1
|
Mi W, Liu S. Tetrodotoxin and the state-of-the-art progress of its associated analytical methods. Front Microbiol 2024; 15:1413741. [PMID: 39290516 PMCID: PMC11407752 DOI: 10.3389/fmicb.2024.1413741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Tetrodotoxin (TTX), which is found in various marine organisms, including pufferfish, shellfish, shrimp, crab, marine gastropods, and gobies, is an effective marine toxin and the cause of many seafood poisoning incidents. Owing to its toxicity and threat to public health, the development of simple, rapid, and efficient analytical methods to detect TTX in various food matrices has garnered increasing interest worldwide. Herein, we reviewed the structure and properties, origin and sources, toxicity and poisoning, and relevant legislative measures of TTX. Additionally, we have mainly reviewed the state-of-the-art progress of analytical methods for TTX detection in the past five years, such as bioassays, immunoassays, instrumental analysis, and biosensors, and summarized their advantages and limitations. Furthermore, this review provides an in-depth discussion of the most advanced biosensors, including cell-based biosensors, immunosensors, and aptasensors. Overall, this study provides useful insights into the future development and wide application of biosensors for TTX detection.
Collapse
Affiliation(s)
- Wei Mi
- School of Public Health, Binzhou Medical University, Yantai, China
| | - Sha Liu
- School of Public Health, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Alkassar M, Tudó À, Rambla-Alegre M, Ferreres L, Diogène J, Sureda FX, Campàs M. First record of paralytic shellfish toxins in marine pufferfish from the Spanish Mediterranean coast using cell-based assay, automated patch clamp and HPLC-FLD. CHEMOSPHERE 2024; 364:143053. [PMID: 39121960 DOI: 10.1016/j.chemosphere.2024.143053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Pufferfish is one of the most poisonous marine organisms, responsible for numerous poisoning incidents and some human fatalities due to its capability to accumulate potent neurotoxins such as tetrodotoxins (TTXs) and paralytic shellfish toxins (PSTs). In this study, tissue extracts (muscle, skin, liver, intestinal tract and gonads) obtained from sixteen pufferfish specimens of the Lagocephalus lagocephalus and Sphoeroides pachygaster species, collected along the Spanish Mediterranean coast, were analysed for the presence of voltage-gated sodium channel (also known as Nav channel) blockers using cell-based assay (CBA) and automated patch clamp (APC). No toxicity was observed in any of the S. pachygaster specimens, but toxicity was detected in the liver of most L. lagocephalus specimens. Instrumental analysis of these specimens, as well as in one Lagocephalus sceleratus specimen, by high-performance liquid chromatography coupled to fluorescence detection (HPLC-FLD) was performed, which confirmed the presence of PSTs only in L. lagocephalus specimens. This analysis reported the presence of saxitoxin (STX) and decarbamoylsaxitoxin (dcSTX) in all positive samples, being dcSTX the major analogue. These results demonstrate the ability of this species to accumulate PSTs, being the first report of the presence of PSTs in Mediterranean L.lagocephalus specimens. Furthermore, the presence of high PSTs contents in all five tested tissues of one L. lagocephalus specimen pointed the risk that the presence of this toxic fish in the Mediterranean Sea may represent for seafood safety and human health in case of accidental consumption.
Collapse
Affiliation(s)
- Mounira Alkassar
- IRTA, Ctra. Poble Nou Km 5.5, 43540, La Ràpita, Spain; Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Àngels Tudó
- Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | | | | | - Jorge Diogène
- IRTA, Ctra. Poble Nou Km 5.5, 43540, La Ràpita, Spain
| | - Francesc X Sureda
- Universitat Rovira I Virgili, Av. Països Catalans 26, 43007, Tarragona, Spain
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou Km 5.5, 43540, La Ràpita, Spain.
| |
Collapse
|
3
|
Zhang H, Li P, Wu B, Hou J, Ren J, Zhu Y, Xu J, Si F, Sun Z, Liu X. Transcriptomic analysis reveals the genes involved in tetrodotoxin (TTX) accumulation, translocation, and detoxification in the pufferfish Takifugu rubripes. CHEMOSPHERE 2022; 303:134962. [PMID: 35580645 DOI: 10.1016/j.chemosphere.2022.134962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin that exists in a variety of aquatic and terrestrial organisms. Pufferfish in different habitats show great variation in their TTX contents. Exploring the genes involved in TTX metabolism could contribute to our understanding of the molecular mechanisms underlying TTX accumulation, translocation, and detoxification in pufferfish. In this study, transcriptomic analysis was used to identify the functional genes related to TTX metabolism in the blood, liver, and muscle of the toxic and non-toxic tiger puffer (Takifugu rubripes). A total of 6101 differentially expressed genes (DEGs) were obtained after transcriptomic analysis; of these, 2401 were identified in the blood, 2262 in the liver, and 1438 in the muscle. After enrichment analysis, fourteen genes encoding glutathione S-transferases (GSTs), glutathione peroxidase (GPx), thioredoxins (TXNs), superoxide dismutase (SOD), ATP-binding cassettes (ABCs), apolipoproteins (APOs), inhibitors of apoptosis protein (IAP), and solute carrier (SLC), which are mainly antioxidant enzymes, membrane transporters, or anti-apoptotic factors, were revealed in the blood. Thirty-six genes encoding SLCs, ABCs, long-chain-fatty-acid-CoA ligases (ACSLs), interleukin 6 cytokine family signal transducer (IL6ST), endoplasmic reticulum (ER), and heat shock protein family A (Hsp70) were involved in transmembrane transporter activity and innate immune response. Notably, a large number of slc genes were found to play critical and diverse roles in TTX accumulation and translocation in the liver of T. rubripes. Nine genes from the slc, hsp70, complement C5 (c5), acsl, er, and serpin peptidase inhibitor (serpin) gene families were found to participate in the regulation of protein processing and anti-apoptosis. These results reflect the diverse functions of genes closely related to TTX accumulation, translocation, and detoxification in T. rubripes.
Collapse
Affiliation(s)
- Hanyuan Zhang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| | - Peizhen Li
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Biyin Wu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jilun Hou
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Jiangong Ren
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Youxiu Zhu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Jian Xu
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory of Fishery Biotechnology, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Fei Si
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Zhaohui Sun
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| | - Xia Liu
- Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao, Hebei, 066100, China
| |
Collapse
|
4
|
Melnikova DI, Magarlamov TY. An Overview of the Anatomical Distribution of Tetrodotoxin in Animals. Toxins (Basel) 2022; 14:toxins14080576. [PMID: 36006238 PMCID: PMC9412668 DOI: 10.3390/toxins14080576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrodotoxin (TTX), a potent paralytic sodium channel blocker, is an intriguing marine toxin. Widely distributed in nature, TTX has attracted attention in various scientific fields, from biomedical studies to environmental safety concerns. Despite a long history of studies, many issues concerning the biosynthesis, origin, and spread of TTX in animals and ecosystems remain. This review aims to summarize the current knowledge on TTX circulation inside TTX-bearing animal bodies. We focus on the advances in TTX detection at the cellular and subcellular levels, providing an expanded picture of intra-organismal TTX migration mechanisms. We believe that this review will help address the gaps in the understanding of the biological function of TTX and facilitate the development of further studies involving TTX-bearing animals.
Collapse
|
5
|
Suo R, Tanaka M, Oyama H, Kojima Y, Yui K, Sakakibara R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Tetrodotoxins in the flatworm Planocera multitentaculata. Toxicon 2022; 216:169-173. [PMID: 35843466 DOI: 10.1016/j.toxicon.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
The marine polyclad flatworm Planocera multitentaculata is known to possess high levels of tetrodotoxin (TTX), but the presence of TTX analogues in the species has been unexplored. In this study, TTX and several analogues such as 5,6,11-trideoxyTTX, monodeoxyTTXs, dideoxyTTXs, and 11-norTTX-6(S)-ol were identified in three adults and egg plates of P. multitentaculata using high resolution liquid chromatography-mass spectrometry (HR-LC/MS) for the first time.
Collapse
Affiliation(s)
- Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Makoto Tanaka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yuki Kojima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kentaro Yui
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Sakakibara
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
6
|
Ito M, Furukawa R, Yasukawa S, Sato M, Oyama H, Okabe T, Suo R, Sugita H, Takatani T, Arakawa O, Adachi M, Nishikawa T, Itoi S. Local Differences in the Toxin Amount and Composition of Tetrodotoxin and Related Compounds in Pufferfish ( Chelonodon patoca) and Toxic Goby ( Yongeichthys criniger) Juveniles. Toxins (Basel) 2022; 14:150. [PMID: 35202177 PMCID: PMC8876675 DOI: 10.3390/toxins14020150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Tetrodotoxin (TTX)-bearing fish ingest TTX from their preys through the food chain and accumulate TTX in their bodies. Although a wide variety of TTX-bearing organisms have been reported, the missing link in the TTX supply chain has not been elucidated completely. Here, we investigated the composition of TTX and 5,6,11-trideoxyTTX in juveniles of the pufferfish, Chelonodon patoca, and toxic goby, Yongeichthys criniger, using LC-MS/MS, to resolve the missing link in the TTX supply chain. The TTX concentration varied among samples from different localities, sampling periods and fish species. In the samples from the same locality, the TTX concentration was significantly higher in the toxic goby juveniles than in the pufferfish juveniles. The concentration of TTX in all the pufferfish juveniles was significantly higher than that of 5,6,11-trideoxyTTX, whereas the compositional ratio of TTX and 5,6,11-trideoxyTTX in the goby was different among sampling localities. However, the TTX/5,6,11-trideoxyTTX ratio in the goby was not different among samples collected from the same locality at different periods. Based on a species-specific PCR, the detection rate of the toxic flatworm (Planocera multitentaculata)-specific sequence (cytochrome c oxidase subunit I) also varied between the intestinal contents of the pufferfish and toxic goby collected at different localities and periods. These results suggest that although the larvae of the toxic flatworm are likely to be responsible for the toxification of the pufferfish and toxic goby juveniles by TTX, these fish juveniles are also likely to feed on other TTX-bearing organisms depending on their habitat, and they also possess different accumulation mechanisms of TTX and 5,6,11-trideoxyTTX.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Risako Furukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Masaya Sato
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (T.T.); (O.A.)
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (T.T.); (O.A.)
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| |
Collapse
|
7
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|
8
|
Christidis G, Mandalakis M, Anastasiou TI, Tserpes G, Peristeraki P, Somarakis S. Keeping Lagocephalus sceleratus off the Table: Sources of Variation in the Quantity of TTX, TTX Analogues, and Risk of Tetrodotoxication. Toxins (Basel) 2021; 13:toxins13120896. [PMID: 34941733 PMCID: PMC8706384 DOI: 10.3390/toxins13120896] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
The invasion of the tetrodotoxin (TTX)-bearing silver-cheeked toadfish and potential poisoning due to its consumption (tetrodotoxication) threatens public safety in the Mediterranean Sea. In this study, TTX and TTX analogues of Lagocephalus sceleratus (Gmelin, 1789) were measured using liquid chromatography tandem mass spectrometry (LC-MS/MS) in fish collected off the island of Crete (Southern Mediterranean). We tested the synergistic effect of a suite of factors potentially affecting toxins' levels and tetrodotoxication risk using general and generalized linear models, respectively. The type of tissue, geographic origin (Cretan Sea, Libyan Sea), sex, and fish maturity stage were significant predictors of toxin concentrations. Mean TTX was higher in gonads and lower in muscles, higher in the Libyan Sea and in female fish, and lower in juvenile (virgin) fish. The concentration of TTX was also significantly and positively correlated with the concentration of several TTX analogues (4-epiTTX, 4,9-anhydroTTX, 11-deoxyTTX, 5,11/6,11-dideoxyTTX, 5,6,11-trideoxyTTX, 11-norTTX-6-ol). The analysis showed that fish originating from the Libyan Sea had significantly higher probability to cause tetrodotoxication in case of consumption. The variability explained by the models developed in this study was relatively low, indicating that toxin levels are hard to predict and the consumption of L. sceleratus should therefore be avoided.
Collapse
Affiliation(s)
- Georgios Christidis
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71500 Heraklion, Greece; (G.T.); (P.P.); (S.S.)
- Biology Department, University of Crete, 70013 Heraklion, Greece
- Correspondence: (G.C.); (M.M.)
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center of Marine Research (HCMR), 71500 Heraklion, Greece;
- Correspondence: (G.C.); (M.M.)
| | - Thekla I. Anastasiou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center of Marine Research (HCMR), 71500 Heraklion, Greece;
| | - George Tserpes
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71500 Heraklion, Greece; (G.T.); (P.P.); (S.S.)
| | - Panagiota Peristeraki
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71500 Heraklion, Greece; (G.T.); (P.P.); (S.S.)
| | - Stylianos Somarakis
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research (HCMR), 71500 Heraklion, Greece; (G.T.); (P.P.); (S.S.)
| |
Collapse
|
9
|
Shkembi X, Skouridou V, Svobodova M, Leonardo S, Bashammakh AS, Alyoubi AO, Campàs M, O Sullivan CK. Hybrid Antibody-Aptamer Assay for Detection of Tetrodotoxin in Pufferfish. Anal Chem 2021; 93:14810-14819. [PMID: 34697940 PMCID: PMC8581965 DOI: 10.1021/acs.analchem.1c03671] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
The marine toxin
tetrodotoxin (TTX) poses a great risk to public
health safety due to its severe paralytic effects after ingestion.
Seafood poisoning caused by the consumption of contaminated marine
species like pufferfish due to its expansion to nonendemic areas has
increased the need for fast and reliable detection of the toxin to
effectively implement prevention strategies. Liquid chromatography-mass
spectrometry is considered the most accurate method, although competitive
immunoassays have also been reported. In this work, we sought to develop
an aptamer-based assay for the rapid, sensitive, and cost-effective
detection of TTX in pufferfish. Using capture-SELEX combined with
next-generation sequencing, aptamers were identified, and their binding
properties were evaluated. Finally, a highly sensitive and user-friendly
hybrid antibody–aptamer sandwich assay was developed with superior
performance compared to several assays reported in the literature
and commercial immunoassay kits. The assay was successfully applied
to the quantification of TTX in pufferfish extracts, and the results
obtained correlated very well with a competitive magnetic bead-based
immunoassay performed in parallel for comparison. This is one of the
very few works reported in the literature of such hybrid assays for
small-molecule analytes whose compatibility with field samples is
also demonstrated.
Collapse
Affiliation(s)
- Xhensila Shkembi
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Vasso Skouridou
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Marketa Svobodova
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain
| | - Sandra Leonardo
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Abdulaziz S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Kingdom of Saudi Arabia
| | - Abdulrahman O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589 Jeddah, Kingdom of Saudi Arabia
| | - Mònica Campàs
- IRTA, Ctra. Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain
| | - Ciara K O Sullivan
- Interfibio, Nanobiotechnology and Bioanalysis Group, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Avinguda Paisos Catalans 26, 43007 Tarragona, Spain.,Institució Catalana de Recerca I Estudis Avancats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
11
|
De Novo Accumulation of Tetrodotoxin and Its Analogs in Pufferfish and Newt and Dosage-Driven Accumulation of Toxins in Newt: Tissue Distribution and Anatomical Localization. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9091004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study was undertaken to determine the amounts of tetrodotoxin (TTX) and its analogs (TTXs) in various tissues of toxin-bearing pufferfish (Canthigaster revulata and Takifugu flavipterus) and newt (Cynops pyrrhogaster) using specific polyclonal antibodies against TTXs, and to compare the obtained results with those mainly determined by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The anatomical localization of TTXs in these animals was also demonstrated immunohistochemically using the above-mentioned antibody. The ratio of the total amount of TTXs determined by ELISA to that determined by HPLC-FLD changed depending on the tissues examined in pufferfish. Such differences were also observed with the newt in tissue- and individual-dependent manners. Furthermore, TTXs, as well as decarbamoylsaxitoxin (dcSTX), an analog of saxitoxin (STX), were traced for their dynamic changes in tissue distribution, when the newt was fed authentic toxins or toxic animal tissues exogenously, demonstrating that a TTX analog, 5,6,11-trideoxyTTX, and dcSTX were not metabolized into TTX or STX. TTXs-immunoreactive (ir) staining was observed in the pancreas region of the hepatopancreas, the oocytes at the perinucleolus stage, the sac-like tissues just outside the serous membrane of the intestine, and the gland-like structure of the skin, but not in the muscles of pufferfish. TTXs-ir staining was also detected in the mature glands in the dermis of the adult and regenerated tail, but not in the liver, intestine, testis and ovary of the adult newt. TTXs-ir staining was detected in the epithelial cells of the intestine, the ovary, the mucous cells, and the dermis of the TTXs-administered newt. These results suggest that TTXs absorbed from the environment are distributed to various organs or tissues in a species-specific manner, regardless of whether or not these are metabolized in the bodies of toxin-bearing animals.
Collapse
|
12
|
Joseph TC, Goswami DB, Pradeep MA, Anupama TK, Parmar E, Renuka V, Remya S, Ravishankar CN. Pufferfish poisoning from Arothron stellatus: The first confirmed case in India with exact DNA sequencing-based species identification. Toxicon 2021; 200:180-182. [PMID: 34332005 DOI: 10.1016/j.toxicon.2021.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
A puffer fish poisoning case was reported from the coastal city of Veraval in the Gujarat state of India with patient reporting symptoms of giddiness, vertigo, aphasia and heaviness of head following consumption of cooked fish. Treatment was purely symptomatic and supportive. The patient was discharged from the hospital in a stable condition after 4 days. The suspected fish species was later identified using DNA (Deoxyribonucleic Acid) sequencing as Arothron stellatus with 100% identity.
Collapse
Affiliation(s)
- Toms C Joseph
- ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India.
| | - D B Goswami
- Shivam ICU and Trauma Centre, Veraval, 362 269, Gujarat, India
| | - M A Pradeep
- Marine Biotechnology Division, ICAR-Central Marine Fisheries Research Institute, Cochin, 682 018, Kerala, India
| | - T K Anupama
- Veraval Research Centre of ICAR-Central Institute of Fisheries Technology, Veraval, 362 269, India
| | - Ejaz Parmar
- Veraval Research Centre of ICAR-Central Institute of Fisheries Technology, Veraval, 362 269, India
| | - V Renuka
- Veraval Research Centre of ICAR-Central Institute of Fisheries Technology, Veraval, 362 269, India
| | - S Remya
- ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| | - C N Ravishankar
- ICAR-Central Institute of Fisheries Technology, Cochin, 682 029, Kerala, India
| |
Collapse
|
13
|
Tatsuno R, Umeeda M, Miyata Y, Ideguchi R, Fukuda T, Furushita M, Ino Y, Yoshikawa H, Takahashi H, Nagashima Y. [Toxicity of Takifugu exascurusCollected from the Sea of Kumano]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2021; 62:28-32. [PMID: 33658461 DOI: 10.3358/shokueishi.62.28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Marine pufferfish Takifugu exascurus is not approved for human consumption due to the lack of information on its toxicity. To clarify the toxicity of T. exascurus, ten live specimens were collected from the Sea of Kumano, Japan, and the toxicity and tetrodotoxin (TTX) concentration were determined using mouse bioassay and high performance liquid chromatography-fluorescence detection (HPLC-FLD), respectively. Toxicity was observed in the skin, liver, and ovaries, but the testes and muscle were non-toxic (<10 MU/g). On the other hand, HPLC-FLD revealed that TTX was detected in the muscle in two of the 10 specimens (1.4 and 1.5 MU/g). Based on the results, TTX is the main toxic component contributing to toxicity in T. exascurus.
Collapse
Affiliation(s)
- Ryohei Tatsuno
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Masato Umeeda
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Yumi Miyata
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Ririko Ideguchi
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Tsubasa Fukuda
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Manabu Furushita
- Department of Food Science and Technology, National Fisheries University, Japan Fisheries Research and Education Agenc
| | - Yasuko Ino
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency
| | - Hiroyuki Yoshikawa
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency
| | - Hiroshi Takahashi
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency
| | - Yuji Nagashima
- Department of Agro-Food Science, Niigata Agro-Food University
| |
Collapse
|
14
|
Zhu H, Yamada A, Goto Y, Horn L, Ngy L, Wada M, Doi H, Lee JS, Takatani T, Arakawa O. Phylogeny and Toxin Profile of Freshwater Pufferfish (Genus Pao) Collected from 2 Different Regions in Cambodia. Toxins (Basel) 2020; 12:toxins12110689. [PMID: 33143288 PMCID: PMC7694119 DOI: 10.3390/toxins12110689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022] Open
Abstract
The species classification of Cambodian freshwater pufferfish is incomplete and confusing, and scientific information on their toxicity and toxin profile is limited. In the present study, to accumulate information on the phylogeny and toxin profile of freshwater pufferfish, and to contribute to food safety in Cambodia, we conducted simultaneous genetic-based phylogenetic and toxin analyses using freshwater pufferfish individuals collected from Phnom Penh and Kratie (designated PNH and KTI, respectively). Phylogenetic analysis of partial sequences of three mitochondrial genes (cytochrome b, 16S rRNA, and cytochrome c oxidase subunit I) determined for each fish revealed that PNH and KTI are different species in the genus Pao (designated Pao sp. A and Pao sp. B, respectively). A partial sequence of the nuclear tributyltin-binding protein type 2 (TBT-bp2) gene differentiated the species at the amino acid level. Instrumental analysis of the toxin profile revealed that both Pao sp. A and Pao sp. B possess saxitoxins (STXs), comprising STX as the main component. In Pao sp. A, the toxin concentration in each tissue was extremely high, far exceeding the regulatory limit for STXs set by the Codex Committee, whereas in Pao sp. B, only the skin contained high toxin concentrations. The difference in the STX accumulation ability between the two species with different TBT-bp2 sequences suggests that TBT-bp2 is involved in STX accumulation in freshwater pufferfish.
Collapse
Affiliation(s)
- Hongchen Zhu
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (A.Y.); (M.W.); (T.T.)
| | - Akinori Yamada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (A.Y.); (M.W.); (T.T.)
| | - Yui Goto
- Faculty of Fisheries, Nagasaki University. 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan;
| | - Linan Horn
- University of Kratie, Orussey District, Kratie Province, Cambodia; (L.H.); (L.N.)
| | - Laymithuna Ngy
- University of Kratie, Orussey District, Kratie Province, Cambodia; (L.H.); (L.N.)
| | - Minoru Wada
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (A.Y.); (M.W.); (T.T.)
| | - Hiroyuki Doi
- Nifrel, Osaka Aquarium Kaiyukan. 2-1, Senribanpakukoen, Suita, Osaka 565-0826, Japan;
| | - Jong Soo Lee
- College of Marine Science, Gyeongsang National University, 2, Tongyeonghaean-ro, Tongyeong, Kyungnam 53064, Korea;
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (A.Y.); (M.W.); (T.T.)
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521, Japan; (H.Z.); (A.Y.); (M.W.); (T.T.)
- Correspondence: ; Tel.: +81-95-819-2844
| |
Collapse
|
15
|
Co-Occurrence of Tetrodotoxin and Saxitoxins and Their Intra-Body Distribution in the Pufferfish Canthigaster valentini. Toxins (Basel) 2020; 12:toxins12070436. [PMID: 32635254 PMCID: PMC7405003 DOI: 10.3390/toxins12070436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/03/2022] Open
Abstract
Pufferfish of the family Tetraodontidae possess tetrodotoxin (TTX) and/or saxitoxins (STXs), but the toxin ratio differs, depending on the genus or species. In the present study, to clarify the distribution profile of TTX and STXs in Tetraodontidae, we investigated the composition and intra-body distribution of the toxins in Canthigaster valentini. C. valentini specimens (four male and six female) were collected from Amami-Oshima Island, Kagoshima Prefecture, Japan, and the toxins were extracted from the muscle, liver, intestine, gallbladder, gonads, and skin. Analysis of the extracts for TTX by liquid chromatography tandem mass spectrometry and of STXs by high-performance liquid chromatography with post-column fluorescence derivatization revealed TTX, as well as a large amount of STXs, with neoSTX as the main component and dicarbamoylSTX and STX itself as minor components, in the skin and ovary. The toxins were also detected in the other tissues, but in much lower amounts than in the skin and ovary. The TTX/STX ratio varied greatly, depending on the tissue, but TTX was the major toxin component in the whole body, and STXs accounted for 25% and 13% of the total toxin amount in males and females, respectively. Like the marine pufferfish of the genus Arothron, C. valentini should be considered a pufferfish with considerable amounts of both TTX and STXs present simultaneously.
Collapse
|
16
|
Puffer Fish Gut Microbiota Studies Revealed Unique Bacterial Co-Occurrence Patterns and New Insights on Tetrodotoxin Producers. Mar Drugs 2020; 18:md18050278. [PMID: 32466241 PMCID: PMC7281374 DOI: 10.3390/md18050278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/30/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin isolated mainly from toxic puffer fish. To date, the TTX biosynthetic mechanism inside its hosts remains unresolved. Here, we hypothesize the TTX synthesis relies on the host gut microbiota, including the neglected non-culturable bacteria. In these studies, we collected the gut contents from 5 puffer fish species of the genus Takifugu including one suspected hybrid species for gut microbiota study by 16S rRNA amplicon metagenomics approach. Their gut samples were divided into toxic and non-toxic groups based on the TTX concentrations in the livers detected by LC-MS/MS. Bacterial diversity studies showed that gut microbiota structures were significantly different between toxic and non-toxic species. Vibrio and Cyanobacteria centered at the gut bacterial co-occurrence network, suggesting their importance in TTX biosynthesis. The results of PICRUSt2 metagenomic prediction and gene set enrichment analysis provided new support of arginine-precursor required in TTX biosynthesis. This is the first study to profile the gut microbiota in toxic and non-toxic puffer fish species by 16S rRNA amplicon metagenomic approach, defining significant microbial co-occurrence patterns in their gut environment. Our data supported the proposed biosynthesis of TTX inside the hosts by their gut bacterial symbionts using arginine as a precursor.
Collapse
|
17
|
Makarova M, Rycek L, Hajicek J, Baidilov D, Hudlicky T. Tetrodotoxin: Geschichte, Biologie und Synthese. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mariia Makarova
- Chemistry Department and Centre for BiotechnologyBrock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3A1 Canada
| | - Lukas Rycek
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 8 12843 Prague Czech Republic
| | - Josef Hajicek
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 8 12843 Prague Czech Republic
| | - Daler Baidilov
- Chemistry Department and Centre for BiotechnologyBrock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3A1 Canada
| | - Tomas Hudlicky
- Chemistry Department and Centre for BiotechnologyBrock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3A1 Canada
| |
Collapse
|
18
|
Madejska A, Michalski M, Osek J. Marine Tetrodotoxin as a Risk for Human Health. J Vet Res 2019; 63:579-586. [PMID: 31934670 PMCID: PMC6950440 DOI: 10.2478/jvetres-2019-0060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/16/2019] [Indexed: 01/17/2023] Open
Abstract
Tetrodotoxin (TTX) is a toxin mainly occurring naturally in contaminated puffer fish, which are a culinary delicacy in Japan. It is also detected in various marine organisms like globefish, starfish, sunfish, stars, frogs, crabs, snails, Australian blue-ringed octopuses, and bivalve molluscs. TTX is produced by marine bacteria that are consumed mainly by fish of the Tetraodontidae family and other aquatic animals. TTX poisoning through consuming marine snails has recently begun to occur over a wider geographical extent through Taiwan, China, and Europe. This neurotoxin causes food intoxication and poses an acute risk to public health. The aim of this review is to present the most recent information about TTX and its analogues with particular regard to toxicity, methods of analysis, and risk to humans of exposure.
Collapse
Affiliation(s)
- Anna Madejska
- Department of Hygiene of Food of Animal Origin National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Mirosław Michalski
- Department of Hygiene of Food of Animal Origin National Veterinary Research Institute, 24-100 Puławy, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin National Veterinary Research Institute, 24-100 Puławy, Poland
| |
Collapse
|
19
|
Pinto EP, Rodrigues SM, Gouveia N, Timóteo V, Costa PR. Tetrodotoxin and saxitoxin in two native species of puffer fish, Sphoeroides marmoratus and Lagocephalus lagocephalus, from NE Atlantic Ocean (Madeira Island, Portugal). MARINE ENVIRONMENTAL RESEARCH 2019; 151:104780. [PMID: 31514973 DOI: 10.1016/j.marenvres.2019.104780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/12/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
The presence in EU waters of invasive tetrodotoxin (TTX) -harbouring puffer fishes has been receiving increasingly attention due to potential new threats posed by this potent neurotoxin. The present study investigates the occurrence of tetrodotoxin, saxitoxin (STX), and their analogues in two native puffer fish species from the NE Atlantic. High TTX content was detected by LC-MS/MS in several tissues of the Guinean puffer Sphoeroides marmoratus from Madeira Island (Portugal), reaching concentrations as high as 15 mg TTX kg-1 in the digestive tract of a male specimen and 7.4 mg TTX kg-1 in gonads of a female specimen. Several TTX analogues were also detected, including the 4-epi-TTX, 4,9-Anhydro-TTX, 5- 11- deoxyTTX and 6,11-dideoxyTTX. Although at low levels, STX was detected in liver of the Oceanic puffer Lagocephalus lagocephalus. Trace levels of decarbamoylsaxitoxin (dcSTX) were also observed in L. lagocephalus. This study reports the presence of TTX and STX in native fish from EU waters, highlighting the need for a proper understating of the origin, distribution and fate of these toxins in NE Atlantic.
Collapse
Affiliation(s)
- Estefanía Pereira Pinto
- IPMA-Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal
| | | | - Neide Gouveia
- Regional Fisheries Management-Madeira Government, DSI-DRP, Estrada da Pontinha, 9004-562, Funchal, Madeira, Portugal
| | - Viriato Timóteo
- Regional Fisheries Management-Madeira Government, DSI-DRP, Estrada da Pontinha, 9004-562, Funchal, Madeira, Portugal
| | - Pedro Reis Costa
- IPMA-Portuguese Institute of the Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal; CCMAR-Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
20
|
Makarova M, Rycek L, Hajicek J, Baidilov D, Hudlicky T. Tetrodotoxin: History, Biology, and Synthesis. Angew Chem Int Ed Engl 2019; 58:18338-18387. [DOI: 10.1002/anie.201901564] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Mariia Makarova
- Chemistry Department and Centre for BiotechnologyBrock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3A1 Canada
| | - Lukas Rycek
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 8 12843 Prague Czech Republic
| | - Josef Hajicek
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 8 12843 Prague Czech Republic
| | - Daler Baidilov
- Chemistry Department and Centre for BiotechnologyBrock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3A1 Canada
| | - Tomas Hudlicky
- Chemistry Department and Centre for BiotechnologyBrock University 1812 Sir Isaac Brock Way St. Catharines Ontario L2S 3A1 Canada
| |
Collapse
|
21
|
Contrasting Toxin Selectivity between the Marine Pufferfish Takifugu pardalis and the Freshwater Pufferfish Pao suvattii. Toxins (Basel) 2019; 11:toxins11080470. [PMID: 31405182 PMCID: PMC6722796 DOI: 10.3390/toxins11080470] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022] Open
Abstract
To clarify the differences in toxin selectivity between marine and freshwater pufferfish, we conducted experiments in artificially reared nontoxic specimens of Takifugu pardalis (marine) and Pao suvattii (freshwater) using tetrodotoxin (TTX) and paralytic shellfish poison (PSP; decarbamoylsaxitoxin (dcSTX) or saxitoxin (STX)). T. pardalis specimens were administered feed homogenate containing TTX or dcSTX (dose of toxin, 55.2 nmol/fish) and P. suvattii specimens were administered feed homogenate containing TTX + STX (dose of each toxin, 19.2 nmol/fish) by oral gavage. The toxin content in the intestine, muscle, skin, liver, and gonads was quantified after 24 and 48 or 72 h. In T. pardalis, TTX administered into the intestine was absorbed into the body and transferred and retained mainly in the skin and liver, while dcSTX was hardly retained in the body, although it partly remained in the intestine. In strong contrast, in P. suvattii, little TTX remained in the body, whereas STX was absorbed into the body and was transferred and retained in the ovary and skin. The findings revealed that TTX/PSP selectivity differs between the marine species T. pardalis and the freshwater species P. suvattii. T. pardalis, which naturally harbors TTX, selectively accumulates TTX, and P. suvattii, which naturally harbors PSP, selectively accumulates PSP.
Collapse
|
22
|
Alves RN, Rambla-Alegre M, Braga AC, Maulvault AL, Barbosa V, Campàs M, Reverté L, Flores C, Caixach J, Kilcoyne J, Costa PR, Diogène J, Marques A. Bioaccessibility of lipophilic and hydrophilic marine biotoxins in seafood: An in vitro digestion approach. Food Chem Toxicol 2019; 129:153-161. [DOI: 10.1016/j.fct.2019.04.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/21/2019] [Accepted: 04/22/2019] [Indexed: 11/29/2022]
|
23
|
Tamele IJ, Silva M, Vasconcelos V. The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea. Toxins (Basel) 2019; 11:E58. [PMID: 30669603 PMCID: PMC6357038 DOI: 10.3390/toxins11010058] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/10/2019] [Accepted: 01/10/2019] [Indexed: 01/09/2023] Open
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Department of Chemistry, Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, n 3453, Campus Principal, Maputo 257, Mozambique.
| | - Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| |
Collapse
|
24
|
Tamele IJ, Silva M, Vasconcelos V. The Incidence of Tetrodotoxin and Its Analogs in the Indian Ocean and the Red Sea. Mar Drugs 2019; 17:E28. [PMID: 30621279 PMCID: PMC6357042 DOI: 10.3390/md17010028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 12/29/2018] [Indexed: 11/24/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent marine neurotoxin with bacterial origin. To date, around 28 analogs of TTX are known, but only 12 were detected in marine organisms, namely TTX, 11-oxoTTX, 11-deoxyTTX, 11-norTTX-6(R)-ol, 11-norTTX-6(S)-ol, 4-epiTTX, 4,9-anhydroTTX, 5,6,11-trideoxyTTX, 4-CysTTX, 5-deoxyTTX, 5,11-dideoxyTTX, and 6,11-dideoxyTTX. TTX and its derivatives are involved in many cases of seafood poisoning in many parts of the world due to their occurrence in different marine species of human consumption such as fish, gastropods, and bivalves. Currently, this neurotoxin group is not monitored in many parts of the world including in the Indian Ocean area, even with reported outbreaks of seafood poisoning involving puffer fish, which is one of the principal TTX vectors know since Egyptian times. Thus, the main objective of this review was to assess the incidence of TTXs in seafood and associated seafood poisonings in the Indian Ocean and the Red Sea. Most reported data in this geographical area are associated with seafood poisoning caused by different species of puffer fish through the recognition of TTX poisoning symptoms and not by TTX detection techniques. This scenario shows the need of data regarding TTX prevalence, geographical distribution, and its vectors in this area to better assess human health risk and build effective monitoring programs to protect the health of consumers in Indian Ocean area.
Collapse
Affiliation(s)
- Isidro José Tamele
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Institute of Biomedical Science Abel Salazar, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
- Faculty of Sciences, Eduardo Mondlane University, Av. Julius Nyerere, nr 3453, Campus Principal, 257 Maputo, Mozambique.
| | - Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Avenida General Norton de Matos, 4450-238 Matosinhos, Portugal.
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4619-007 Porto, Portugal.
| |
Collapse
|
25
|
Turner AD, Fenwick D, Powell A, Dhanji-Rapkova M, Ford C, Hatfield RG, Santos A, Martinez-Urtaza J, Bean TP, Baker-Austin C, Stebbing P. New Invasive Nemertean Species ( Cephalothrix Simula) in England with High Levels of Tetrodotoxin and a Microbiome Linked to Toxin Metabolism. Mar Drugs 2018; 16:E452. [PMID: 30453540 PMCID: PMC6266807 DOI: 10.3390/md16110452] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
The marine nemertean Cephalothrix simula originates from the Pacific Ocean but in recent years has been discovered in northern Europe. The species has been associated with high levels of the marine neurotoxin Tetrodotoxin, traditionally associated with Pufferfish Poisoning. This study reports the first discovery of two organisms of C. simula in the UK, showing the geographical extent of this species is wider than originally described. Species identification was initially conducted morphologically, with confirmation by Cox 1 DNA sequencing. 16S gene sequencing enabled the taxonomic assignment of the microbiome, showing the prevalence of a large number of bacterial genera previously associated with TTX production including Alteromonas, Vibrio and Pseudomonas. LC-MS/MS analysis of the nemertean tissue revealed the presence of multiple analogues of TTX, dominated by the parent TTX, with a total toxin concentration quantified at 54 µg TTX per g of tissue. Pseudomonas luteola isolated from C. simula, together with Vibrio alginolyticus from the native nemertean Tubulanus annulatus, were cultured at low temperature and both found to contain TTX. Overall, this paper confirms the high toxicity of a newly discovered invasive nemertean species with links to toxin-producing marine bacteria and the potential risk to human safety. Further work is required to assess the geographical extent and toxicity range of C. simula along the UK coast in order to properly gauge the potential impacts on the environment and human safety.
Collapse
Affiliation(s)
- Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | | | - Andy Powell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Charlotte Ford
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Andres Santos
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
- Laboratory of Applied and Molecular Biology, Avenida Alemania 0458, 4810296 Temuco, Chile.
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 4811230 Temuco, Chile.
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Tim P Bean
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Paul Stebbing
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
26
|
Nagashima Y, Ohta A, Yin X, Ishizaki S, Matsumoto T, Doi H, Ishibashi T. Difference in Uptake of Tetrodotoxin and Saxitoxins into Liver Tissue Slices among Pufferfish, Boxfish and Porcupinefish. Mar Drugs 2018; 16:md16010017. [PMID: 29316695 PMCID: PMC5793065 DOI: 10.3390/md16010017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 11/16/2022] Open
Abstract
Although pufferfish of the family Tetraodontidae contain high levels of tetrodotoxin (TTX) mainly in the liver, some species of pufferfish, boxfish of the family Ostraciidae, and porcupinefish of the family Diodontidae do not. To clarify the mechanisms, uptake of TTX and saxitoxins (STXs) into liver tissue slices of pufferfish, boxfish and porcupinefish was examined. Liver tissue slices of the pufferfish (toxic species Takifugu rubripes and non-toxic species Lagocephalus spadiceus, L. cheesemanii and Sphoeroides pachygaster) incubated with 50 µM TTX accumulated TTX (0.99-1.55 µg TTX/mg protein) after 8 h, regardless of the toxicity of the species. In contrast, in liver tissue slices of boxfish (Ostracion immaculatus) and porcupinefish (Diodon holocanthus, D. liturosus, D. hystrix and Chilomycterus reticulatus), TTX content did not increase with incubation time, and was about 0.1 µg TTX/mg protein. When liver tissue slices were incubated with 50 µM STXs for 8 h, the STXs content was <0.1 µg STXs/mg protein, irrespective of the fish species. These findings indicate that, like the toxic species of pufferfish T. rubripes, non-toxic species such as L. spadiceus, L. cheesemanii and S. pachygaster, potentially take up TTX into the liver, while non-toxic boxfish and porcupinefish do not take up either TTX or STXs.
Collapse
Affiliation(s)
- Yuji Nagashima
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan.
| | - Akira Ohta
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan.
| | - Xianzhe Yin
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan.
| | - Shoichiro Ishizaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato, Tokyo 108-8477, Japan.
| | - Takuya Matsumoto
- Department of Environmental Sciences, Faculty of Life and Environmental Science, Prefectural University of Hiroshima, Shobara, Hiroshima 727-0023, Japan.
| | - Hiroyuki Doi
- Shimonoseki Marine Science Museum "Kaikyokan", Shimonoseki, Yamaguchi 750-0036, Japan.
- Osaka Aquarium Kaiyukan NIFREL, Suita, Osaka 565-0826, Japan.
| | - Toshiaki Ishibashi
- Shimonoseki Marine Science Museum "Kaikyokan", Shimonoseki, Yamaguchi 750-0036, Japan.
| |
Collapse
|
27
|
Wang YH, Salam N, Liu Q, Yang ZW, Cao LX, Meng XL, Nie GX, Ju JH, Li WJ. Symbiotic bacteria associated with puffer fish Gastrophysus spadiceus and evaluation of their antimicrobial activities. 3 Biotech 2017; 7:366. [PMID: 29051847 DOI: 10.1007/s13205-017-0989-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/20/2017] [Indexed: 11/30/2022] Open
Abstract
The present study reports the diversity of culturable bacteria associated with the puffer fish Gastrophysus spadiceus. During the study, a total of 31 strains affiliated to the genera Pseudomonas, Janthinobacterium, Rahnella, and Psychrobacter were isolated from liver, intestines, and flesh of G. spadiceus. These strains exhibited a diverse range of metabolites as indicated by the HPLC and TLC profiles of the chemical extracts of their fermentation products. Some of these crude extracts showed strong antimicrobial activities against pathogenic bacterial strains. In addition, few crude extracts exhibit insecticidal activity against Artemia salina.
Collapse
Affiliation(s)
- Yi-Huan Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People's Republic of China
| | - Nimaichand Salam
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People's Republic of China
| | - Qing Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People's Republic of China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 People's Republic of China
| | - Zi-Wen Yang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People's Republic of China
| | - Li-Xiang Cao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People's Republic of China
| | - Xiao-Lin Meng
- College of Fisheries, Henan Normal University, Xinxiang, 453007 People's Republic of China
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007 People's Republic of China
| | - Jian-Hua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301 People's Republic of China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 People's Republic of China
| |
Collapse
|
28
|
Yin X, Kiriake A, Ohta A, Kitani Y, Ishizaki S, Nagashima Y. A novel function of vitellogenin subdomain, vWF type D, as a toxin-binding protein in the pufferfish Takifugu pardalis ovary. Toxicon 2017; 136:56-66. [PMID: 28651990 DOI: 10.1016/j.toxicon.2017.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/25/2017] [Accepted: 06/10/2017] [Indexed: 10/19/2022]
Abstract
Marine pufferfish of the Tetraodontidae family contain high levels of tetrodotoxin (TTX) in the liver and ovary. TTX is suggested to transfer from the liver to the ovary in female pufferfish during maturation. TTX in pufferfish eggs may act as a repellent against predators and as a sexual pheromone to attract male pufferfish. The toxification mechanism of the pufferfish ovary is poorly understood. Here we evaluated the chemical form of TTX and its related substances in the ovary of the panther pufferfish Takifugu pardalis by LC-ESI/MS. TTX and its analogs 4-epi-TTX, 4, 9-anhydroTTX, deoxyTTX, dideoxyTTX, and trideoxyTTX were detected in a low molecular weight fraction by Sephacryl S-400 column chromatography. The finding of an unknown TTX-related substance in a high molecular weight fraction from the Sephacryl S-400 column suggested the occurrence of toxin-binding protein in the ovary. The toxin-binding protein in the ovary was purified by ion-exchange HPLC, gel filtration HPLC, and SDS-PAGE. Amino acid sequencing and cDNA cloning revealed that the toxin-binding protein, TPOBP-10 (Takifugu pardalis ovary toxin-binding protein with a molecular mass of 10 kDa) was homologous with the predicted vitellogenin-1-like protein [Takifugu rubripes] subdomain, a von Willebrand factor type D domain. TPOBP-10 mRNA was highly expressed in the ovary and liver and less in other organs of female individuals based on RT-PCR. These findings reveal a novel function of the vitellogenin subdomain as binding with TTX-related substances, and its involvement in the toxification of the pufferfish ovary.
Collapse
Affiliation(s)
- Xianzhe Yin
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Aya Kiriake
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Akira Ohta
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Yoichiro Kitani
- Faculty of Biosciences and Aquaculture, NORD University, Bodø 8049, Norway
| | - Shoichiro Ishizaki
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan
| | - Yuji Nagashima
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo 108-8477, Japan.
| |
Collapse
|
29
|
Hong B, Chen H, Han J, Xie Q, He J, Bai K, Dong Y, Yi R. A Study of 11-[³H]-Tetrodotoxin Absorption, Distribution, Metabolism and Excretion (ADME) in Adult Sprague-Dawley Rats. Mar Drugs 2017; 15:E159. [PMID: 28574462 PMCID: PMC5484109 DOI: 10.3390/md15060159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Tetrodotoxin (TTX) is a powerful sodium channel blocker that in low doses can safely relieve severe pain. Studying the absorption, distribution, metabolism and excretion (ADME) of TTX is challenging given the extremely low lethal dose. We conducted radiolabeled ADME studies in Sprague-Dawley rats. After a single dose of 6 μg/(16 μCi/kg) 11-[³H]TTX, pharmacokinetics of plasma total radioactivity were similar in male and female rats. Maximum radioactivity (5.56 ng Eq./mL) was reached in 10 min. [³H]TTX was below detection in plasma after 24 h. The area under the curve from 0 to 8 h was 5.89 h·ng Eq./mL; mean residence time was 1.62 h and t½ was 2.31 h. Bile secretion accounted for 0.43% and approximately 51% of the dose was recovered in the urine, the predominant route of elimination. Approximately 69% was recovered, suggesting that hydrogen tritium exchange in rats produced tritiated water excreted in breath and saliva. Average total radioactivity in the stomach, lungs, kidney and intestines was higher than plasma concentrations. Metabolite analysis of plasma, urine and feces samples demonstrated oxidized TTX, the only identified metabolite. In conclusion, TTX was rapidly absorbed and excreted in rats, a standard preclinical model used to guide the design of clinical trials.
Collapse
Affiliation(s)
- Bihong Hong
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China.
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Hui Chen
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Jiacai Han
- Department of Inspection and Quarantine of Goods, Pingtan Entry-Exit Inspection & Quarantine Bureau of P.R.C, Pingtan 350400, China.
| | - Quanling Xie
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Jianlin He
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Kaikai Bai
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| | - Yanming Dong
- Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China.
| | - Ruizao Yi
- Engineering Research Center of Marine Biological Resource Comprehensive Utilization, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China.
| |
Collapse
|
30
|
The association of bacterial C 9-based TTX-like compounds with Prorocentrum minimum opens new uncertainties about shellfish seafood safety. Sci Rep 2017; 7:40880. [PMID: 28106083 PMCID: PMC5247728 DOI: 10.1038/srep40880] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 12/23/2022] Open
Abstract
In 2012, Tetrodotoxin (TTX) was identified in mussels and linked to the presence of Prorocentrum minimum (P. minimum) in Greece. The connexion between TTX and P. minimum was further studied in this paper. First, the presence of TTX-producer bacteria, Vibrio and Pseudomonas spp, was confirmed in Greek mussels. In addition these samples showed high activity as inhibitors of sodium currents (INa). P. minimum was before associated with neurotoxic symptoms, however, the nature and structure of toxins produced by this dinoflagellate remains unknown. Three P. minimum strains, ccmp1529, ccmp2811 and ccmp2956, growing in different conditions of temperature, salinity and light were used to study the production of toxic compounds. Electrophysiological assays showed no effect of ccmp2811 strain on INa, while ccmp1529 and ccmp2956 strains were able to significantly reduce INa in the same way as TTX. In these samples two new compounds, m/z 265 and m/z 308, were identified and characterized by liquid chromatography tandem high-resolution mass spectrometry. Besides, two TTX-related bacteria, Roseobacter and Vibrio sp, were observed. These results show for the first time that P. minimum produce TTX-like compounds with a similar ion pattern and C9-base to TTX analogues and with the same effect on INa.
Collapse
|
31
|
Bane V, Hutchinson S, Sheehan A, Brosnan B, Barnes P, Lehane M, Furey A. LC-MS/MS method for the determination of tetrodotoxin (TTX) on a triple quadruple mass spectrometer. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1728-1740. [PMID: 27619502 DOI: 10.1080/19440049.2016.1235801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Tetrodotoxin (TTX), often referred to as the 'puffer fish' poison, is a marine toxin and it has been identified as the agent responsible for many food poisoning incidents around the world. It is a neurotoxin that blocks voltage-gated sodium channels, resulting in respiratory paralysis and even death in severe cases. It is known to occur in many different species of fish and other organisms. The toxin is mainly found in the Southeast Asia region. Worryingly, TTX is starting to appear in European waters. It is suspected that this is a consequence of Lessepsian migration, also known as the Erythrean invasion. Therefore, straightforward and reliable extraction and analytical methods are now urgently required to monitor seafood of European origin for TTX. This paper provides a versatile, dependable and robust method for the analysis of TTX in puffer fish and trumpet shellfish using LC-MS/MS. A three-stage approach was implemented involving: (1) the screening of samples using fast multiple reaction monitoring (MRM) mass spectral analysis to identify quickly positive samples on a triple quadrupole mass spectrometer (QqQMS/MS), the API 3000; (2) a Fourier-transform (FT)-MS full-scan analysis of positive samples to collect qualitative data; and (3) a method with a longer chromatography run to identify and quantitate the positive samples using the QqQMS. The quantitative LC-QqQMS method delivered excellent linearity for solvent-based standards (0.01-7.5 µg ml-1; R2 ≥ 0.9968) as well as for matrix-matched standards (0.05-37.50 µg g-1; R2 ≥ 0.9869). Good inter-day repeatability was achieved for all the relevant analytes with %RSD values (n = 9) ranging from 1.11% to 4.97% over a concentration range of 0.01-7.5 µg ml-1. A sample clean-up procedure for the puffer fish and trumpet shellfish was developed to ensure acceptable and reproducible recoveries to enable accurate and precise determination of TTX in a myriad of tissues types. Blank mackerel matrix was used for the TTX standard spiking studies in order to calculate the recoveries of the toxin during the extraction procedure. The recovery was 61.17% ± 5.42% for the extraction protocol. MS/MS studies were performed on a linear-trap quadruple-Orbitrap mass spectrometer (LTQ-Orbitrap) to obtain high-mass-accuracy data of the target analytes and their characteristic fragment ions in the puffer fish and trumpet shellfish samples. This facilitated identification of TTX and its associated analogues. These high-mass-accuracy studies facilitated the development of a rapid MRM-based quantitative method for TTX determination on the LC-QqQMS.
Collapse
Affiliation(s)
- Vaishali Bane
- a Mass Spectrometry Research Centre (MSRC), Department of Chemistry , Cork Institute of Technology , Cork , Ireland
| | - Sharon Hutchinson
- a Mass Spectrometry Research Centre (MSRC), Department of Chemistry , Cork Institute of Technology , Cork , Ireland
| | - Aisling Sheehan
- a Mass Spectrometry Research Centre (MSRC), Department of Chemistry , Cork Institute of Technology , Cork , Ireland
| | - Brid Brosnan
- a Mass Spectrometry Research Centre (MSRC), Department of Chemistry , Cork Institute of Technology , Cork , Ireland
| | - Paul Barnes
- b Agri-Food and Biosciences Institute - Stormont , Belfast , UK
| | - Mary Lehane
- a Mass Spectrometry Research Centre (MSRC), Department of Chemistry , Cork Institute of Technology , Cork , Ireland
| | - Ambrose Furey
- a Mass Spectrometry Research Centre (MSRC), Department of Chemistry , Cork Institute of Technology , Cork , Ireland
| |
Collapse
|
32
|
Bane V, Brosnan B, Barnes P, Lehane M, Furey A. High-resolution mass spectrometry analysis of tetrodotoxin (TTX) and its analogues in puffer fish and shellfish. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1468-89. [DOI: 10.1080/19440049.2016.1218070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vaishali Bane
- Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | - Brid Brosnan
- Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | - Paul Barnes
- Agri-food and Biosciences Institute, Belfast, UK
| | - Mary Lehane
- Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | - Ambrose Furey
- Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| |
Collapse
|
33
|
Nakatani T, Shimizu M, Yamano T. The Contents and Composition of Tetrodotoxin and Paralytic Shellfish Poisoning Toxins in Marine Pufferfish Canthigaster rivulata. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2016; 57:51-6. [PMID: 27211919 DOI: 10.3358/shokueishi.57.51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The contents and composition of tetrodotoxin (TTX) and paralytic shellfish toxins (PSTs) in skin, muscle, and internal organs of two samples of marine puffer fish Canthigaster rivulata from Wakayama prefecture, Japan, were analyzed. Liquid chromatography-mass spectrometry (LC-MS) and high-performance liquid chromatography with post-column derivatization and fluorescence detection (LC-FLD) were used for the analysis of TTX and PSTs, respectively. For both samples, TTX and two analogues of PSTs, saxitoxin (STX) and decarbamoyl STX (dcSTX), were detected at levels over the limit of quantization (LOQ) only in the skin. These toxins in the muscle and internal organs were at trace levels, or not detected (ND). TTX contents were 11,000 and 13,000 ng/g (or 35 and 41 nmol/g), while PSTs contents were 168 and 460 ng/g (or 0.63 and 1.72 nmol/g) in the two skin specimens. The compositions of total toxin content were 98.2 and 96.0 mol% TTX and 1.8 and 4.0 mol% PSTs, respectively. Thus, the main contributor to toxin content in C. rivulata skin was TTX and the levels of PSTs toxicity in C. rivulata were very low. When the PSTs contents were converted into mouse unit score from the LC-FLD results, the resulting values of 1.0 and 2.8 MU/g of PSTs in C. rivulata skin were similar to those in Takifugu poecilonotus and Takifugu vermicularis in Japan, as determined in previous studies.
Collapse
Affiliation(s)
- Tadashi Nakatani
- Osaka City Institute of Public Health and Environmental Sciences
| | | | | |
Collapse
|
34
|
Tanis D, Vareltzis P, Nikolaides G, Minos G, Kokokiris L, Rigas PG. Evaluation of Helically Coiled and Knitted Open Tubular Reactors for the Efficient Post-Column Determination of Tetrodotoxin by High-Performance Liquid Chromatography. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1177068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Dimitris Tanis
- Department of Fisheries and Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, Nea Moudania, Greece
| | - Patroklos Vareltzis
- Department of Fisheries and Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, Nea Moudania, Greece
| | - George Nikolaides
- Department of Fisheries and Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, Nea Moudania, Greece
| | - George Minos
- Department of Fisheries and Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, Nea Moudania, Greece
| | - Lambros Kokokiris
- Department of Fisheries and Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, Nea Moudania, Greece
| | - Pantelis G. Rigas
- Department of Fisheries and Aquaculture Technology, Alexander Technological Educational Institute of Thessaloniki, Nea Moudania, Greece
| |
Collapse
|
35
|
Turner AD, Higgins C, Higman W, Hungerford J. Potential Threats Posed by Tetrodotoxins in UK Waters: Examination of Detection Methodology Used in Their Control. Mar Drugs 2015; 13:7357-76. [PMID: 26690455 PMCID: PMC4699243 DOI: 10.3390/md13127070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tetrodotoxin is a neurotoxin responsible for many human fatalities, most commonly following the consumption of pufferfish. Whilst the source of the toxin has not been conclusively proven, it is thought to be associated with various species of marine bacteria. Whilst the toxins are well studied in fish and gastropods, in recent years, there have been a number of reports of tetrodotoxin occurring in bivalve shellfish, including those harvested from the UK and other parts of Europe. This paper reviews evidence concerning the prevalence of tetrodotoxins in the UK together with methodologies currently available for testing. Biological, biomolecular and chemical methods are reviewed, including recommendations for further work. With the recent development of quantitative chromatographic methods for these and other hydrophilic toxins, as well as the commercial availability of rapid testing kits, there are a number of options available to ensure consumers are protected against this threat.
Collapse
Affiliation(s)
- Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| | - Cowan Higgins
- Agri-food and Biosciences Institute (AFBI), Newforge Lane, Belfast BT9 5PX, UK.
| | - Wendy Higman
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| | - James Hungerford
- Pacific Laboratory Northwest, United States Food and Drug Administration (USFDA), 22201 23rd Dr, S.E., Bothell, WA 98021, USA.
| |
Collapse
|
36
|
Tetrodotoxin, an Extremely Potent Marine Neurotoxin: Distribution, Toxicity, Origin and Therapeutical Uses. Mar Drugs 2015; 13:6384-406. [PMID: 26492253 PMCID: PMC4626696 DOI: 10.3390/md13106384] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 02/07/2023] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications and fatalities each year. The origin of TTX is unknown, but in the pufferfish, it seems to be produced by endosymbiotic bacteria that often seem to be passed down the food chain. The ingestion of contaminated pufferfish, considered the most delicious fish in Japan, is the usual route of toxicity. This neurotoxin, reported as a threat to human health in Asian countries, has spread to the Pacific and Mediterranean, due to the increase of temperature waters worldwide. TTX, for which there is no known antidote, inhibits sodium channel producing heart failure in many cases and consequently death. In Japan, a regulatory limit of 2 mg eq TTX/kg was established, although the restaurant preparation of “fugu” is strictly controlled by law and only chefs qualified are allowed to prepare the fish. Due to its paralysis effect, this neurotoxin could be used in the medical field as an analgesic to treat some cancer pains.
Collapse
|
37
|
Reverté L, de la Iglesia P, del Río V, Campbell K, Elliott CT, Kawatsu K, Katikou P, Diogène J, Campàs M. Detection of Tetrodotoxins in Puffer Fish by a Self-Assembled Monolayer-Based Immunoassay and Comparison with Surface Plasmon Resonance, LC-MS/MS, and Mouse Bioassay. Anal Chem 2015; 87:10839-47. [PMID: 26424329 DOI: 10.1021/acs.analchem.5b02158] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The increasing occurrence of puffer fish containing tetrodotoxin (TTX) in the Mediterranean could represent a major food safety risk for European consumers and threaten the fishing industry. The work presented herein describes the development of a new enzyme linked immunosorbent assay (mELISA) based on the immobilization of TTX through dithiol monolayers self-assembled on maleimide plates, which provides an ordered and oriented antigen immobilization and favors the antigen-antibody affinity interaction. The mELISA was found to have a limit of detection (LOD) of TTX of 0.23 mg/kg of puffer fish matrix. The mELISA and a surface plasmon resonance (SPR) immunosensor previously developed were employed to establish the cross-reactivity factors (CRFs) of 5,6,11-trideoxy-TTX, 5,11-deoxy-TTX, 11-nor-TTX-6-ol, and 5,6,11-trideoxy-4-anhydro-TTX, as well as to determine TTX equivalent contents in puffer fish samples. Results obtained by both immunochemical tools were correlated (R(2) = 0.977). The puffer fish samples were also analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the corresponding CRFs were applied to the individual TTX contents. Results provided by the immunochemical tools, when compared with those obtained by LC-MS/MS, showed a good degree of correlation (R(2) = 0.991 and 0.979 for mELISA and SPR, respectively). The mouse bioassay (MBA) slightly overestimated the CRF adjusted TTX content of samples when compared with the data obtained from the other techniques. The mELISA has been demonstrated to be fit for the purpose for screening samples in monitoring programs and in research activities.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Pablo de la Iglesia
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Vanessa del Río
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University , Stranmillis Road, Belfast BT9 5AG, Northern Ireland
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University , Stranmillis Road, Belfast BT9 5AG, Northern Ireland
| | - Kentaro Kawatsu
- Division of Bacteriology, Osaka Prefectural Institute of Public Health , 3-69, Nakamichi 1-chome, Higashinari-ku, Osaka 537-0025, Japan
| | - Panagiota Katikou
- National Reference Laboratory on Marine Biotoxins, Ministry of Rural Development and Food , 54627 Thessaloniki, Greece
| | - Jorge Diogène
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| | - Mònica Campàs
- IRTA , Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Tarragona, Spain
| |
Collapse
|
38
|
Xu XM, Yu XW, Lu M, Huang BF, Ren YP. Study of the matrix effects of tetrodotoxin and its content in cooked seafood by liquid chromatography with triple quadrupole mass spectrometry. J Sep Sci 2015; 38:3374-82. [DOI: 10.1002/jssc.201500617] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/12/2015] [Accepted: 07/21/2015] [Indexed: 01/28/2023]
Affiliation(s)
- Xiao-min Xu
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou China
| | - Xin-wei Yu
- Zhoushan Municipal Center for Disease Control and Prevention; Zhoushan China
| | - Meiling Lu
- Agilent Technologies (China) Co; Ltd; Beijing China
| | - Bai-fen Huang
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou China
| | - Yi-ping Ren
- Zhejiang Provincial Center for Disease Control and Prevention; Hangzhou China
| |
Collapse
|
39
|
Tetrodotoxin and Its Analogues in the Pufferfish Arothron hispidus and A. nigropunctatus from the Solomon Islands: A Comparison of Their Toxin Profiles with the Same Species from Okinawa, Japan. Toxins (Basel) 2015; 7:3436-54. [PMID: 26343722 PMCID: PMC4591647 DOI: 10.3390/toxins7093436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/05/2023] Open
Abstract
Pufferfish poisoning has not been well documented in the South Pacific, although fish and other seafood are sources of protein in these island nations. In this study, tetrodotoxin (TTX) and its analogues in each organ of the pufferfish Arothron hispidus and A. nigropunctatus collected in the Solomon Islands were investigated using high resolution LC-MS. The toxin profiles of the same two species of pufferfish from Okinawa, Japan were also examined for comparison. TTXs concentrations were higher in the skin of both species from both regions, and relatively lower in the liver, ovary, testis, stomach, intestine, and flesh. Due to higher TTX concentrations (51.0 and 28.7 µg/g at highest) detected in the skin of the two species from the Solomon Islands (saxitoxin was <0.02 µg/g), these species should be banned from consumption. Similar results were obtained from fish collected in Okinawa, Japan: TTX in the skin of A. hispidus and A. nigropunctatus were 12.7 and 255 µg/g, respectively, at highest, and saxitoxin was also detected in the skin (2.80 µg/g at highest) and ovary of A. hispidus. TTX, 5,6,11-trideoxyTTX (with its 4-epi form), and its anhydro forms were the most abundant, and 11-oxoTTX was commonly detected in the skin.
Collapse
|
40
|
Silva M, Pratheepa VK, Botana LM, Vasconcelos V. Emergent toxins in North Atlantic temperate waters: a challenge for monitoring programs and legislation. Toxins (Basel) 2015; 7:859-85. [PMID: 25785464 PMCID: PMC4379530 DOI: 10.3390/toxins7030859] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/13/2023] Open
Abstract
Harmful Algal Blooms (HAB) are complex to manage due to their intermittent nature and their severe impact on the economy and human health. The conditions which promote HAB have not yet been fully explained, though climate change and anthropogenic intervention are pointed as significant factors. The rise of water temperature, the opening of new sea canals and the introduction of ship ballast waters all contribute to the dispersion and establishment of toxin-producing invasive species that promote the settling of emergent toxins in the food-chain. Tetrodotoxin, ciguatoxin, palytoxin and cyclic imines are commonly reported in warm waters but have also caused poisoning incidents in temperate zones. There is evidence that monitoring for these toxins exclusively in bivalves is simplistic and underestimates the risk to public health, since new vectors have been reported for these toxins and as well for regulated toxins such as PSTs and DSTs. In order to avoid public health impacts, there is a need for adequate monitoring programs, a need for establishing appropriate legislation, and a need for optimizing effective methods of analysis. In this review, we will compile evidence concerning emergent marine toxins and provide data that may indicate the need to restructure the current monitoring programs of HAB.
Collapse
Affiliation(s)
- Marisa Silva
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
| | - Vijaya K Pratheepa
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
| | - Luis M Botana
- Department of Pharmacology, Faculty of Veterinary, University of Santiago of Compostela, Lugo 27002, Spain.
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Center of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, Porto 4050-123, Portugal.
- Faculty of Sciences, University of Porto, Rua do Campo Alegre, Porto 4169-007, Portugal.
| |
Collapse
|
41
|
Teramoto N, Yotsu-Yamashita M. Selective blocking effects of 4,9-anhydrotetrodotoxin, purified from a crude mixture of tetrodotoxin analogues, on NaV1.6 channels and its chemical aspects. Mar Drugs 2015; 13:984-95. [PMID: 25686275 PMCID: PMC4344613 DOI: 10.3390/md13020984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin found in a number of marine creatures including the pufferfish, where it is synthesized by bacteria and accumulated through the food chain. It is a potent and selective blocker of some types of voltage-gated Na+ channel (NaV channel). 4,9-Anhydrotetrodotoxin (4,9-anhydroTTX) was purified from a crude mixture of TTX analogues (such as TTX, 4-epiTTX, 6-epiTTX, 11-oxoTTX and 11-deoxyTTX) by the use of liquid chromatography-fluorescence detection (LC-FLD) techniques. Recently, it has been reported that 4,9-anhydroTTX selectively blocks the activity of NaV1.6 channels with a blocking efficacy 40–160 times higher than that for other TTX-sensitive NaV1.x channel isoforms. However, little attention has been paid to the molecular properties of the α-subunit in NaV1.6 channels and the characteristics of binding of 4,9-anhydroTTX. From a functional point of view, it is important to determine the relative expression of NaV1.6 channels in a wide variety of tissues. The aim of this review is to discuss briefly current knowledge about the pharmacology of 4,9-anhydroTTX, and provide an analysis of the molecular structure of native NaV1.6 channels. In addition, chemical aspects of 4,9-anhydroTTX are briefly covered.
Collapse
Affiliation(s)
- Noriyoshi Teramoto
- Department of Pharmacology, Faculty of Medicine, Saga University, Saga 849-8501, Japan.
- Laboratory of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan.
| | - Mari Yotsu-Yamashita
- Laboratory of Bioorganic Chemistry of Natural Products, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
42
|
Reverté L, Soliño L, Carnicer O, Diogène J, Campàs M. Alternative methods for the detection of emerging marine toxins: biosensors, biochemical assays and cell-based assays. Mar Drugs 2014; 12:5719-63. [PMID: 25431968 PMCID: PMC4278199 DOI: 10.3390/md12125719] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 12/02/2022] Open
Abstract
The emergence of marine toxins in water and seafood may have a considerable impact on public health. Although the tendency in Europe is to consolidate, when possible, official reference methods based on instrumental analysis, the development of alternative or complementary methods providing functional or toxicological information may provide advantages in terms of risk identification, but also low cost, simplicity, ease of use and high-throughput analysis. This article gives an overview of the immunoassays, cell-based assays, receptor-binding assays and biosensors that have been developed for the screening and quantification of emerging marine toxins: palytoxins, ciguatoxins, cyclic imines and tetrodotoxins. Their advantages and limitations are discussed, as well as their possible integration in research and monitoring programs.
Collapse
Affiliation(s)
- Laia Reverté
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Lucía Soliño
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Olga Carnicer
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Jorge Diogène
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| | - Mònica Campàs
- IRTA, Carretera Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain.
| |
Collapse
|
43
|
Adachi M, Sakakibara R, Satake Y, Isobe M, Nishikawa T. Synthesis of 5,6,11-Trideoxytetrodotoxin. CHEM LETT 2014. [DOI: 10.1246/cl.140684] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Masaatsu Adachi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Ryo Sakakibara
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Yoshiki Satake
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Minoru Isobe
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
44
|
Kudo Y, Finn J, Fukushima K, Sakugawa S, Cho Y, Konoki K, Yotsu-Yamashita M. Isolation of 6-deoxytetrodotoxin from the pufferfish, Takifugu pardalis, and a comparison of the effects of the C-6 and C-11 hydroxy groups of tetrodotoxin on its activity. JOURNAL OF NATURAL PRODUCTS 2014; 77:1000-1004. [PMID: 24654947 DOI: 10.1021/np401097n] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Identification of new tetrodotoxin (TTX, 1) analogues would be significant in the elucidation of its biosynthetic pathway and a study of its structure-activity relationships. In this study, a new TTX analogue, 6-deoxyTTX (2), was isolated from the ovary of the pufferfish, Takifugu pardalis, and the structure was determined using spectroscopic methods. Compound 2 was also identified in other marine animals, Nassarius snail and blue-ringed octopuses, using LC-MS. Furthermore, we investigated the voltage-gated sodium channel blocking activity of 2 by examination of the inhibitory activities to cytotoxicity induced by ouabain and veratridine in mouse neuroblastoma cells (Neuro-2a). The activities were then compared with those of 1, 11-deoxyTTX (3), and 6,11-dideoxyTTX (4). The EC50 value for 2 was estimated to be 6.5±2.2 nM, approximately 3-fold larger than that of 1 (2.1±0.6 nM) and approximately 20-fold smaller than that of 3. These results suggested that contribution of the C-6 hydroxy group to the activity is less than that of the C-11 hydroxy group.
Collapse
Affiliation(s)
- Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University , 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Bane V, Lehane M, Dikshit M, O'Riordan A, Furey A. Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins (Basel) 2014; 6:693-755. [PMID: 24566728 PMCID: PMC3942760 DOI: 10.3390/toxins6020693] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 11/16/2022] Open
Abstract
Tetrodotoxin (TTX) is a naturally occurring toxin that has been responsible for human intoxications and fatalities. Its usual route of toxicity is via the ingestion of contaminated puffer fish which are a culinary delicacy, especially in Japan. TTX was believed to be confined to regions of South East Asia, but recent studies have demonstrated that the toxin has spread to regions in the Pacific and the Mediterranean. There is no known antidote to TTX which is a powerful sodium channel inhibitor. This review aims to collect pertinent information available to date on TTX and its analogues with a special emphasis on the structure, aetiology, distribution, effects and the analytical methods employed for its detection.
Collapse
Affiliation(s)
- Vaishali Bane
- Mass Spectrometry Research Centre (MSRC) and PROTEOBIO Research Groups, Department of Chemistry, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland.
| | - Mary Lehane
- Mass Spectrometry Research Centre (MSRC) and PROTEOBIO Research Groups, Department of Chemistry, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland.
| | | | - Alan O'Riordan
- Nanotechnology Group, Tyndall National Institute, University College Cork, Lee Maltings, Cork, Ireland.
| | - Ambrose Furey
- Mass Spectrometry Research Centre (MSRC) and PROTEOBIO Research Groups, Department of Chemistry, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland.
| |
Collapse
|
46
|
Pratheepa V, Vasconcelos V. Microbial diversity associated with tetrodotoxin production in marine organisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:1046-1054. [PMID: 24121556 DOI: 10.1016/j.etap.2013.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 08/28/2013] [Accepted: 08/31/2013] [Indexed: 06/02/2023]
Abstract
Tetrodotoxin (TTX), is a potent neurotoxin found in genetically diversed organisms. Many TTX producing microorganism have also been isolated from TTX bearing animals. The TTX producing microbes found in four different phylum (Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes), the Proteobacteria are the dominating one. In most of the cases, TTX producing microbes are found in the intestine of the TTX producing vector indicating the origin of TTX through food chain. This paper reviews the TTX and its analogs and the geographic distribution of TTX in symbiotic microorganism and its production.
Collapse
Affiliation(s)
- V Pratheepa
- CIIMAR, Marine and Environmental Research Center, Porto University, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | | |
Collapse
|
47
|
Wu M, Ye N, Sengupta B, Zakon HH. A naturally occurring amino acid substitution in the voltage-dependent sodium channel selectivity filter affects channel gating. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:829-42. [PMID: 23979192 DOI: 10.1007/s00359-013-0845-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 07/29/2013] [Accepted: 08/01/2013] [Indexed: 12/19/2022]
Abstract
The pore of sodium channels contains a selectivity filter made of 4 amino acids, D/E/K/A. In voltage sensitive sodium channel (Nav) channels from jellyfish to human the fourth amino acid is Ala. This Ala, when mutated to Asp, promotes slow inactivation. In some Nav channels of pufferfishes, the Ala is replaced with Gly. We studied the biophysical properties of an Ala-to-Gly substitution (A1529G) in rat Nav1.4 channel expressed in Xenopus oocytes alone or with a β1 subunit. The Ala-to-Gly substitution does not affect monovalent cation selectivity and positively shifts the voltage-dependent inactivation curve, although co-expression with a β1 subunit eliminates the difference between A1529G and WT. There is almost no difference in channel fast inactivation, but the β1 subunit accelerates WT current inactivation significantly more than it does the A1529G channels. The Ala-to-Gly substitution mainly influences the rate of recovery from slow inactivation. Again, the β1 subunit is less effective on speeding recovery of A1529G than the WT. We searched Nav channels in numerous databases and noted at least four other independent Ala-to-Gly substitutions in Nav channels in teleost fishes. Thus, the Ala-to-Gly substitution occurs more frequently than previously realized, possibly under selection for alterations of channel gating.
Collapse
Affiliation(s)
- Mingming Wu
- Section of Neurobiology, Institute for Neuroscience, University of Texas at Austin, Austin, TX, 78712, USA,
| | | | | | | |
Collapse
|
48
|
Yotsu-Yamashita M, Abe Y, Kudo Y, Ritson-Williams R, Paul VJ, Konoki K, Cho Y, Adachi M, Imazu T, Nishikawa T, Isobe M. First identification of 5,11-dideoxytetrodotoxin in marine animals, and characterization of major fragment ions of tetrodotoxin and its analogs by high resolution ESI-MS/MS. Mar Drugs 2013; 11:2799-813. [PMID: 23924959 PMCID: PMC3766866 DOI: 10.3390/md11082799] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 07/26/2013] [Indexed: 11/16/2022] Open
Abstract
Even though tetrodotoxin (TTX) is a widespread toxin in marine and terrestrial organisms, very little is known about the biosynthetic pathway used to produce it. By describing chemical structures of natural analogs of TTX, we can start to identify some of the precursors that might be important for TTX biosynthesis. In the present study, an analog of TTX, 5,11-dideoxyTTX, was identified for the first time in natural sources, the ovary of the pufferfish and the pharynx of a flatworm (planocerid sp. 1), by comparison with totally synthesized (-)-5,11-dideoxyTTX, using high resolution ESI-LC-MS. Based on the presence of 5,11-dideoxyTTX together with a series of known deoxy analogs, 5,6, 11-trideoxyTTX, 6,11-dideoxyTTX, 11-deoxyTTX, and 5-deoxyTTX, in these animals, we predicted two routes of stepwise oxidation pathways in the late stages of biosynthesis of TTX. Furthermore, high resolution masses of the major fragment ions of TTX, 6,11-dideoxyTTX, and 5,6,11-trideoxyTTX were also measured, and their molecular formulas and structures were predicted to compare them with each other. Although both TTX and 5,6,11-trideoxyTTX give major fragment ions that are very close, m/z 162.0660 and 162.1020, respectively, they are distinguishable and predicted to be different molecular formulas. These data will be useful for identification of TTXs using high resolution LC-MS/MS.
Collapse
Affiliation(s)
- Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; E-Mails: (Y.A.); (Y.K.); (K.K.); (Y.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +81-22-717-8922
| | - Yuka Abe
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; E-Mails: (Y.A.); (Y.K.); (K.K.); (Y.C.)
| | - Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; E-Mails: (Y.A.); (Y.K.); (K.K.); (Y.C.)
| | - Raphael Ritson-Williams
- Department of Biology, University of Hawaii at Manoa, 2540 Campus Road, Dean Hall, Honolulu, HI 96822, USA; E-Mail:
| | - Valerie J. Paul
- Smithsonian Marine Station at Fort Pierce, 701 Seaway Drive, Fort Pierce, FL 34949, USA; E-Mail:
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; E-Mails: (Y.A.); (Y.K.); (K.K.); (Y.C.)
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan; E-Mails: (Y.A.); (Y.K.); (K.K.); (Y.C.)
| | - Masaatsu Adachi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; E-Mails: (M.A.); (T.I.); (T.N.)
| | - Takuya Imazu
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; E-Mails: (M.A.); (T.I.); (T.N.)
| | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; E-Mails: (M.A.); (T.I.); (T.N.)
| | - Minoru Isobe
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan; E-Mail:
| |
Collapse
|
49
|
Localization of pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) in the tissues of the pufferfish, Takifugu pardalis, analyzed by immunohistochemical staining. Toxicon 2013; 72:23-8. [PMID: 23769753 DOI: 10.1016/j.toxicon.2013.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 11/22/2022]
Abstract
Pufferfish saxitoxin and tetrodotoxin binding protein (PSTBP) was previously isolated from the plasma of the marine pufferfish, Takifugu pardalis. In this study, we investigated distribution pattern of PSTBP in intestine, liver, ovary, skin, and skeletal muscle of T. pardalis by immunohistochemical staining for the study of functions of this protein. In the skin, dermis around the tetrodotoxin secreting gland was positive, while this secreting gland itself was negative. In the ovary containing vitellogenic oocytes, ovarian wall and vitelline envelope were positive, while yolk and nucleus were negative. In the liver, hepatocytes with large fat droplets and capillaries were positive. In the intestine, the lamina propria mucosae were positive, while the mucosal epithelium was negative. In the skeletal muscle, only capillaries were positive. Furthermore, liver specific expression of PSTBP was confirmed by Northern blot analysis. Based on these results together with reported tetrodotoxin localization pattern in pufferfish, PSTBP was assumed to be a carrier protein to transfer tetrodotoxin among the tissues, especially liver, ovary, and skin.
Collapse
|
50
|
Female newts (Taricha granulosa) produce tetrodotoxin laden eggs after long term captivity. Toxicon 2012; 60:1057-62. [PMID: 22867631 DOI: 10.1016/j.toxicon.2012.07.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/20/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
We investigated the presence of tetrodotoxin (TTX) in the eggs of wild-caught newts (Taricha granulosa) at capture and again after one, two, and three years in captivity. Females initially produced eggs that contained quantities of TTX similar to previous descriptions of eggs from wild-caught adults. After the first year in captivity, the egg toxicity from each female declined, ultimately remaining constant during each of the successive years in captivity. Despite declining, all females continued to produce eggs containing substantial quantities of TTX during captivity. The decline in toxicity can not be attributed to declining egg mass but may be the result of the abbreviated reproductive cycle to which the captive newts were subjected in the lab. Finally, an estimate of the amount of TTX provisioned in the entire clutch from each female is similar to the quantity of TTX regenerated in the skin after electrical stimulation. These results, coupled with other long-term studies on the maintenance and regeneration of TTX in the skin, suggests an endogenous origin of TTX in newts.
Collapse
|