1
|
Zhou YY, Jin Y, Liu SQ, Xu SL, Huang YX, Xu YS, Shi LG, Wang HB. Genome-wide identification and comparative analysis of lipocalin families in Lepidoptera with an emphasis on Bombyx mori. INSECT SCIENCE 2023; 30:15-30. [PMID: 35343650 DOI: 10.1111/1744-7917.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Lipocalins exhibit functional diversity, including roles in retinol transport, invertebrate cryptic coloration, and stress response. However, genome-wide identification and characterization of lipocalin in the insect lineage have not been thoroughly explored. Here, we found that a lineage-specific expansion of the lipocalin genes in Lepidoptera occurred in large part due to tandem duplication events and several lipocalin genes involving insect coloration were expanded more via tandem duplication in butterflies. A comparative analysis of conserved motifs showed both conservation and divergence of lepidopteran lipocalin family protein structures during evolution. We observe dynamic changes in tissue expression preference of paralogs in Bombyx mori, suggesting differential contribution of paralogs to specific organ functions during evolution. Subcellular localization experiments revealed that lipocalins localize to the cytoplasm, nuclear membrane, or nucleus in BmN cells. Moreover, several lipocalin genes exhibited divergent responses to abiotic and biotic stresses, and 1 lipocalin gene was upregulated by 300 fold in B. mori. These results suggest that lipocalins act as signaling components in defense responses by mediating crosstalk between abiotic and biotic stress responses. This study deepens our understanding of the comprehensive characteristics of lipocalins in insects.
Collapse
Affiliation(s)
- Yan-Yan Zhou
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yue Jin
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shuai-Qi Liu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Shi-Liang Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Xin Huang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yu-Song Xu
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Lian-Gen Shi
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hua-Bing Wang
- Department of Economic Zoology, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Alvarez AM, Alvarez-Flores MP, DeOcesano-Pereira C, Goldfeder MB, Chudzinski-Tavassi AM, Moreira V, Teixeira C. Losac and Lopap Recombinant Proteins from Lonomia obliqua Bristles Positively Modulate the Myoblast Proliferation Process. Front Mol Biosci 2022; 9:904737. [PMID: 35847970 PMCID: PMC9280836 DOI: 10.3389/fmolb.2022.904737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
The pursuit of better therapies for disorders creating deficiencies in skeletal muscle regeneration is in progress, and several biotoxins are used in skeletal muscle research. Since recombinant proteins derived from Lonomia obliqua bristles, recombinant Lonomia obliqua Stuart-factor activator (rLosac) and recombinant Lonomia obliqua prothrombin activator protease (rLopap) act as cytoprotective agents and promote cell survival, we hypothesize that both rLosac and rLopap favour the skeletal muscle regeneration process. In the present work, we investigate the ability of these recombinant proteins rLosac and rLopap to modulate the production of key mediators of the myogenic process. The expression of myogenic regulatory factors (MRFs), cell proliferation, the production of prostaglandin E2 (PGE2) and the protein expression of cyclooxygenases COX-1 and COX-2 were evaluated in C2C12 mouse myoblasts pre-treated with rLosac and rLopap. We found an increased proliferation of myoblasts, stimulated by both recombinant proteins. Moreover, these proteins modulated PGE2 release and MRFs activities. We also found an increased expression of the EP4 receptor in the proliferative phase of C2C12 cells, suggesting the involvement of this receptor in the effects of PGE2 in these cells. Moreover, the recombinant proteins inhibited the release of IL-6 and PGE2, which is induced by an inflammatory stimulus by IL-1β. This work reveals rLopap and rLosac as promising proteins to modulate processes involving tissue regeneration as occurs during skeletal muscle injury.
Collapse
Affiliation(s)
- Angela María Alvarez
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Mauricio Barbugiani Goldfeder
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Innovation and Development Labororatory, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Innovation and Development Labororatory, Butantan Institute, São Paulo, Brazil
| | - Vanessa Moreira
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Department, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Vanessa Moreira, ; Catarina Teixeira,
| | - Catarina Teixeira
- Centre of Excellence in New Target Discovery -CENTD-, Butantan Institute, São Paulo, Brazil
- Pharmacology Laboratory, Butantan Institute, São Paulo, Brazil
- *Correspondence: Vanessa Moreira, ; Catarina Teixeira,
| |
Collapse
|
3
|
Moraes JA, Rodrigues G, Guimarães-Bastos D, Nascimento-Silva V, Svensjö E, Renovato-Martins M, Berger M, Guimarães J, Barja-Fidalgo C. Effect of Lonomia obliqua Venom on Human Neutrophils. Toxins (Basel) 2021; 13:toxins13120908. [PMID: 34941745 PMCID: PMC8707409 DOI: 10.3390/toxins13120908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
The significant incidence of deforestation in South America culminates in the contact of humans with typical forests species. Among these species, one may highlight Lonomia obliqua caterpillar, which, when touched by humans, can poison them through their bristles. Therefore, better acknowledging the mechanisms involved in envenomation caused by Lonomia obliqua caterpillar bristle extract (LOCBE) may contribute to further treatments. Recently, we demonstrated that LOCBE induces a pro-inflammatory profile in endothelial cells; thus, we decided to investigate the effects of LOCBE on human polymorphonuclear neutrophils (PMN), which are the first leukocytes that migrate to the inflammatory focus. Our results showed that treatment with LOCBE induced PMN chemotaxis together with alterations in actin cytoskeleton and focal adhesion kinase (FAK) activation, favoring migration. Concurrently, LOCBE induced PMN adhesion to matrix proteins, such as collagen IV, fibronectin, and fibrinogen. Moreover, we observed that LOCBE attenuated PMN apoptosis and increased reactive oxygen species (ROS) production together with nuclear factor kB (NF-κB) activation—a redox-sensitive transcription factor—as well as interleukin (IL)-1β and IL-8 release. We call attention to the ROS-dependent effect of LOCBE on increased cell migration once an antioxidant treatment reverted it. In summary, we report that LOCBE activates PMN, inducing pro-inflammatory responses modulated by ROS.
Collapse
Affiliation(s)
- João Alfredo Moraes
- Laboratório de Biologia RedOx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho 373, Prédio Novo do ICB, Sala 3 3 Andar, Rio de Janeiro 21941-902, Brazil; (D.G.-B.); (C.B.-F.)
- Correspondence:
| | - Genilson Rodrigues
- Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (G.R.); (V.N.-S.)
| | - Daniel Guimarães-Bastos
- Laboratório de Biologia RedOx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho 373, Prédio Novo do ICB, Sala 3 3 Andar, Rio de Janeiro 21941-902, Brazil; (D.G.-B.); (C.B.-F.)
| | - Vany Nascimento-Silva
- Laboratório de Farmacologia Celular e Molecular, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20551-030, Brazil; (G.R.); (V.N.-S.)
| | - Erik Svensjö
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Mariana Renovato-Martins
- Laborotário de Imunologia e Metabolismo, Universidade Federal Fluminense, Niterói 22410-201, Brazil;
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-003, Brazil; (M.B.); (J.G.)
| | - Jorge Guimarães
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-003, Brazil; (M.B.); (J.G.)
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Christina Barja-Fidalgo
- Laboratório de Biologia RedOx, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Ave. Carlos Chagas Filho 373, Prédio Novo do ICB, Sala 3 3 Andar, Rio de Janeiro 21941-902, Brazil; (D.G.-B.); (C.B.-F.)
| |
Collapse
|
4
|
Lonomia obliqua Envenoming and Innovative Research. Toxins (Basel) 2021; 13:toxins13120832. [PMID: 34941670 PMCID: PMC8706654 DOI: 10.3390/toxins13120832] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/21/2023] Open
Abstract
As a tribute to Butantan Institute in its 120th anniversary, this review describes some of the scientific research efforts carried out in the study of Lonomia envenoming in Brazil, a country where accidents with caterpillars reach over 42,000 individuals per year (especially in South and Southeast Brazil). Thus, the promising data regarding the studies with Lonomia’s toxins contributed to the creation of new research centers specialized in toxinology based at Butantan Institute, as well as to the production of the antilonomic serum (ALS), actions which are in line with the Butantan Institute mission “to research, develop, manufacture, and provide products and services for the health of the population”. In addition, the study of the components of the Lonomia obliqua bristle extract led to the discovery of new molecules with peculiar properties, opening a field of knowledge that could lead to the development and innovation of new drugs aimed at cell regeneration and inflammatory diseases.
Collapse
|
5
|
Oliveira DS, de Souza JG, Alvarez-Flores MP, Cunegundes PS, DeOcesano-Pereira C, Lobba AM, Gomes RN, Chudzinski-Tavassi AM. Lonomia obliqua Venom Induces NF-κB Activation and a Pro-Inflammatory Profile in THP-1-Derived Macrophage. Toxins (Basel) 2021; 13:462. [PMID: 34209394 PMCID: PMC8309978 DOI: 10.3390/toxins13070462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 01/04/2023] Open
Abstract
Envenomation caused by contact with Lonomia obliqua bristles is characterized by pain, an intense systemic proinflammatory reaction and disturbances in the coagulation cascade that can cause severe clinical manifestations and death. However, the role of immune system components in these effects is still poorly understood. In this study, we evaluated the cytotoxic effect of L. obliqua venom on THP-1-derived macrophages and its ability to modulate inflammatory markers, as well as the cytokine and chemokine release profile. Our results show that L. obliqua venom is able to directly exert a potent pro-inflammatory reaction in macrophages, characterized by the activation of the NF-κB transcription factor pathway, the expression of CD80 and CD83, and the release of pro-inflammatory mediators such as TNF-α, IL-1β, IL-6, IL-8 and CXCL10. These results suggest that macrophages can play an important role during the orchestration of the inflammatory response present in envenomation caused by Lonomia obliqua caterpillars.
Collapse
Affiliation(s)
- Douglas Souza Oliveira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
- Biochemistry Department, Federal University of São Paulo, Vila Clementino 04044-020, SP, Brazil
| | - Jean Gabriel de Souza
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
| | - Miryam Paola Alvarez-Flores
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Priscila S. Cunegundes
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
- Biochemistry Department, Federal University of São Paulo, Vila Clementino 04044-020, SP, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Aline Maia Lobba
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Renata N. Gomes
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Butantã 05503-900, SP, Brazil; (D.S.O.); (J.G.d.S.); (M.P.A.-F.); (P.S.C.); (C.D.-P.); (A.M.L.); (R.N.G.)
- Development and Innovation Department, Butantan Institute, Butantã 05503-900, SP, Brazil
| |
Collapse
|
6
|
Mesquita Pasqualoto KF, Carrijo-Carvalho LC, Chudzinski-Tavassi AM. Rational development of novel leads from animal secretion based on coagulation and cell targets: 1. In silico analysis to explore a peptide derivative as lipocalins' signature. Toxicon 2013; 69:200-10. [PMID: 23435263 DOI: 10.1016/j.toxicon.2013.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 02/05/2013] [Indexed: 11/25/2022]
Abstract
Animal venoms and secretions have been screened, in our research group, to discover, identify and isolate peptide molecules active in the mammalian haemostatic system. As result, this kind of research has provided a portfolio of promising drug candidates. These novel recombinant proteins have turned out to be multifunctional molecules, and are currently under different development phases. Lopap from bristles of the Lonomia obliqua moth caterpillar, for instance, is a prothrombin activator which belongs to the lipocalin family. It displays serine protease-like activity with procoagulant effect, and also induces cytokine secretion and antiapoptotic pathways in human cultured endothelial cells. Furthermore, a Lopap-derived peptide has showed to induce collagen synthesis in fibroblast culture and in animal dermis. Here, the molecular properties (steric, electronic, hydrophobic, geometric), which are strongly dependent on chemical structure, were investigated by applying chemometric and computational chemistry methods. It was considered different patterns of amino acid substitution related to the lipocalins' motif 2, which was recently shown to modulate cell survival. The calculated molecular properties were generally maintained in all investigated peptides extracted from three-dimensional structures of Protein Data Bank (1t0v, 1bbp, 1kxo, 2hzr, 1iiu, 1jyj, 1gka, 1s44, 3ebw) when compared to Lopap-derived peptide, specially the molecular shape and electronic density distribution, validating the lipocalin sequence signature previously reported. Indeed, those two properties are quite important for the molecular recognition process.
Collapse
|
7
|
Heinen TE, de Farias CB, Abujamra AL, Mendonça RZ, Roesler R, da Veiga ABG. Effects of Lonomia obliqua caterpillar venom upon the proliferation and viability of cell lines. Cytotechnology 2013; 66:63-74. [PMID: 23338857 DOI: 10.1007/s10616-013-9537-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/04/2013] [Indexed: 12/27/2022] Open
Abstract
Many active principles produced by animals, plants and microorganisms have been employed in the development of new drugs for the treatment of human diseases. Among animals known to produce pharmacologically active molecules that interfere in human cell physiology, the caterpillar Lonomia obliqua has become the focus of toxicological studies due to recent findings about its venom constituents. The objective of this study was to investigate the effects of L. obliqua venom upon the viability and the proliferation of different cell lineages and to propose mechanisms for the herein observed induction of cell proliferation in glioma cell lines. MTT analyses indicate that L. obliqua venom increases the viability of tumor cell lines U138-MG and HT-29; on the other hand, it inhibits the viability of V-79 nontumor cells. Cell count based on the trypan blue exclusion method suggests a proliferating activity of the venom upon U138-MG cells. Exposure of U138-MG to crude venom extract led to a decrease in the production of nitric oxide, and activation of the cAMP signaling pathway inhibited the effects of the venom, indicating that these mechanisms may influence cell proliferation triggered by the venom. Despite the proliferative effects of crude venom on U138-MG and HT-29 cell cultures, a protein purified from L. obliqua hemolymph previously shown to have cytoprotective activity had no effect on U138-MG and HT-29; however, this same protein increased the viability of V-79 cells that had previously been exposed to the cytotoxic activity of the crude venom extract. This study indicates that the venom and the antiapoptotic protein act differently and have different effects on cell cultures, depending on the cell line analyzed. Biomolecules displaying either mitogenic or cytotoxic activities are of great biotechnological interest. Further studies encompassing the purification of active principles from L. obliqua venom are necessary to further elucidate its effects on different cell types.
Collapse
Affiliation(s)
- Tiago Elias Heinen
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, 90050-170, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
A lipocalin-derived Peptide modulating fibroblasts and extracellular matrix proteins. J Toxicol 2012; 2012:325250. [PMID: 22737165 PMCID: PMC3379166 DOI: 10.1155/2012/325250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/23/2012] [Accepted: 04/15/2012] [Indexed: 02/06/2023] Open
Abstract
Lipocalin family members have been implicated in development, regeneration, and pathological processes, but their roles are unclear. Interestingly, these proteins are found abundant in the venom of the Lonomia obliqua caterpillar. Lipocalins are β-barrel proteins, which have three conserved motifs in their amino acid sequence. One of these motifs was shown to be a sequence signature involved in cell modulation. The aim of this study is to investigate the effects of a synthetic peptide comprising the lipocalin sequence motif in fibroblasts. This peptide suppressed caspase 3 activity and upregulated Bcl-2 and Ki-67, but did not interfere with GPCR calcium mobilization. Fibroblast responses also involved increased expression of proinflammatory mediators. Increase of extracellular matrix proteins, such as collagen, fibronectin, and tenascin, was observed. Increase in collagen content was also observed in vivo. Results indicate that modulation effects displayed by lipocalins through this sequence motif involve cell survival, extracellular matrix remodeling, and cytokine signaling. Such effects can be related to the lipocalin roles in disease, development, and tissue repair.
Collapse
|
9
|
Guerrero B, Arocha-Piñango CL, Salazar AM, Gil A, Sánchez EE, Rodríguez-Acosta A, Lucena S. The effects of Lonomin V, a toxin from the caterpillar (Lonomia achelous), on hemostasis parameters as measured by platelet function. Toxicon 2011; 58:293-303. [PMID: 21820001 DOI: 10.1016/j.toxicon.2011.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 04/15/2011] [Accepted: 07/12/2011] [Indexed: 11/30/2022]
Abstract
Platelets play a central role in hemostasis during vascular injury. Patients affected with the hemorrhagic syndrome caused by contact with Lonomia achelous caterpillars (Lac) Lepidoptera distributed in various South American countries, show digestive, pulmonary and intraperitoneal bleeding in combination with hematomas and echymosis. In the present study, we have evaluated the effects of Lonomin V (serine protease isolated from Lac hemolymph) on some functional properties of platelets, evaluating its importance in primary hemostasis. Platelet adhesion to fibrinogen was reduced by 19, 20, 36, and 37% after pre-treated with 0.2, 2, 20 and 40 nM of Lonomin V, respectively. Pre-incubation of the platelets with 408 nM of Lonomin V, for 4 min at 37 °C, resulted in complete inhibition of the collagen-induced platelet aggregation, in contrast to 56% inhibition of the ADP - induced platelet aggregation. Lonomin V also inhibited anti-α(IIb)β(3) integrin binding to platelets by 56, 57, 52 and 54% at concentrations of 0.2, 2, 20 and 40 nM respectively. Additionally, Lonomin V inhibited anti-P-selectin binding to platelets by 28, 37, 33 and 33% at the same concentrations. The platelets tested with Lonomin V did not modify their viability. In summary, Lonomin V inhibited platelet aggregation, probably caused by the degradation of collagen. The anti-platelet activity of Lonomin V has been shown to be unique and a potentially useful tool for investigating cell-matrix and cell-cell interactions and for the development of antithrombotic agents in terms of their anti-adhesive activities.
Collapse
Affiliation(s)
- Belsy Guerrero
- Laboratorio de Fisiopatología, Centro de Medicina Experimental, Instituto Venezolano de Investigaciones Científicas, Apartado 20632, Caracas 1020A, Republic of Venezuela
| | | | | | | | | | | | | |
Collapse
|
10
|
Hebeda CB, Pinedo FJ, Vinolo MAR, Curi R, Farsky SHP. Hydroquinone Stimulates Inflammatory Functions in Microvascular Endothelial Cells via NF-κB Nuclear Activation. Basic Clin Pharmacol Toxicol 2011; 109:372-80. [DOI: 10.1111/j.1742-7843.2011.00739.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
11
|
Chudzinski-Tavassi AM, Carrijo-Carvalho LC, Waismam K, Farsky SH, Ramos OH, Reis CV. A lipocalin sequence signature modulates cell survival. FEBS Lett 2010; 584:2896-900. [DOI: 10.1016/j.febslet.2010.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/21/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
|