1
|
Kalita B, Utkin YN, Mukherjee AK. Current Insights in the Mechanisms of Cobra Venom Cytotoxins and Their Complexes in Inducing Toxicity: Implications in Antivenom Therapy. Toxins (Basel) 2022; 14:toxins14120839. [PMID: 36548736 PMCID: PMC9780984 DOI: 10.3390/toxins14120839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cytotoxins (CTXs), an essential class of the non-enzymatic three-finger toxin family, are ubiquitously present in cobra venoms. These low-molecular-mass toxins, contributing to about 40 to 60% of the cobra venom proteome, play a significant role in cobra venom-induced toxicity, more prominently in dermonecrosis. Structurally, CTXs contain the conserved three-finger hydrophobic loops; however, they also exhibit a certain degree of structural diversity that dictates their biological activities. In their mechanism, CTXs mediate toxicity by affecting cell membrane structures and membrane-bound proteins and activating apoptotic and necrotic cell death pathways. Notably, some CTXs are also responsible for depolarizing neurons and heart muscle membranes, thereby contributing to the cardiac failure frequently observed in cobra-envenomed victims. Consequently, they are also known as cardiotoxins (CdTx). Studies have shown that cobra venom CTXs form cognate complexes with other components that potentiate the toxic effects of the venom's individual component. This review focuses on the pharmacological mechanism of cobra venom CTXs and their complexes, highlighting their significance in cobra venom-induced pathophysiology and toxicity. Furthermore, the potency of commercial antivenoms in reversing the adverse effects of cobra venom CTXs and their complexes in envenomed victims has also been discussed.
Collapse
Affiliation(s)
- Bhargab Kalita
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ashis K. Mukherjee
- Institute of Advanced Study in Science and Technology, Guwahati 781035, India
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, India
- Correspondence:
| |
Collapse
|
2
|
Kalita B, Mukherjee AK. Recent advances in snake venom proteomics research in India: a new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00014-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
3
|
Dutta S, Sinha A, Dasgupta S, Mukherjee AK. Binding of a Naja naja venom acidic phospholipase A 2 cognate complex to membrane-bound vimentin of rat L6 cells: Implications in cobra venom-induced cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:958-977. [PMID: 30776333 DOI: 10.1016/j.bbamem.2019.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 01/25/2019] [Accepted: 02/05/2019] [Indexed: 01/28/2023]
Abstract
An acidic phospholipase A2 enzyme (NnPLA2-I) interacts with three finger toxins (cytotoxin and neurotoxin) from Naja naja venom to form cognate complexes to enhance its cytotoxicity towards rat L6 myogenic cells. The cytotoxicity was further enhanced in presence of trace quantity of venom nerve growth factor. The purified rat myoblast cell membrane protein showing interaction with NnPLA2-I was identified as vimentin by LC-MS/MS analysis. The ELISA, immunoblot and spectrofluorometric analyses showed greater binding of NnPLA2-I cognate complex to vimentin as compared to the binding of individual NnPLA2-I. The immunofluorescence and confocal microscopy studies evidenced the internalization of NnPLA2-I to partially differentiated myoblasts post binding with vimentin in a time-dependent manner. Pre-incubation of polyvalent antivenom with NnPLA2-I cognate complex demonstrated better neutralization of cytotoxicity towards L6 cells as compared to exogenous addition of polyvalent antivenom 60-240 min post treatment of L6 cells with cognate complex suggesting clinical advantage of early antivenom treatment to prevent cobra venom-induced cytotoxicity. The in silico analysis showed that 19-22 residues, inclusive of Asp48 residue, of NnPLA2-I preferentially binds with the rod domain (99-189 and 261-335 regions) of vimentin with a predicted free binding energy (ΔG) and dissociation constant (KD) values of -12.86 kcal/mol and 3.67 × 10-10 M, respectively; however, NnPLA2-I cognate complex showed greater binding with the same regions of vimentin indicating the pathophysiological significance of cognate complex in cobra venom-induced cytotoxicity.
Collapse
Affiliation(s)
- Sumita Dutta
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Archana Sinha
- Molecular Endocrinology and Metabolism Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Suman Dasgupta
- Molecular Endocrinology and Metabolism Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
4
|
Chanda A, Kalita B, Patra A, Senevirathne WDST, Mukherjee AK. Proteomic analysis and antivenomics study of Western India Naja naja venom: correlation between venom composition and clinical manifestations of cobra bite in this region. Expert Rev Proteomics 2018; 16:171-184. [DOI: 10.1080/14789450.2019.1559735] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Abhishek Chanda
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| | - Wanigasingha. D. Sandani T. Senevirathne
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
- Deptartment of Rabies and Vaccine Quality Control, Medical Research Institute, Colombo, Sri Lanka
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, India
| |
Collapse
|
5
|
Chanda A, Patra A, Kalita B, Mukherjee AK. Proteomics analysis to compare the venom composition between Naja naja and Naja kaouthia from the same geographical location of eastern India: Correlation with pathophysiology of envenomation and immunological cross-reactivity towards commercial polyantivenom. Expert Rev Proteomics 2018; 15:949-961. [DOI: 10.1080/14789450.2018.1538799] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Abhishek Chanda
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur, India
| | - Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur, India
| | - Ashis K. Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University , Tezpur, India
| |
Collapse
|
6
|
Tan KY, Tan CH, Sim SM, Fung SY, Tan NH. Geographical venom variations of the Southeast Asian monocled cobra (Naja kaouthia): venom-induced neuromuscular depression and antivenom neutralization. Comp Biochem Physiol C Toxicol Pharmacol 2016; 185-186:77-86. [PMID: 26972756 DOI: 10.1016/j.cbpc.2016.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 11/30/2022]
Abstract
The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t90, time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Modahl CM, Mukherjee AK, Mackessy SP. An analysis of venom ontogeny and prey-specific toxicity in the Monocled Cobra (Naja kaouthia). Toxicon 2016; 119:8-20. [PMID: 27163885 DOI: 10.1016/j.toxicon.2016.04.049] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
Venoms of snakes of the family Elapidae (cobras, kraits, mambas, and relatives) are predominantly composed of numerous phospholipases A2 (PLA2s) and three-finger toxins (3FTxs), some of which are lethal while others are not significantly toxic. Currently, the only identified prey-specific toxins are several nonconventional 3FTxs, and given the large diversity of 3FTxs within Monocled Cobra (Naja kaouthia) venom, it was hypothesized that several 3FTxs, previously found to be non-toxic or weakly toxic 3FTxs in murine models, could potentially be toxic towards non-murine prey. Additionally, it was hypothesized that ontogenetic dietary shifts will be correlated with observable changes in specific 3FTx isoform abundance. Adult and juvenile N. kaouthia venom composition was investigated using ion-exchange FPLC, 1D and 2D SDS-PAGE, mass spectrometry, and various enzymatic and LD50 assays. Alpha-cobratoxin (α-elapitoxin) was the only significantly toxic (LD50 < 1 μg/g) 3FTx found in N. kaouthia venom and was equally toxic toward both lizard and mouse models. The abundance and diversity of 3FTxs and most enzyme activities did not vary between adult and juvenile cobra venoms; however, total venom PLA2 activity and specific PLA2 isoforms did vary, with juveniles lacking several of the least acidic PLA2s, and these differences could have both biological (related to predation) and clinical (antivenom efficacy) implications. Nevertheless, the ubiquitous presence of α-cobratoxin in both adult and juvenile cobra venoms, with high toxicity toward both reptiles and mammals, represents a venom compositional strategy wherein a single potent toxin effectively immobilizes a variety of prey types encountered across life history stages.
Collapse
Affiliation(s)
- Cassandra M Modahl
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA
| | - Ashis K Mukherjee
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA; Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028 Assam, India
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Greeley, CO 80639-0017, USA.
| |
Collapse
|
8
|
Das HK, Das D, Doley R, Sahu PP. Quantifying Demyelination in NK venom treated nerve using its electric circuit model. Sci Rep 2016; 6:22385. [PMID: 26932543 PMCID: PMC4773768 DOI: 10.1038/srep22385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/10/2016] [Indexed: 11/24/2022] Open
Abstract
Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.
Collapse
Affiliation(s)
- H. K. Das
- Department of Electronics and Communication Engg., Tezpur University, Tezpur-784028, Assam, India
| | - D. Das
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784028, Assam, India
| | - R. Doley
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur-784028, Assam, India
| | - P. P. Sahu
- Department of Electronics and Communication Engg., Tezpur University, Tezpur-784028, Assam, India
| |
Collapse
|
9
|
Tan KY, Tan CH, Fung SY, Tan NH. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics 2015; 120:105-25. [PMID: 25748141 DOI: 10.1016/j.jprot.2015.02.012] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 01/15/2023]
Abstract
UNLABELLED Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness. BIOLOGICAL SIGNIFICANCE Biogeographical variations were observed in the venom proteome of monocled cobra (Naja kaouthia) from Malaysia, Thailand and Vietnam. The Thai N. kaouthia venom is particularly rich in long neurotoxins, while the Malaysian and Vietnamese specimens were predominated with cytotoxins. The differentially expressed toxin profile accounts for the discrepancy in the lethal dose of the venom from different populations. Commercially available Thai antivenoms (monovalent and polyvalent) were able to neutralize the three venoms at different effective doses, hence supporting their uses in the three regions. While dose adjustment according to geographical region seems possible, changes to standard recommended dosage should only be made if further study validates that the monocled cobras within a population do not exhibit remarkable inter-individual venom variation.
Collapse
Affiliation(s)
- Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Centre for Proteomics Research (UMPCR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Centre for Proteomics Research (UMPCR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; University of Malaya Centre for Proteomics Research (UMPCR), University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
In Vitro and In Vivo Evaluation of Polyherbal Formulation against Russell's Viper and Cobra Venom and Screening of Bioactive Components by Docking Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:781216. [PMID: 23533518 PMCID: PMC3600290 DOI: 10.1155/2013/781216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 12/24/2012] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
Abstract
The present study emphasizes to reveal the antivenom activity of Aristolochia bracteolata Lam., Tylophora indica (Burm.f.) Merrill, and Leucas aspera S. which were evaluated against venoms of Daboia russelli russelli (Russell's viper) and Naja naja (Indian cobra). The aqueous extracts of leaves and roots of the above-mentioned plants and their polyherbal (1 : 1 : 1) formulation at a dose of 200 mg/kg showed protection against envenomed mice with LD50 doses of 0.44 mg/kg and 0.28 mg/kg against Russell's viper and cobra venom, respectively. In in vitro antioxidant activities sample extracts showed free radical scavenging effects in dose dependent manner. Computational drug design and docking studies were carried out to predict the neutralizing principles of type I phospholipase A2 (PLA2) from Indian common krait venom. This confirmed that aristolochic acid and leucasin can neutralize type I PLA2 enzyme. Results suggest that these plants could serve as a source of natural antioxidants and common antidote for snake bite. However, further studies are needed to identify the lead molecule responsible for antidote activity.
Collapse
|
11
|
Paraspecific neutralization of the venom of African species of cobra by an equine antiserum against Naja melanoleuca: A comparative study. Toxicon 2009; 53:602-8. [DOI: 10.1016/j.toxicon.2009.01.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|