C. ussuriensis, c) Viviparus chui. Our results present evidence that some Cipangopaludina species (dianchiensis and cathayensis) should be renamed into the senior genus Margarya. The phylogenetic resolution obtained in this study is insufficient to fully resolve the relationships within the 'b' clade, but if C. chinensis proves to be a valid representative of the genus, C. ussuriensis may have to be reassigned a different genus (possibly Bellamya, or even a new genus). Non-monophyly also remains pervasive among the higher (above the family-level) Caenogastropod taxonomic classes. Gene order distance matrix produced a different phylogenetic signal from the nucleotide sequences, which indicates a limited usability of this approach for inferring caenogastropod phylogenies. As phenotypic homoplasy appears to be widespread among some viviparid genera, in order to effectively protect the rapidly diminishing endemic Viviparid populations in China, further detailed molecular phylogenetic studies are urgently needed to resolve the taxonomic status of several species.
Collapse
Affiliation(s)
- Ju-Guang Wang
- Key Lab of Freshwater Animal Breeding of the Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, PR China
| | - Dong Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, PR China
| | - Wei-Min Wang
- Key Lab of Freshwater Animal Breeding of the Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, PR China
- Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Changde, China
| |
Collapse
|
9
|
Uribe JE, Puillandre N, Zardoya R. Beyond Conus: Phylogenetic relationships of Conidae based on complete mitochondrial genomes. Mol Phylogenet Evol 2016; 107:142-151. [PMID: 27794464 DOI: 10.1016/j.ympev.2016.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/06/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
Abstract
Understanding how the extraordinary taxonomic and ecological diversity of cone snails (Caenogastropoda: Conidae) evolved requires a statistically robust phylogenetic framework, which thus far is not available. While recent molecular phylogenies have been able to distinguish several deep lineages within the family Conidae, including the genera Profundiconus, Californiconus, Conasprella, and Conus (and within this one, several subgenera), phylogenetic relationships among these genera remain elusive. Moreover, the possibility that additional deep lineages may exist within the family is open. Here, we reconstructed with probabilistic methods a molecular phylogeny of Conidae using the newly sequenced complete or nearly complete mitochondrial (mt) genomes of the following nine species that represent all main Conidae lineages and potentially new ones: Profundiconus teramachii, Californiconus californicus, Conasprella wakayamaensis, Lilliconus sagei, Pseudolilliconus traillii, Conus (Kalloconus) venulatus, Conus (Lautoconus) ventricosus, Conus (Lautoconus) hybridus, and Conus (Eugeniconus) nobilis. To test the monophyly of the family, we also sequenced the nearly complete mt genomes of the following three species representing closely related conoidean families: Benthomangelia sp. (Mangeliidae), Tomopleura sp. (Borsoniidae), and Glyphostoma sp. (Clathurellidae). All newly sequenced conoidean mt genomes shared a relatively constant gene order with rearrangements limited to tRNA genes. The reconstructed phylogeny recovered with high statistical support the monophyly of Conidae and phylogenetic relationships within the family. The genus Profundiconus was placed as sister to the remaining genera. Within these, a clade including Californiconus and Lilliconus+Pseudolilliconus was the sister group of Conasprella to the exclusion of Conus. The phylogeny included a new lineage whose relative phylogenetic position was unknown (Lilliconus) and uncovered thus far hidden diversity within the family (Pseudolilliconus). Moreover, reconstructed phylogenetic relationships allowed inferring that the peculiar diet of Californiconus based on worms, mollusks, crustaceans and fish is derived, and reinforce the hypothesis that the ancestor of Conidae was a worm hunter. A chronogram was reconstructed under an uncorrelated relaxed molecular clock, which dated the origin of the family shortly after the Cretaceous-Tertiary boundary (about 59million years ago) and the divergence among main lineages during the Paleocene and the Eocene (56-30million years ago).
Collapse
Affiliation(s)
- Juan E Uribe
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 43 rue Cuvier, CP26, F-75005 Paris, France
| | - Rafael Zardoya
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
10
|
Nakajima Y, Shinzato C, Khalturina M, Nakamura M, Watanabe H, Satoh N, Mitarai S. The mitochondrial genome sequence of a deep-sea, hydrothermal vent limpet, Lepetodrilus nux, presents a novel vetigastropod gene arrangement. Mar Genomics 2016; 28:121-126. [PMID: 27102631 DOI: 10.1016/j.margen.2016.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/08/2016] [Accepted: 04/08/2016] [Indexed: 01/27/2023]
Abstract
While mitochondrial (mt) genomes are used extensively for comparative and evolutionary genomics, few mt genomes of deep-sea species, including hydrothermal vent species, have been determined. The Genus Lepetodrilus is a major deep-sea gastropod taxon that occurs in various deep-sea ecosystems. Using next-generation sequencing, we determined nearly the complete mitochondrial genome sequence of Lepetodrilus nux, which inhabits hydrothermal vents in the Okinawa Trough. The total length of the mitochondrial genome is 16,353bp, excluding the repeat region. It contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a control region, typical of most metazoan genomes. Compared with other vetigastropod mt genome sequences, L. nux employs a novel mt gene arrangement. Other novel arrangements have been identified in the vetigastropod, Fissurella volcano, and in Chrysomallon squamiferum, a neomphaline gastropod; however, all three gene arrangements are different, and Bayesian inference suggests that each lineage diverged independently. Our findings suggest that vetigastropod mt gene arrangements are more diverse than previously realized.
Collapse
Affiliation(s)
- Yuichi Nakajima
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Mariia Khalturina
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Masako Nakamura
- School of Marine Science and Technology, Tokai University, Shimizu, Shizuoka 424-8610, Japan
| | - Hiromi Watanabe
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Satoshi Mitarai
- Marine Biophysics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
11
|
|
12
|
Gorson J, Ramrattan G, Verdes A, Wright EM, Kantor Y, Rajaram Srinivasan R, Musunuri R, Packer D, Albano G, Qiu WG, Holford M. Molecular Diversity and Gene Evolution of the Venom Arsenal of Terebridae Predatory Marine Snails. Genome Biol Evol 2015; 7:1761-78. [PMID: 26025559 PMCID: PMC4494067 DOI: 10.1093/gbe/evv104] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Venom peptides from predatory organisms are a resource for investigating evolutionary processes such as adaptive radiation or diversification, and exemplify promising targets for biomedical drug development. Terebridae are an understudied lineage of conoidean snails, which also includes cone snails and turrids. Characterization of cone snail venom peptides, conotoxins, has revealed a cocktail of bioactive compounds used to investigate physiological cellular function, predator-prey interactions, and to develop novel therapeutics. However, venom diversity of other conoidean snails remains poorly understood. The present research applies a venomics approach to characterize novel terebrid venom peptides, teretoxins, from the venom gland transcriptomes of Triplostephanus anilis and Terebra subulata. Next-generation sequencing and de novo assembly identified 139 putative teretoxins that were analyzed for the presence of canonical peptide features as identified in conotoxins. To meet the challenges of de novo assembly, multiple approaches for cross validation of findings were performed to achieve reliable assemblies of venom duct transcriptomes and to obtain a robust portrait of Terebridae venom. Phylogenetic methodology was used to identify 14 teretoxin gene superfamilies for the first time, 13 of which are unique to the Terebridae. Additionally, basic local algorithm search tool homology-based searches to venom-related genes and posttranslational modification enzymes identified a convergence of certain venom proteins, such as actinoporin, commonly found in venoms. This research provides novel insights into venom evolution and recruitment in Conoidean predatory marine snails and identifies a plethora of terebrid venom peptides that can be used to investigate fundamental questions pertaining to gene evolution.
Collapse
Affiliation(s)
- Juliette Gorson
- Hunter College and The Graduate Center, City University of New York Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York
| | - Girish Ramrattan
- Hunter College and The Graduate Center, City University of New York
| | - Aida Verdes
- Hunter College and The Graduate Center, City University of New York Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York
| | - Elizabeth M Wright
- Hunter College and The Graduate Center, City University of New York Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York
| | - Yuri Kantor
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia Visiting Professor, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Raj Musunuri
- Department of Bioinformatics, New York University Polytechnic School of Engineering
| | - Daniel Packer
- Hunter College and The Graduate Center, City University of New York
| | - Gabriel Albano
- Estação de Biologia Marítima da Inhaca (EBMI), Faculdade de Ciencias, Universidade Eduardo Mondlane, Distrito Municipal KaNyaka, Maputo, Mozambique
| | - Wei-Gang Qiu
- Hunter College and The Graduate Center, City University of New York
| | - Mandë Holford
- Hunter College and The Graduate Center, City University of New York Invertebrate Zoology, Sackler Institute for Comparative Genomics, American Museum of Natural History, New York
| |
Collapse
|
13
|
Sevigny JL, Kirouac LE, Thomas WK, Ramsdell JS, Lawlor KE, Sharifi O, Grewal S, Baysdorfer C, Curr K, Naimie AA, Okamoto K, Murray JA, Newcomb JM. The Mitochondrial Genomes of the Nudibranch Mollusks, Melibe leonina and Tritonia diomedea, and Their Impact on Gastropod Phylogeny. PLoS One 2015; 10:e0127519. [PMID: 25996944 PMCID: PMC4440745 DOI: 10.1371/journal.pone.0127519] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/15/2015] [Indexed: 01/28/2023] Open
Abstract
The phylogenetic relationships among certain groups of gastropods have remained unresolved in recent studies, especially in the diverse subclass Opisthobranchia, where nudibranchs have been poorly represented. Here we present the complete mitochondrial genomes of Melibe leonina and Tritonia diomedea (more recently named T. tetraquetra), two nudibranchs from the unrepresented Cladobranchia group, and report on the resulting phylogenetic analyses. Both genomes coded for the typical thirteen protein-coding genes, twenty-two transfer RNAs, and two ribosomal RNAs seen in other species. The twelve-nucleotide deletion previously reported for the cytochrome oxidase 1 gene in several other Melibe species was further clarified as three separate deletion events. These deletions were not present in any opisthobranchs examined in our study, including the newly sequenced M. leonina or T. diomedea, suggesting that these previously reported deletions may represent more recently divergent taxa. Analysis of the secondary structures for all twenty-two tRNAs of both M. leonina and T. diomedea indicated truncated d arms for the two serine tRNAs, as seen in some other heterobranchs. In addition, the serine 1 tRNA in T. diomedea contained an anticodon not yet reported in any other gastropod. For phylogenetic analysis, we used the thirteen protein-coding genes from the mitochondrial genomes of M. leonina, T. diomedea, and seventy-one other gastropods. Phylogenetic analyses were performed for both the class Gastropoda and the subclass Opisthobranchia. Both Bayesian and maximum likelihood analyses resulted in similar tree topologies. In the Opisthobranchia, the five orders represented in our study were monophyletic (Anaspidea, Cephalaspidea, Notaspidea, Nudibranchia, Sacoglossa). In Gastropoda, two of the three traditional subclasses, Opisthobranchia and Pulmonata, were not monophyletic. In contrast, four of the more recently named gastropod clades (Vetigastropoda, Neritimorpha, Caenogastropoda, and Heterobranchia) were all monophyletic, and thus appear to be better classifications for this diverse group.
Collapse
Affiliation(s)
- Joseph L. Sevigny
- Department of Biology and Health Science, New England College, Henniker, New Hampshire, United States of America
| | - Lauren E. Kirouac
- Department of Biology and Health Science, New England College, Henniker, New Hampshire, United States of America
| | - William Kelley Thomas
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Jordan S. Ramsdell
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - Kayla E. Lawlor
- Department of Biology and Health Science, New England College, Henniker, New Hampshire, United States of America
| | - Osman Sharifi
- Department of Biological Sciences, California State University, East Bay, Hayward, California, United States of America
| | - Simarvir Grewal
- Department of Biological Sciences, California State University, East Bay, Hayward, California, United States of America
| | - Christopher Baysdorfer
- Department of Biological Sciences, California State University, East Bay, Hayward, California, United States of America
| | - Kenneth Curr
- Department of Biological Sciences, California State University, East Bay, Hayward, California, United States of America
| | - Amanda A. Naimie
- Department of Biology and Health Science, New England College, Henniker, New Hampshire, United States of America
| | - Kazufusa Okamoto
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, United States of America
| | - James A. Murray
- Department of Biological Sciences, California State University, East Bay, Hayward, California, United States of America
| | - James M. Newcomb
- Department of Biology and Health Science, New England College, Henniker, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
14
|
Kawashima Y, Nishihara H, Akasaki T, Nikaido M, Tsuchiya K, Segawa S, Okada N. The complete mitochondrial genomes of deep-sea squid (Bathyteuthis abyssicola), bob-tail squid (Semirossia patagonica) and four giant cuttlefish (Sepia apama, S. latimanus, S. lycidas and S. pharaonis), and their application to the phylogenetic analysis of Decapodiformes. Mol Phylogenet Evol 2013; 69:980-93. [PMID: 23811434 DOI: 10.1016/j.ympev.2013.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/01/2013] [Accepted: 06/13/2013] [Indexed: 11/18/2022]
Abstract
We determined the complete mitochondrial (mt) genomes of the deep-sea squid (Bathyteuthis abyssicola; supperfamily Bathyteuthoidea), the bob-tail squid (Semirossia patagonica; order Sepiolida) and four giant cuttlefish (Sepia apama, S. latimanus, S. lycidas and S. pharaonis; order Sepiida). The unique structures of the mt genomes of Bathyteuthis and Semirossia provide new information about the evolution of decapodiform mt genomes. We show that the mt genome of B. abyssicola, like those of other oegopsids studied so far, has two long duplicated regions that include seven genes (COX1-3, ATP6 and ATP8, tRNA(Asn), and either ND2 or ND3) and that one of the duplicated COX3 genes has lost its function. The mt genome of S. patagonica is unlike any other decapodiforms and, like Nautilus, its ATP6 and ATP8 genes are not adjacent to each other. The four giant cuttlefish have identical mt gene order to other cuttlefish determined to date. Molecular phylogenetic analyses using maximum likelihood and Bayesian methods suggest that traditional order Sepioidea (Sepiolida+Sepiida) is paraphyletic and Sepia (cuttlefish) has the sister-relationship with all other decapodiforms. Taking both the phylogenetic analyses and the mt gene order analyses into account, it is likely that the octopus-type mt genome is an ancestral state and that it had maintained from at least the Cephalopoda ancestor to the common ancestor of Oegopsida, Myopsida and Sepiolida.
Collapse
Affiliation(s)
- Yuumi Kawashima
- Central Customs Laboratory, 6-3-5, Kashiwanoha, Kashiwa-shi, Chiba 277-0082, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Brauer A, Kurz A, Stockwell T, Baden-Tillson H, Heidler J, Wittig I, Kauferstein S, Mebs D, Stöcklin R, Remm M. The mitochondrial genome of the venomous cone snail Conus consors. PLoS One 2012; 7:e51528. [PMID: 23236512 PMCID: PMC3517553 DOI: 10.1371/journal.pone.0051528] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 11/05/2012] [Indexed: 11/18/2022] Open
Abstract
Cone snails are venomous predatory marine neogastropods that belong to the species-rich superfamily of the Conoidea. So far, the mitochondrial genomes of two cone snail species (Conus textile and Conus borgesi) have been described, and these feed on snails and worms, respectively. Here, we report the mitochondrial genome sequence of the fish-hunting cone snail Conus consors and describe a novel putative control region (CR) which seems to be absent in the mitochondrial DNA (mtDNA) of other cone snail species. This possible CR spans about 700 base pairs (bp) and is located between the genes encoding the transfer RNA for phenylalanine (tRNA-Phe, trnF) and cytochrome c oxidase subunit III (cox3). The novel putative CR contains several sequence motifs that suggest a role in mitochondrial replication and transcription.
Collapse
|
16
|
Núñez-Acuña G, Aguilar-Espinoza A, Gallardo-Escárate C. Complete mitochondrial genome of Concholepas concholepas inferred by 454 pyrosequencing and mtDNA expression in two mollusc populations. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012. [PMID: 23201902 DOI: 10.1016/j.cbd.2012.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Despite the great relevance of mitochondrial genome analysis in evolutionary studies, there is scarce information on how the transcripts associated with the mitogenome are expressed and their role in the genetic structuring of populations. This work reports the complete mitochondrial genome of the marine gastropod Concholepas concholepas, obtained by 454 pryosequencing, and an analysis of mitochondrial transcripts of two populations 1000 km apart along the Chilean coast. The mitochondrion of C. concholepas is 15,495 base pairs (bp) in size and contains the 37 subunits characteristic of metazoans, as well as a non-coding region of 330 bp. In silico analysis of mitochondrial gene variability showed significant differences among populations. In terms of levels of relative abundance of transcripts associated with mitochondrion in the two populations (assessed by qPCR), the genes associated with complexes III and IV of the mitochondrial genome had the highest levels of expression in the northern population while transcripts associated with the ATP synthase complex had the highest levels of expression in the southern population. Moreover, fifteen polymorphic SNPs were identified in silico between the mitogenomes of the two populations. Four of these markers implied different amino acid substitutions (non-synonymous SNPs). This work contributes novel information regarding the mitochondrial genome structure and mRNA expression levels of C. concholepas.
Collapse
Affiliation(s)
- Gustavo Núñez-Acuña
- Laboratory of Biotechnology and Aquatic Genomics, Interdisciplinary Center for Aquaculture Research, University of Concepción, Chile
| | | | | |
Collapse
|
17
|
Liu GH, Wang SY, Huang WY, Zhao GH, Wei SJ, Song HQ, Xu MJ, Lin RQ, Zhou DH, Zhu XQ. The complete mitochondrial genome of Galba pervia (Gastropoda: Mollusca), an intermediate host snail of Fasciola spp. PLoS One 2012; 7:e42172. [PMID: 22844544 PMCID: PMC3406003 DOI: 10.1371/journal.pone.0042172] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 07/04/2012] [Indexed: 11/26/2022] Open
Abstract
Complete mitochondrial (mt) genomes and the gene rearrangements are increasingly used as molecular markers for investigating phylogenetic relationships. Contributing to the complete mt genomes of Gastropoda, especially Pulmonata, we determined the mt genome of the freshwater snail Galba pervia, which is an important intermediate host for Fasciola spp. in China. The complete mt genome of G. pervia is 13,768 bp in length. Its genome is circular, and consists of 37 genes, including 13 genes for proteins, 2 genes for rRNA, 22 genes for tRNA. The mt gene order of G. pervia showed novel arrangement (tRNA-His, tRNA-Gly and tRNA-Tyr change positions and directions) when compared with mt genomes of Pulmonata species sequenced to date, indicating divergence among different species within the Pulmonata. A total of 3655 amino acids were deduced to encode 13 protein genes. The most frequently used amino acid is Leu (15.05%), followed by Phe (11.24%), Ser (10.76%) and IIe (8.346%). Phylogenetic analyses using the concatenated amino acid sequences of the 13 protein-coding genes, with three different computational algorithms (maximum parsimony, maximum likelihood and Bayesian analysis), all revealed that the families Lymnaeidae and Planorbidae are closely related two snail families, consistent with previous classifications based on morphological and molecular studies. The complete mt genome sequence of G. pervia showed a novel gene arrangement and it represents the first sequenced high quality mt genome of the family Lymnaeidae. These novel mtDNA data provide additional genetic markers for studying the epidemiology, population genetics and phylogeographics of freshwater snails, as well as for understanding interplay between the intermediate snail hosts and the intra-mollusca stages of Fasciola spp..
Collapse
Affiliation(s)
- Guo-Hua Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Shu-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Animal Science and Technology, Guangxi Univesity, Nanning, Guangxi Zhuang Nationality Autonomous Region, China
| | - Wei-Yi Huang
- College of Animal Science and Technology, Guangxi Univesity, Nanning, Guangxi Zhuang Nationality Autonomous Region, China
| | - Guang-Hui Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Shu-Jun Wei
- Institute of Plant and Environmental Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hui-Qun Song
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Min-Jun Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Rui-Qing Lin
- Laboratory of Parasitology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Dong-Hui Zhou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province, China
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan Province, China
- * E-mail:
| |
Collapse
|
18
|
Chen HX, Sun SC, Sundberg P, Ren WC, Norenburg JL. A comparative study of nemertean complete mitochondrial genomes, including two new ones for Nectonemertes cf. mirabilis and Zygeupolia rubens, may elucidate the fundamental pattern for the phylum Nemertea. BMC Genomics 2012; 13:139. [PMID: 22507536 PMCID: PMC3368773 DOI: 10.1186/1471-2164-13-139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 04/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mitochondrial genome is important for studying genome evolution as well as reconstructing the phylogeny of organisms. Complete mitochondrial genome sequences have been reported for more than 2200 metazoans, mainly vertebrates and arthropods. To date, from a total of about 1275 described nemertean species, only three complete and two partial mitochondrial DNA sequences from nemerteans have been published. Here, we report the entire mitochondrial genomes for two more nemertean species: Nectonemertes cf. mirabilis and Zygeupolia rubens. RESULTS The sizes of the entire mitochondrial genomes are 15365 bp for N. cf. mirabilis and 15513 bp for Z. rubens. Each circular genome contains 37 genes and an AT-rich non-coding region, and overall nucleotide composition is AT-rich. In both species, there is significant strand asymmetry in the distribution of nucleotides, with the coding strand being richer in T than A and in G than C. The AT-rich non-coding regions of the two genomes have some repeat sequences and stem-loop structures, both of which may be associated with the initiation of replication or transcription. The 22 tRNAs show variable substitution patterns in nemerteans, with higher sequence conservation in genes located on the H strand. Gene arrangement of N. cf. mirabilis is identical to that of Paranemertes cf. peregrina, both of which are Hoplonemertea, while that of Z. rubens is the same as in Lineus viridis, both of which are Heteronemertea. Comparison of the gene arrangements and phylogenomic analysis based on concatenated nucleotide sequences of the 12 mitochondrial protein-coding genes revealed that species with closer relationships share more identical gene blocks. CONCLUSION The two new mitochondrial genomes share many features, including gene contents, with other known nemertean mitochondrial genomes. The tRNA families display a composite substitution pathway. Gene order comparison to the proposed ground pattern of Bilateria and some lophotrochozoans suggests that the nemertean ancestral mitochondrial gene order most closely resembles the heteronemertean type. Phylogenetic analysis proposes a sister-group relationship between Hetero- and Hoplonemertea, which supports one of two recent alternative hypotheses of nemertean phylogeny.
Collapse
Affiliation(s)
- Hai-Xia Chen
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, SE-405 30 Gothenburg, Sweden
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Shi-Chun Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Per Sundberg
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, SE-405 30 Gothenburg, Sweden
| | - Wei-Cheng Ren
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, PO Box 480, SE-405 30, Sweden
| | - Jon L Norenburg
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0163, USA
| |
Collapse
|
19
|
White TR, Conrad MM, Tseng R, Balayan S, Golding R, de Frias Martins AM, Dayrat BA. Ten new complete mitochondrial genomes of pulmonates (Mollusca: Gastropoda) and their impact on phylogenetic relationships. BMC Evol Biol 2011; 11:295. [PMID: 21985526 PMCID: PMC3198971 DOI: 10.1186/1471-2148-11-295] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/10/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reconstructing the higher relationships of pulmonate gastropods has been difficult. The use of morphology is problematic due to high homoplasy. Molecular studies have suffered from low taxon sampling. Forty-eight complete mitochondrial genomes are available for gastropods, ten of which are pulmonates. Here are presented the new complete mitochondrial genomes of the ten following species of pulmonates: Salinator rhamphidia (Amphiboloidea); Auriculinella bidentata, Myosotella myosotis, Ovatella vulcani, and Pedipes pedipes (Ellobiidae); Peronia peronii (Onchidiidae); Siphonaria gigas (Siphonariidae); Succinea putris (Stylommatophora); Trimusculus reticulatus (Trimusculidae); and Rhopalocaulis grandidieri (Veronicellidae). Also, 94 new pulmonate-specific primers across the entire mitochondrial genome are provided, which were designed for amplifying entire mitochondrial genomes through short reactions and closing gaps after shotgun sequencing. RESULTS The structural features of the 10 new mitochondrial genomes are provided. All genomes share similar gene orders. Phylogenetic analyses were performed including the 10 new genomes and 17 genomes from Genbank (outgroups, opisthobranchs, and other pulmonates). Bayesian Inference and Maximum Likelihood analyses, based on the concatenated amino-acid sequences of the 13 protein-coding genes, produced the same topology. The pulmonates are paraphyletic and basal to the opisthobranchs that are monophyletic at the tip of the tree. Siphonaria, traditionally regarded as a basal pulmonate, is nested within opisthobranchs. Pyramidella, traditionally regarded as a basal (non-euthyneuran) heterobranch, is nested within pulmonates. Several hypotheses are rejected, such as the Systellommatophora, Geophila, and Eupulmonata. The Ellobiidae is polyphyletic, but the false limpet Trimusculus reticulatus is closely related to some ellobiids. CONCLUSIONS Despite recent efforts for increasing the taxon sampling in euthyneuran (opisthobranchs and pulmonates) molecular phylogenies, several of the deeper nodes are still uncertain, because of low support values as well as some incongruence between analyses based on complete mitochondrial genomes and those based on individual genes (18S, 28S, 16S, CO1). Additional complete genomes are needed for pulmonates (especially for Williamia, Otina, and Smeagol), as well as basal heterobranchs closely related to euthyneurans. Increasing the number of markers for gastropod (and more broadly mollusk) phylogenetics also is necessary in order to resolve some of the deeper nodes -although clearly not an easy task. Step by step, however, new relationships are being unveiled, such as the close relationships between the false limpet Trimusculus and ellobiids, the nesting of pyramidelloids within pulmonates, and the close relationships of Siphonaria to sacoglossan opisthobranchs. The additional genomes presented here show that some species share an identical mitochondrial gene order due to convergence.
Collapse
Affiliation(s)
- Tracy R White
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Michele M Conrad
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Roger Tseng
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | - Shaina Balayan
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| | | | - António Manuel de Frias Martins
- CIBIO-Açores, Center for Biodiversity and Genetic Resources, Department of Biology, University of the Azores, 9501-801 Ponta Delgada, São Miguel, Azores, Portugal
| | - Benoît A Dayrat
- School of Natural Sciences, University of California, 5200 North Lake Road, Merced, CA 95343, USA
| |
Collapse
|
20
|
HILLS SIMONFK, TREWICK STEVENA, MORGAN-RICHARDS MARY. Phylogenetic information of genes, illustrated with mitochondrial data from a genus of gastropod molluscs. Biol J Linn Soc Lond 2011. [DOI: 10.1111/j.1095-8312.2011.01756.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Bernt M, Middendorf M. A method for computing an inventory of metazoan mitochondrial gene order rearrangements. BMC Bioinformatics 2011; 12 Suppl 9:S6. [PMID: 22151086 PMCID: PMC3283314 DOI: 10.1186/1471-2105-12-s9-s6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Background Changes in the order of mitochondrial genes are a good source of information for phylogenetic investigations. Phylogenetic hypotheses are often supported by parsimonious mitochondrial gene order rearrangement scenarios. CREx is a heuristic for computing short pairwise rearrangement scenarios for metazoan mitochondrial gene orders. Different from other methods, CREx considers four types of rearrangement operations: inversions, transpositions, inverse transpositions, and tandem duplication random loss operations. Results An extensive analysis of the CREx reconstructions for artificial data has been presented and it is shown how the quality of the reconstructed rearrangement scenarios depends on the type of rearrangement model and additional parameter values. Moreover, a fast method is proposed to apply CREx to a large number of gene orders to find likely rearrangement scenarios and store them in a graph structure called RI-Graph. This method is applied to analyse all known metazoan mitochondrial gene orders. It is shown that the obtained RI-Graph contains many rearrangement scenarios that are described in the literature. Conclusions The prospects and limitations of CREx have been analysed empirically and a comparison with the literature on gene order evolution highlights its benefits. The newly developed method to apply CREx to a large number of gene orders is successful in computing an RI-graph that contains many rearrangement scenarios for metazoan gene orders that have also been described in the literature. This shows that the new method is very helpful for a fast analysis of a large number of gene orders which is relevant due to the strongly increasing number of known gene orders.
Collapse
Affiliation(s)
- Matthias Bernt
- Parallel Computing and Complex Systems Group, Institute of Computer Science, University Leipzig, Leipzig, 04103, Germany.
| | | |
Collapse
|
22
|
Xin Y, Ren J, Liu X. Mitogenome of the small abalone Haliotis diversicolor Reeve and phylogenetic analysis within Gastropoda. Mar Genomics 2011; 4:253-62. [PMID: 22118637 DOI: 10.1016/j.margen.2011.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/18/2011] [Accepted: 06/22/2011] [Indexed: 10/17/2022]
Abstract
The complete mitochondrial coding regions of three small abalones Haliotis diversicolor Reeve, two collected from Vietnam and one from southern China, were successfully sequenced. The molecular feature of the mitochondrial genome is identical with the general description of the family Haliotidae mtDNAs that have been sequenced so far. The sequenced nucleotides are 16,186-16,266bp in length. The mitogenome encodes 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. Between adjacent genes trnH and nad5 there is an overlapping region. Comparison of the ratios of Ka and Ks among four species of Haliotis (H. diversicolor, H. discus hannai, H. rubra and H. tuberculata tuberculata) reveals that values of Ka/Ks in some NADH dehydrogenase and ATPase genes such as nad2, nad6 and atp8 are higher than those in other mitochondrial genes. Genome-wide gene arrangement among four species of Haliotis has been compared. Although all gene arrangement is the same in H. diversicolor, H. discus hannai and H. rubra, the location of trnS₂ and trnF in H. tuberculata tuberculata are inter-exchanged. Both gene arrangement and phylogenetic analysis support that the family Haliotidae is at a relatively primordial phylogenetic position in Gastropoda. Through alignment between Vietnam and southern China individuals, 111 SNPs are detected, most SNPs are synonymous mutations, and 7, 94 and 10 SNPs are observed at NCR, protein-coding region and RNA region, respectively. The result of SNP analysis also demonstrates that the difference is mainly in some NADH dehydrogenase genes between the Vietnam and southern China individuals.
Collapse
Affiliation(s)
- Yi Xin
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | |
Collapse
|
23
|
Cárdenas L, Sánchez R, Gomez D, Fuenzalida G, Gallardo-Escárate C, Tanguy A. Transcriptome analysis in Concholepas concholepas (Gastropoda, Muricidae): mining and characterization of new genomic and molecular markers. Mar Genomics 2011; 4:197-205. [PMID: 21867972 DOI: 10.1016/j.margen.2011.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 01/11/2023]
Abstract
The marine gastropod Concholepas concholepas, locally known as the "loco", is the main target species of the benthonic Chilean fisheries. Genetic and genomic tools are necessary to study the genome of this species in order to understand the molecular basis of its development, growth, and other key traits to improve the management strategies and to identify local adaptation to prevent loss of biodiversity. Here, we use pyrosequencing technologies to generate the first transcriptomic database from adult specimens of the loco. After trimming, a total of 140,756 Expressed Sequence Tag sequences were achieved. Clustering and assembly analysis identified 19,219 contigs and 105,435 singleton sequences. BlastN analysis showed a significant identity with Expressed Sequence Tags of different gastropod species available in public databases. Similarly, BlastX results showed that only 895 out of the total 124,654 had significant hits and may represent novel genes for marine gastropods. From this database, simple sequence repeat motifs were also identified and a total of 38 primer pairs were designed and tested to assess their potential as informative markers and to investigate their cross-species amplification in different related gastropod species. This dataset represents the first publicly available 454 data for a marine gastropod endemic to the southeastern Pacific coast, providing a valuable transcriptomic resource for future efforts of gene discovery and development of functional markers in other marine gastropods.
Collapse
Affiliation(s)
- Leyla Cárdenas
- Instituto de Ecología y Evolución, Universidad Austral de Chile, Casilla 567, Isla Teja, Valdivia, Chile.
| | | | | | | | | | | |
Collapse
|
24
|
Hu H, Bandyopadhyay PK, Olivera BM, Yandell M. Characterization of the Conus bullatus genome and its venom-duct transcriptome. BMC Genomics 2011; 12:60. [PMID: 21266071 PMCID: PMC3040727 DOI: 10.1186/1471-2164-12-60] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 01/25/2011] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The venomous marine gastropods, cone snails (genus Conus), inject prey with a lethal cocktail of conopeptides, small cysteine-rich peptides, each with a high affinity for its molecular target, generally an ion channel, receptor or transporter. Over the last decade, conopeptides have proven indispensable reagents for the study of vertebrate neurotransmission. Conus bullatus belongs to a clade of Conus species called Textilia, whose pharmacology is still poorly characterized. Thus the genomics analyses presented here provide the first step toward a better understanding the enigmatic Textilia clade. RESULTS We have carried out a sequencing survey of the Conus bullatus genome and venom-duct transcriptome. We find that conopeptides are highly expressed within the venom-duct, and describe an in silico pipeline for their discovery and characterization using RNA-seq data. We have also carried out low-coverage shotgun sequencing of the genome, and have used these data to determine its size, genome-wide base composition, simple repeat, and mobile element densities. CONCLUSIONS Our results provide the first global view of venom-duct transcription in any cone snail. A notable feature of Conus bullatus venoms is the breadth of A-superfamily peptides expressed in the venom duct, which are unprecedented in their structural diversity. We also find SNP rates within conopeptides are higher compared to the remainder of C. bullatus transcriptome, consistent with the hypothesis that conopeptides are under diversifying selection.
Collapse
Affiliation(s)
- Hao Hu
- Eccles institute of Human Genetics, University of Utah, and School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
25
|
Castro LR, Colgan D. The phylogenetic position of Neritimorpha based on the mitochondrial genome of Nerita melanotragus (Mollusca: Gastropoda). Mol Phylogenet Evol 2010; 57:918-23. [DOI: 10.1016/j.ympev.2010.08.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
26
|
Rawlings TA, MacInnis MJ, Bieler R, Boore JL, Collins TM. Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod molluscs. BMC Genomics 2010; 11:440. [PMID: 20642828 PMCID: PMC3091637 DOI: 10.1186/1471-2164-11-440] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 07/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Widespread sampling of vertebrates, which comprise the majority of published animal mitochondrial genomes, has led to the view that mitochondrial gene rearrangements are relatively rare, and that gene orders are typically stable across major taxonomic groups. In contrast, more limited sampling within the Phylum Mollusca has revealed an unusually high number of gene order arrangements. Here we provide evidence that the lability of the molluscan mitochondrial genome extends to the family level by describing extensive gene order changes that have occurred within the Vermetidae, a family of sessile marine gastropods that radiated from a basal caenogastropod stock during the Cenozoic Era. RESULTS Major mitochondrial gene rearrangements have occurred within this family at a scale unexpected for such an evolutionarily young group and unprecedented for any caenogastropod examined to date. We determined the complete mitochondrial genomes of four species (Dendropoma maximum, D. gregarium, Eualetes tulipa, and Thylacodes squamigerus) and the partial mitochondrial genomes of two others (Vermetus erectus and Thylaeodus sp.). Each of the six vermetid gastropods assayed possessed a unique gene order. In addition to the typical mitochondrial genome complement of 37 genes, additional tRNA genes were evident in D. gregarium (trnK) and Thylacodes squamigerus (trnV, trnLUUR). Three pseudogenes and additional tRNAs found within the genome of Thylacodes squamigerus provide evidence of a past duplication event in this taxon. Likewise, high sequence similarities between isoaccepting leucine tRNAs in Thylacodes, Eualetes, and Thylaeodus suggest that tRNA remolding has been rife within this family. While vermetids exhibit gene arrangements diagnostic of this family, they also share arrangements with littorinimorph caenogastropods, with which they have been linked based on sperm morphology and primary sequence-based phylogenies. CONCLUSIONS We have uncovered major changes in gene order within a family of caenogastropod molluscs that are indicative of a highly dynamic mitochondrial genome. Studies of mitochondrial genomes at such low taxonomic levels should help to illuminate the dynamics of gene order change, since the telltale vestiges of gene duplication, translocation, and remolding have not yet been erased entirely. Likewise, gene order characters may improve phylogenetic hypotheses at finer taxonomic levels than once anticipated and aid in investigating the conditions under which sequence-based phylogenies lack resolution or prove misleading.
Collapse
Affiliation(s)
- Timothy A Rawlings
- Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, CANADA
| | - Martin J MacInnis
- Cape Breton University, 1250 Grand Lake Road, Sydney, NS B1P 6L2, CANADA
- University of British Columbia, 2239 West Mall, Vancouver, BC V6T 1Z4, CANADA
| | - Rüdiger Bieler
- Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL 60605-2496, USA
| | - Jeffrey L Boore
- Genome Project Solutions, Inc.,1024 Promenade Street, Hercules, CA 94547, USA
| | - Timothy M Collins
- Florida International University, 11200 SW 8th Street, University Park, Miami, FL 33199, USA
- National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230, USA
| |
Collapse
|
27
|
McComish BJ, Hills SFK, Biggs PJ, Penny D. Index-free de novo assembly and deconvolution of mixed mitochondrial genomes. Genome Biol Evol 2010; 2:410-24. [PMID: 20624744 PMCID: PMC2997550 DOI: 10.1093/gbe/evq029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Second-generation sequencing technology has allowed a very large increase in sequencing throughput. In order to make use of this high throughput, we have developed a pipeline for sequencing and de novo assembly of multiple mitochondrial genomes without the costs of indexing. Simulation studies on a mixture of diverse animal mitochondrial genomes showed that mitochondrial genomes could be reassembled from a high coverage of short (35 nt) reads, such as those generated by a second-generation Illumina Genome Analyzer. We then assessed this experimentally with long-range polymerase chain reaction products from mitochondria of a human, a rat, a bird, a frog, an insect, and a mollusc. Comparison with reference genomes was used for deconvolution of the assembled contigs rather than for mapping of sequence reads. As proof of concept, we report the complete mollusc mitochondrial genome of an olive shell (Amalda northlandica). It has a very unusual putative control region, which contains a structure that would probably only be detectable by next-generation sequencing. The general approach has considerable potential, especially when combined with indexed sequencing of different groups of genomes.
Collapse
Affiliation(s)
- Bennet J McComish
- Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Palmerston North, New Zealand.
| | | | | | | |
Collapse
|
28
|
Kojima S. Extensive mitochondrial genome rearrangements between Cerithioidea and Hypsogastropoda (Mollusca; Caenogastropoda) as determined from the partial nucleotide sequences of the mitochondrial DNA of Cerithidea djadjariensis and Batillaria cumingi. Zoolog Sci 2010; 27:494-8. [PMID: 20528156 DOI: 10.2108/zsj.27.494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Partial nucleotide sequences ( approximately 8000 bp) of the mitochondrial DNA of two cerithioidean gastropod species-Cerithidea djadjariensis and Batillaria cumingi-were determined. The order of mitochondrial genes (eight protein genes, two ribosomal RNA genes, and nine transfer RNA genes) was identical between these two species. and remarkably different from the previously reported order in other gastropods. The results indicate that the genome structure of the common ancestor of Cerithioidea and its sister group, Hypsogastropoda, is almost identical to that of the common ancestor of Gastropoda; moreover, independent mitochondrial genome rearrangements were identified between the lineages of Cerithioidea and Hypsogastropoda. The rearrangements within Cerithioidea can be explained by the inversion of a single tRNA gene, two translocations of a single tRNA gene, and three translocations of a genome fragment containing a tRNA gene and protein-coding gene(s).
Collapse
Affiliation(s)
- Shigeaki Kojima
- Atmosphere and Ocean Research Institute, University of Tokyo, Chiba 277-8564, Japan.
| |
Collapse
|
29
|
Zhao QP, Zhang SH, Deng ZR, Jiang MS, Nie P. Conservation and variation in mitochondrial genomes of gastropods Oncomelania hupensis and Tricula hortensis, intermediate host snails of Schistosoma in China. Mol Phylogenet Evol 2010; 57:215-26. [PMID: 20595013 DOI: 10.1016/j.ympev.2010.05.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 03/21/2010] [Accepted: 05/31/2010] [Indexed: 10/19/2022]
Abstract
The complete mitochondrial genomes of intermediate host snails for Schistosoma in China were sequenced, including the sub-species Oncomelania hupensis hupensis in two types, and O. hupensis robertsoni, intermediate hosts for S. japonicum, and Tricula hortensis, the intermediate host of S. sinensium. Four genomes have completely the same gene order as in other caenogastropods, containing 13 protein-coding genes and 22 transfer RNAs. The gene size, start codon and termination codon are mostly the same for all protein-coding genes. However, pairwise sequence alignments revealed quite different degrees of variation. The ribbed-shelled O. hupensis hupensis and the smooth-shelled but with varix O. hupensis hupensis had a lower level of genetic distance (3.1% for protein-coding genes), but the coden usages differed obviously in the mitochondrial genomes of these two types of snails, implying that their genetic difference may be larger than previously recognized. The mean genetic distance between O. hupensis hupensis and O. hupensis robertsoni was 12% for protein-coding genes, indicating a higher degree of genetic difference. In consideration of the difference in morphology and distribution, we considered that O. hupensis hupensis and O. hupensis robertsoni can be considered as separate species. The ribbed-shelled O. hupensishupensis and smooth-shelled O. hupensis robertsoni were phylogenetically clustered together within a same clade, which was then clustered with T. hortensis, confirming their close relationship. However, species or sub-species in the Oncomelania from southeastern Asian countries should be included in future study in order to resolve the phylogenetic relationship and origination of all snails in the genus.
Collapse
Affiliation(s)
- Qin-Ping Zhao
- Department of Parasitology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | |
Collapse
|
30
|
OLIVERIO MARCO, MODICA MARIAVITTORIA. Relationships of the haematophagous marine snailColubraria(Rachiglossa: Colubrariidae), within the neogastropod phylogenetic framework. Zool J Linn Soc 2010. [DOI: 10.1111/j.1096-3642.2009.00568.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Ki JS, Lee YM, Jung SO, Horiguchi T, Cho HS, Lee JS. Mitochondrial genome of Thais clavigera (Mollusca: Gastropoda): affirmation of the conserved, ancestral gene pattern within the mollusks. Mol Phylogenet Evol 2009; 54:1016-20. [PMID: 20004731 DOI: 10.1016/j.ympev.2009.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 10/28/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Class Gastropoda includes a large number of described species, many with extensively rearranged mitochondrial genomes. We sequenced the mitogenome of the rock shell, Thais clavigera (Gastropoda: Muricidae), an intertidal snail, using long PCR with primers designed on the basis of expressed sequence tags. The mitogenome of T. clavigera consists of 2 rRNAs, 22 tRNAs, and 13 protein-coding genes, but no control region. Structural comparisons revealed that the order Sorbeoconcha, including T. clavigera, have nearly identical mitochondrial gene patterns. However, they have an inversion between a tRNA(Phe)-tRNA(Glu) cluster that comprises 21 genes, but most of the remaining structure is similar to the putative mollusk ground pattern. These findings will provide a better insight into mitochondrial gene rearrangement over the course of gastropod evolution.
Collapse
Affiliation(s)
- Jang-Seu Ki
- Department of Life Science, College of Natural Sciences, Sangmyung University, Seoul 110-743, South Korea
| | | | | | | | | | | |
Collapse
|
32
|
Cunha RL, Grande C, Zardoya R. Neogastropod phylogenetic relationships based on entire mitochondrial genomes. BMC Evol Biol 2009; 9:210. [PMID: 19698157 PMCID: PMC2741453 DOI: 10.1186/1471-2148-9-210] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Accepted: 08/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background The Neogastropoda is a highly diversified group of predatory marine snails (Gastropoda: Caenogastropoda). Traditionally, its monophyly has been widely accepted based on several morphological synapomorphies mostly related with the digestive system. However, recent molecular phylogenetic studies challenged the monophyly of Neogastropoda due to the inclusion of representatives of other caenogastropod lineages (e.g. Littorinimorpha) within the group. Neogastropoda has been classified into up to six superfamilies including Buccinoidea, Muricoidea, Olivoidea, Pseudolivoidea, Conoidea, and Cancellarioidea. Phylogenetic relationships among neogastropod superfamilies remain unresolved. Results The complete mitochondrial (mt) genomes of seven Neogastropoda (Bolinus brandaris, Cancellaria cancellata, Conus borgesi, Cymbium olla, Fusiturris similis, Nassarius reticulatus, and Terebra dimidiata) and of the tonnoidean Cymatium parthenopeum (Littorinimorpha), a putative sister group to Neogastropoda, were sequenced. In addition, the partial sequence of the mitochondrial genome of the calyptraeoidean Calyptraea chinensis (Littorinimorpha) was also determined. All sequenced neogastropod mt genomes shared a highly conserved gene order with only two instances of tRNA gene translocation. Phylogenetic relationships of Neogastropoda were inferred based on the 13 mt protein coding genes (both at the amino acid and nucleotide level) of all available caenogastropod mitochondrial genomes. Maximum likelihood (ML) and Bayesian inference (BI) phylogenetic analyses failed to recover the monophyly of Neogastropoda due to the inclusion of the tonnoidean Cymatium parthenopeum within the group. At the superfamily level, all phylogenetic analyses questioned the taxonomic validity of Muricoidea, whereas the monophyly of Conoidea was supported by most phylogenetic analyses, albeit weakly. All analyzed families were recovered as monophyletic except Turridae due to the inclusion of Terebridae. Further phylogenetic analyses based on either a four mt gene data set including two additional Littorinimorpha or combining mt and nuclear sequence data also rejected the monophyly of Neogastropoda but rendered rather unresolved topologies. The phylogenetic performance of each mt gene was evaluated under ML. The total number of resolved internal branches of the reference (whole-mt genome) topology was not recovered in any of the individual gene phylogenetic analysis. The cox2 gene recovered the highest number of congruent internal branches with the reference topology, whereas the combined tRNA genes, cox1, and atp8 showed the lowest phylogenetic performance. Conclusion Phylogenetic analyses based on complete mt genome data resolved a higher number of internal branches of the caenogastropod tree than individual mt genes. All performed phylogenetic analyses agreed in rejecting the monophyly of the Neogastropoda due to the inclusion of Littorinimorpha lineages within the group. This result challenges morphological evidence, and prompts for further re-evaluation of neogastropod morphological synapomorphies. The important increase in number of analyzed positions with respect to previous studies was not enough to achieve conclusive results regarding phylogenetic relationships within Neogastropoda. In this regard, sequencing of complete mtDNAs from all closely related caenogastropod lineages is needed. Nevertheless, the rapid radiation at the origin of Neogastropoda may not allow full resolution of this phylogeny based only on mt data, and in parallel more nuclear sequence data will also need to be incorporated into the phylogenetic analyses.
Collapse
Affiliation(s)
- Regina L Cunha
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales-CSIC, 28006 Madrid, Spain.
| | | | | |
Collapse
|
33
|
Podsiadlowski L, Braband A, Struck TH, von Döhren J, Bartolomaeus T. Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea. BMC Genomics 2009; 10:364. [PMID: 19660126 PMCID: PMC2728741 DOI: 10.1186/1471-2164-10-364] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 08/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The new animal phylogeny established several taxa which were not identified by morphological analyses, most prominently the Ecdysozoa (arthropods, roundworms, priapulids and others) and Lophotrochozoa (molluscs, annelids, brachiopods and others). Lophotrochozoan interrelationships are under discussion, e.g. regarding the position of Nemertea (ribbon worms), which were discussed to be sister group to e.g. Mollusca, Brachiozoa or Platyhelminthes. Mitochondrial genomes contributed well with sequence data and gene order characters to the deep metazoan phylogeny debate. RESULTS In this study we present the first complete mitochondrial genome record for a member of the Nemertea, Lineus viridis. Except two trnP and trnT, all genes are located on the same strand. While gene order is most similar to that of the brachiopod Terebratulina retusa, sequence based analyses of mitochondrial genes place nemerteans close to molluscs, phoronids and entoprocts without clear preference for one of these taxa as sister group. CONCLUSION Almost all recent analyses with large datasets show good support for a taxon comprising Annelida, Mollusca, Brachiopoda, Phoronida and Nemertea. But the relationships among these taxa vary between different studies. The analysis of gene order differences gives evidence for a multiple independent occurrence of a large inversion in the mitochondrial genome of Lophotrochozoa and a re-inversion of the same part in gastropods. We hypothesize that some regions of the genome have a higher chance for intramolecular recombination than others and gene order data have to be analysed carefully to detect convergent rearrangement events.
Collapse
Affiliation(s)
- Lars Podsiadlowski
- Abteilung Evolutionsbiologie, Institut für Evolutionsbiologie und Okologie, Universität Bonn, Germany.
| | | | | | | | | |
Collapse
|
34
|
Grande C, Templado J, Zardoya R. Evolution of gastropod mitochondrial genome arrangements. BMC Evol Biol 2008; 8:61. [PMID: 18302768 PMCID: PMC2291457 DOI: 10.1186/1471-2148-8-61] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 02/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastropod mitochondrial genomes exhibit an unusually great variety of gene orders compared to other metazoan mitochondrial genome such as e.g those of vertebrates. Hence, gastropod mitochondrial genomes constitute a good model system to study patterns, rates, and mechanisms of mitochondrial genome rearrangement. However, this kind of evolutionary comparative analysis requires a robust phylogenetic framework of the group under study, which has been elusive so far for gastropods in spite of the efforts carried out during the last two decades. Here, we report the complete nucleotide sequence of five mitochondrial genomes of gastropods (Pyramidella dolabrata, Ascobulla fragilis, Siphonaria pectinata, Onchidella celtica, and Myosotella myosotis), and we analyze them together with another ten complete mitochondrial genomes of gastropods currently available in molecular databases in order to reconstruct the phylogenetic relationships among the main lineages of gastropods. RESULTS Comparative analyses with other mollusk mitochondrial genomes allowed us to describe molecular features and general trends in the evolution of mitochondrial genome organization in gastropods. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (ME, MP, ML, BI) arrived at a single topology, which was used to reconstruct the evolution of mitochondrial gene rearrangements in the group. CONCLUSION Four main lineages were identified within gastropods: Caenogastropoda, Vetigastropoda, Patellogastropoda, and Heterobranchia. Caenogastropoda and Vetigastropoda are sister taxa, as well as, Patellogastropoda and Heterobranchia. This result rejects the validity of the derived clade Apogastropoda (Caenogastropoda + Heterobranchia). The position of Patellogastropoda remains unclear likely due to long-branch attraction biases. Within Heterobranchia, the most heterogeneous group of gastropods, neither Euthyneura (because of the inclusion of P. dolabrata) nor Pulmonata (polyphyletic) nor Opisthobranchia (because of the inclusion S. pectinata) were recovered as monophyletic groups. The gene order of the Vetigastropoda might represent the ancestral mitochondrial gene order for Gastropoda and we propose that at least three major rearrangements have taken place in the evolution of gastropods: one in the ancestor of Caenogastropoda, another in the ancestor of Patellogastropoda, and one more in the ancestor of Heterobranchia.
Collapse
Affiliation(s)
- Cristina Grande
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - José Templado
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal, 2, 28006, Madrid, Spain
| |
Collapse
|
35
|
Hyman IT, Ho SY, Jermiin LS. Molecular phylogeny of Australian Helicarionidae, Euconulidae and related groups (Gastropoda: Pulmonata: Stylommatophora) based on mitochondrial DNA. Mol Phylogenet Evol 2007; 45:792-812. [DOI: 10.1016/j.ympev.2007.08.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 07/27/2007] [Accepted: 08/07/2007] [Indexed: 10/22/2022]
|
36
|
Bandyopadhyay PK, Stevenson BJ, Ownby JP, Cady MT, Watkins M, Olivera BM. The mitochondrial genome of Conus textile, coxI-coxII intergenic sequences and Conoidean evolution. Mol Phylogenet Evol 2007; 46:215-23. [PMID: 17936021 DOI: 10.1016/j.ympev.2007.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/08/2007] [Accepted: 08/08/2007] [Indexed: 11/27/2022]
Abstract
The cone snails belong to the superfamily Conoidea, comprising approximately 10,000 venomous marine gastropods. We determined the complete mitochondrial DNA sequence of Conus textile. The gene order is identical in Conus textile, Lophiotoma cerithiformis (another Conoidean gastropod), and the neogastropod Ilyanassa obsoleta, (not in the superfamily Conoidea). However, the intergenic interval between the coxI and coxII genes was much longer in C. textile (165bp) than in any other previously analyzed gastropod. We used the intergenic region to evaluate evolutionary patterns. In most neogastropods and three conidean families the intergenic interval is small (<30 nucleotides). Within Conus, the variation is from 130 to 170bp, and each different clade within Conus has a narrower size distribution. In Conasprella, a subgenus traditionally assigned to Conus, the intergenic regions vary between 200 and 500bp, suggesting that the species in Conasprella are not congeneric with Conus. The intergenic region was used for phylogenetic analysis of a group of fish-hunting Conus, despite the short length resolution was better than using standard markers. Thus, the coxI-coxII intergenic region can be used both to define evolutionary relationships between species in a clade, and to understand broad evolutionary patterns across the large superfamily Conoidea.
Collapse
|