1
|
Ueda H, Ito M, Yonezawa R, Hayashi K, Tomonou T, Kashitani M, Oyama H, Shirai K, Suo R, Yoshitake K, Kinoshita S, Asakawa S, Itoi S. Japanese Planocerid Flatworms: Difference in Composition of Tetrodotoxin and Its Analogs and the Effects of Ingestion by Toxin-Bearing Fishes in the Ryukyu Islands, Japan. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:500-510. [PMID: 38630353 PMCID: PMC11178581 DOI: 10.1007/s10126-024-10312-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/09/2024] [Indexed: 06/15/2024]
Abstract
Tetrodotoxin (TTX), known as pufferfish toxin, is a potent neurotoxin blocking sodium channels in muscle and nerve tissues. TTX has been detected in various taxa other than pufferfish, including marine polyclad flatworms, suggesting that pufferfish toxin accumulates in fish bodies via food webs. The composition of TTX and its analogs in the flatworm Planocera multitentaculata was identical to those in wild grass puffer Takifugu alboplumbeus. Previously, Planocera sp. from Okinawa Island, Japan, were reported to possess high level of TTX, but no information was available on TTX analogs in this species. Here we identified TTX and analogs in the planocerid flatworm using high-resolution liquid chromatography-mass spectrometry, and compared the composition of TTX and analogs with those of another toxic and non-toxic planocerid species. We show that the composition of TTX and several analogs, such as 5,6,11-trideoxyTTX, dideoxyTTXs, deoxyTTXs, and 11-norTTX-6(S)-ol, of Planocera sp. was identical to those of toxic species, but not to its non-toxic counterpart. The difference in the toxin composition was reflected in the phylogenetic relationship based on the mitochondrial genome sequence. A toxification experiment using predatory fish and egg plates of P. multitentaculata demonstrated that the composition of TTX and analogs in wild T. alboplumbeus juveniles was reproduced in artificially toxified pufferfish. Additionally, feeding on the flatworm egg plates enhanced the signal intensities of all TTX compounds in Chelonodon patoca and that of deoxyTTXs in Yongeichthys criniger.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Yonezawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Kentaro Hayashi
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Taiga Tomonou
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shigeharu Kinoshita
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
2
|
Biessy L, Pearman JK, Mertens KN, Réveillon D, Savar V, Hess P, Hampton H, Thompson L, Lebrun L, Terre-Terrillon A, Smith KF. Sudden peak in tetrodotoxin in French oysters during the summer of 2021: Source investigation using microscopy, metabarcoding and droplet digital PCR. Toxicon 2024; 243:107721. [PMID: 38636612 DOI: 10.1016/j.toxicon.2024.107721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin causing human intoxications from contaminated seafood worldwide and is of emerging concern in Europe. Shellfish have been shown to contain varying TTX concentrations globally, with concentrations typically higher in Pacific oysters Crassostrea gigas in Europe. Despite many decades of research, the source of TTX remains unknown, with bacterial or algal origins having been suggested. The aim of this study was to identify potential source organisms causing TTX contamination in Pacific oysters in French coastal waters, using three different techniques. Oysters were deployed in cages from April to September 2021 in an estuary where TTX was previously detected. Microscopic analyses of water samples were used to investigate potential microalgal blooms present prior or during the peak in TTX. Differences in the bacterial communities from oyster digestive glands (DG) and remaining flesh were explored using metabarcoding, and lastly, droplet digital PCR assays were developed to investigate the presence of Cephalothrix sp., one European TTX-bearing species in the DG of toxic C. gigas. Oysters analysed by liquid chromatography-tandem mass spectrometry contained quantifiable levels of TTX over a three-week period (24 June-15 July 2021), with concentrations decreasing in the DG from 424 μg/kg for the first detection to 101 μg/kg (equivalent to 74 to 17 μg/kg of total flesh), and trace levels being detected until August 13, 2021. These concentrations are the first report of the European TTX guidance levels being exceeded in French shellfish. Microscopy revealed that some microalgae bloomed during the TTX peak, (e.g., Chaetoceros spp., reaching 40,000 cells/L). Prokaryotic metabarcoding showed increases in abundance of Rubritaleaceae (genus Persicirhabdus) and Neolyngbya, before and during the TTX peak. Both phyla have previously been described as possible TTX-producers and should be investigated further. Droplet digital PCR analyses were negative for the targeted TTX-bearing genus Cephalothrix.
Collapse
Affiliation(s)
- Laura Biessy
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand.
| | - John K Pearman
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - Kenneth Neil Mertens
- Ifremer, LITTORAL Unit, Place de la Croix, BP40537, 29900, Concarneau CEDEX, France
| | | | | | | | - Hannah Hampton
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - Lucy Thompson
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - Luc Lebrun
- Ifremer, LITTORAL Unit, Place de la Croix, BP40537, 29900, Concarneau CEDEX, France
| | | | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| |
Collapse
|
3
|
Miyazaki K, Suo R, Itoi S, Hirota J, Adachi M, Miyasaka T, Nishikawa T, Yokoyama T, Sato S, Takada K. 5, 6, 11-trideoxy tetrodotoxin attracts tiger puffer Takifugu rubripes. Toxicon 2024; 237:107539. [PMID: 38042308 DOI: 10.1016/j.toxicon.2023.107539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that binds to voltage-gated sodium channels and blocks the passage of sodium ions. TTX is widely distributed in both terrestrial and marine organisms, and the toxic puffers are believed to accumulate TTX through the food chain. Although pufferfish was previously thought to be attracted by TTX, recent finding from electroolfactogram (EOG) studies have indicated that the olfactory epithelium of T. alboplumbeus responded to 5, 6, 11-trideoxyTTX (TDT), but not to TTX itself. In this study, we examined behavioral experiments for Takifugu rubripes to distinguish between TTX and TDT under static and flow-through conditions. Our data clearly suggested that T. rubripes juveniles were attracted to TDT, not TTX. Moreover, we determined that the minimum effective dose of TDT to attract the puffer was 1-2 nmol of TDT under static conditions and 50-60 nmol of TDT under flow-through conditions. Following the experiments under static conditions, numerous bite marks by the pufferfish were found solely on the agarose gel infused with TDT. Based on these finding, we hypothesize that the pufferfish are attracted to TDT derived from prey, leading them effectively become toxic.
Collapse
Affiliation(s)
- Kairi Miyazaki
- School of Marine Biosciences, Kitasato University, Japan
| | - Rei Suo
- College of Bioresource Sciences, Nihon University, Japan
| | - Shiro Itoi
- College of Bioresource Sciences, Nihon University, Japan
| | - Junji Hirota
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Japan
| | | | - Toshio Nishikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | - Shigeru Sato
- School of Marine Biosciences, Kitasato University, Japan
| | - Kentaro Takada
- School of Marine Biosciences, Kitasato University, Japan.
| |
Collapse
|
4
|
Ito M, Shirai K, Oyama H, Yasukawa S, Asano M, Kihara M, Suo R, Sugita H, Nakahigashi R, Adachi M, Nishikawa T, Itoi S. Geographical differences in the composition of tetrodotoxin and 5,6,11-trideoxytetrodotoxin in Japanese pufferfishes and their origins. CHEMOSPHERE 2023; 336:139214. [PMID: 37327821 DOI: 10.1016/j.chemosphere.2023.139214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/02/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Tetrodotoxin (TTX)-bearing fish are thought to accumulate TTXs in their bodies through a food chain that begins with marine bacteria. However, the mechanism of TTXs transfer between prey and predators in the food chain remains unclear and the reasons for regional differences in pufferfish toxicity are also unknown. To investigate these matters, we collected juveniles of four species of pufferfish, Takifugu alboplumbeus, Takifugu flavipterus, Takifugu stictonotus, and Chelonodon patoca, from various locations in the Japanese Islands, and subjected them to liquid chromatography-tandem mass spectrometry analysis for TTX and its analog 5,6,11-trideoxyTTX (TDT). Concentrations of these substances tended to be higher in pufferfish juveniles collected from the Sanriku coastal area (Pacific coast of northern Japan) than in those from other locations. Juveniles had higher concentrations of TTX at all locations than of TDT. Mitochondrial cytochrome c oxidase subunit I (COI) sequences specific to the TTX-bearing flatworm, Planocera multitentaculata, were detected in the intestinal contents of up to 100% of pufferfish juveniles from various sampling sites, suggesting that P. multitentaculata was widely involved in the toxification of the juveniles in the coastal waters of Japan. A toxification experiment was conducted on three species of pufferfish juveniles (T. alboplumbeus, Takifugu rubripes and C. patoca) using TTX-bearing flatworm eggs harboring equal amounts of TTX and TDT. The TTX content of juveniles fed on flatworm eggs was found to be more than twice that of TDT, suggesting that pufferfish preferentially incorporate TTX compared to TDT.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kyoko Shirai
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masaki Asano
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masato Kihara
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Science, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8587, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
5
|
Asano M, Ishizaki C, Tomonou T, Kihara M, Ito M, Yasukawa S, Shirai K, Oyama H, Izawa S, Kawamura R, Saito K, Suo R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Levels of Tetrodotoxins in Spawning Pufferfish, Takifugu alboplumbeus. Mar Drugs 2023; 21:md21040207. [PMID: 37103347 PMCID: PMC10141859 DOI: 10.3390/md21040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Tetrodotoxin (TTX), also known as pufferfish toxin, is an extremely potent neurotoxin thought to be used as a biological defense compound in organisms bearing it. Although TTX was thought to function as a chemical agent for defense and anti-predation and an attractant for TTX-bearing animals including pufferfish, it has recently been demonstrated that pufferfish were also attracted to 5,6,11-trideoxyTTX, a related compound, rather than TTX alone. In this study, we attempted to estimate the roles of TTXs (TTX and 5,6,11-trideoxyTTX) in the pufferfish, Takifugu alboplumbeus, through examining the location of TTXs in various tissues of spawning pufferfish from Enoshima and Kamogawa, Japan. TTXs levels in the Kamogawa population were higher than those in the Enoshima population, and there was no significant difference in the amount of TTXs between the sexes in either population. Individual differences were greater in females than in males. However, the location of both substances in tissues differed significantly between sexes: male pufferfish accumulated most of their TTX in the skin and liver and most of their 5,6,11-trideoxyTTX in the skin, whereas females accumulated most of their TTX and 5,6,11-trideoxyTTX in the ovaries and skin.
Collapse
|
6
|
Panda D, Dash BP, Manickam S, Boczkaj G. Recent advancements in LC-MS based analysis of biotoxins: Present and future challenges. MASS SPECTROMETRY REVIEWS 2022; 41:766-803. [PMID: 33624883 DOI: 10.1002/mas.21689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
There has been a rising concern regarding the harmful impact of biotoxins, source of origin, and the determination of the specific type of toxin. With numerous reports on their extensive spread, biotoxins pose a critical challenge to figure out their parent groups, metabolites, and concentration. In that aspect, liquid chromatography-mass spectrometry (LC-MS) based analysis paves the way for its accurate identification and quantification. The biotoxins are ideally categorized as phytotoxins, mycotoxins, shellfish-toxins, ciguatoxins, cyanotoxins, and bacterial toxins such as tetrodotoxins. Considering the diverse nature of biotoxins, both low-resolution mass spectrometry (LRMS) and high-resolution mass spectrometry (HRMS) methods have been implemented for their detection. The sample preparation strategy for complex matrix usually includes "QuEChERS" extraction or solid-phase extraction coupled with homogenization and centrifugation. For targeted analysis of biotoxins, the LRMS consisting of a tandem mass spectrometer operating in multiple reaction monitoring mode has been widely implemented. With the help of the reference standard, most of the toxins were accurately quantified. At the same time, the suspect screening and nontarget screening approach are facilitated by the HRMS platforms during the absence of reference standards. Significant progress has also been made in sampling device employment, utilizing novel sample preparation strategies, synthesizing toxin standards, employing hybrid MS platforms, and the associated data interpretation. This critical review attempts to elucidate the progress in LC-MS based analysis in the determination of biotoxins while pointing out major challenges and suggestions for future development.
Collapse
Affiliation(s)
- Debabrata Panda
- Center of Excellence (CoE), Fakir Mohan University, Nuapadhi, Odisha, India
| | - Bisnu P Dash
- Department of Bioscience and Biotechnology, Fakir Mohan University, Nuapadhi, Odisha, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, Brunei Darussalam
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| |
Collapse
|
7
|
Melnikova DI, Magarlamov TY. An Overview of the Anatomical Distribution of Tetrodotoxin in Animals. Toxins (Basel) 2022; 14:toxins14080576. [PMID: 36006238 PMCID: PMC9412668 DOI: 10.3390/toxins14080576] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrodotoxin (TTX), a potent paralytic sodium channel blocker, is an intriguing marine toxin. Widely distributed in nature, TTX has attracted attention in various scientific fields, from biomedical studies to environmental safety concerns. Despite a long history of studies, many issues concerning the biosynthesis, origin, and spread of TTX in animals and ecosystems remain. This review aims to summarize the current knowledge on TTX circulation inside TTX-bearing animal bodies. We focus on the advances in TTX detection at the cellular and subcellular levels, providing an expanded picture of intra-organismal TTX migration mechanisms. We believe that this review will help address the gaps in the understanding of the biological function of TTX and facilitate the development of further studies involving TTX-bearing animals.
Collapse
|
8
|
Suo R, Tanaka M, Oyama H, Kojima Y, Yui K, Sakakibara R, Nakahigashi R, Adachi M, Nishikawa T, Sugita H, Itoi S. Tetrodotoxins in the flatworm Planocera multitentaculata. Toxicon 2022; 216:169-173. [PMID: 35843466 DOI: 10.1016/j.toxicon.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
The marine polyclad flatworm Planocera multitentaculata is known to possess high levels of tetrodotoxin (TTX), but the presence of TTX analogues in the species has been unexplored. In this study, TTX and several analogues such as 5,6,11-trideoxyTTX, monodeoxyTTXs, dideoxyTTXs, and 11-norTTX-6(S)-ol were identified in three adults and egg plates of P. multitentaculata using high resolution liquid chromatography-mass spectrometry (HR-LC/MS) for the first time.
Collapse
Affiliation(s)
- Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Makoto Tanaka
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Yuki Kojima
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kentaro Yui
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Ryo Sakakibara
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Ryota Nakahigashi
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
9
|
Ito M, Furukawa R, Yasukawa S, Sato M, Oyama H, Okabe T, Suo R, Sugita H, Takatani T, Arakawa O, Adachi M, Nishikawa T, Itoi S. Local Differences in the Toxin Amount and Composition of Tetrodotoxin and Related Compounds in Pufferfish ( Chelonodon patoca) and Toxic Goby ( Yongeichthys criniger) Juveniles. Toxins (Basel) 2022; 14:150. [PMID: 35202177 PMCID: PMC8876675 DOI: 10.3390/toxins14020150] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Tetrodotoxin (TTX)-bearing fish ingest TTX from their preys through the food chain and accumulate TTX in their bodies. Although a wide variety of TTX-bearing organisms have been reported, the missing link in the TTX supply chain has not been elucidated completely. Here, we investigated the composition of TTX and 5,6,11-trideoxyTTX in juveniles of the pufferfish, Chelonodon patoca, and toxic goby, Yongeichthys criniger, using LC-MS/MS, to resolve the missing link in the TTX supply chain. The TTX concentration varied among samples from different localities, sampling periods and fish species. In the samples from the same locality, the TTX concentration was significantly higher in the toxic goby juveniles than in the pufferfish juveniles. The concentration of TTX in all the pufferfish juveniles was significantly higher than that of 5,6,11-trideoxyTTX, whereas the compositional ratio of TTX and 5,6,11-trideoxyTTX in the goby was different among sampling localities. However, the TTX/5,6,11-trideoxyTTX ratio in the goby was not different among samples collected from the same locality at different periods. Based on a species-specific PCR, the detection rate of the toxic flatworm (Planocera multitentaculata)-specific sequence (cytochrome c oxidase subunit I) also varied between the intestinal contents of the pufferfish and toxic goby collected at different localities and periods. These results suggest that although the larvae of the toxic flatworm are likely to be responsible for the toxification of the pufferfish and toxic goby juveniles by TTX, these fish juveniles are also likely to feed on other TTX-bearing organisms depending on their habitat, and they also possess different accumulation mechanisms of TTX and 5,6,11-trideoxyTTX.
Collapse
Affiliation(s)
- Masaaki Ito
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Risako Furukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Shino Yasukawa
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Masaya Sato
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| | - Tomohiro Takatani
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (T.T.); (O.A.)
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (T.T.); (O.A.)
| | - Masaatsu Adachi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;
| | - Toshio Nishikawa
- Laboratory of Organic Chemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan;
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa 252-0880, Japan; (M.I.); (R.F.); (S.Y.); (M.S.); (H.O.); (T.O.); (R.S.); (H.S.)
| |
Collapse
|
10
|
Katikou P, Gokbulut C, Kosker AR, Campàs M, Ozogul F. An Updated Review of Tetrodotoxin and Its Peculiarities. Mar Drugs 2022; 20:md20010047. [PMID: 35049902 PMCID: PMC8780202 DOI: 10.3390/md20010047] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Tetrodotoxin (TTX) is a crystalline, weakly basic, colorless organic substance and is one of the most potent marine toxins known. Although TTX was first isolated from pufferfish, it has been found in numerous other marine organisms and a few terrestrial species. Moreover, tetrodotoxication is still an important health problem today, as TTX has no known antidote. TTX poisonings were most commonly reported from Japan, Thailand, and China, but today the risk of TTX poisoning is spreading around the world. Recent studies have shown that TTX-containing fish are being found in other regions of the Pacific and in the Indian Ocean, as well as the Mediterranean Sea. This review aims to summarize pertinent information available to date on the structure, origin, distribution, mechanism of action of TTX and analytical methods used for the detection of TTX, as well as on TTX-containing organisms, symptoms of TTX poisoning, and incidence worldwide.
Collapse
Affiliation(s)
- Panagiota Katikou
- Ministry of Rural Development and Food, Directorate of Research, Innovation and Education, Hapsa & Karatasou 1, 54626 Thessaloniki, Greece
- Correspondence: (P.K.); (F.O.)
| | - Cengiz Gokbulut
- Department of Pharmacology, Faculty of Medicine, Balikesir University, Balikesir 10145, Turkey;
| | - Ali Rıza Kosker
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
| | - Mònica Campàs
- IRTA, Ctra Poble Nou km 5.5, 43540 Sant Carles de la Ràpita, Spain;
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey;
- Correspondence: (P.K.); (F.O.)
| |
Collapse
|
11
|
Kodama T, Ikeda K, Arakawa O, Kondo Y, Asakawa M, Kawatsu K, Ohtsuka S. Evidence of accumulation of tetrodotoxin (TTX) in tissues and body parts of ectoparasitic copepods via their feeding on mucus of TTX-bearing pufferfish. Toxicon 2021; 204:37-43. [PMID: 34756918 DOI: 10.1016/j.toxicon.2021.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
Adults of the ectoparasitic copepod Caligus fugu found on tetrodotoxin (TTX)-bearing pufferfish such as Takifugu alboplumbeus and Takifugu flavipterus are known to accumulate TTX in body tissues and parts other than the ovaries, oviducts, eggs, and cuticles. This study aimed to demonstrate, using immunoenzymatic staining techniques, that the TTX-free planktonic/infective copepodid stage of C. fugu could accumulate TTX in the tissues after molting into the parasitic stage (chalimus I) and then fed on mucus of host puffers. All the tissues of the planktonic copepodids were completely TTX-free, whereas chalimus I copepods accumulated TTX in parts other than the cuticles, guts, and some muscles. Chalimus IV and adult copepods retained TTX in these body parts but not in the reproductive organs, which were TTX-resistant, indicating that TTX was not vertically transmitted via eggs. Non-cellular TTX-positive contents found in the guts of some chalimi and adults indicated that the copepods potentially accumulated TTX by feeding on host mucus rather than skin tissues and blood. This study revealed that the presence or absence of TTX in some body parts differed among individuals of the parasite.
Collapse
Affiliation(s)
- Tomohisa Kodama
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | - Koichi Ikeda
- Kwassui Women's University, Nagasaki, 850-8515, Japan
| | - Osamu Arakawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan
| | - Yusuke Kondo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| | - Manabu Asakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| | | | - Susumu Ohtsuka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
12
|
Mebs D, Yotsu-Yamashita M. Acquiring toxicity of a newt, Cynops orientalis. Toxicon 2021; 198:32-35. [PMID: 33933520 DOI: 10.1016/j.toxicon.2021.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Tetrodotoxin (TTX) contents of wild-caught Chinese red-bellied newts, Cynops orientalis, and their offspring captive-reared from eggs to metamorphosed juveniles, were analysed using post-column LC-fluorescent detection (LC-FLD) and high resolution hydrophilic interaction liquid chromatography/mass spectrometry (HR-HILIC-LC/MS). TTX was detected in the parent newts and their eggs, but not in the larvae and juveniles raised under artificial condition over 20 months. However, juveniles reared in the presence of their parents, contained TTX-concentrations up to 8.05 μg/g. The origin of TTX may be implied from a close connection between the parents and their offspring.
Collapse
Affiliation(s)
- Dietrich Mebs
- Institute of Legal Medicine, University of Frankfurt, Kennedyallee 104, D-60596, Frankfurt, Germany.
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, 980-8572, Japan
| |
Collapse
|
13
|
First Detection of Tetrodotoxins in the Cotylean Flatworm Prosthiostomum trilineatum. Mar Drugs 2021; 19:md19010040. [PMID: 33477411 PMCID: PMC7830031 DOI: 10.3390/md19010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Several polyclad flatworm species are known to contain high levels of tetrodotoxin (TTX), but currently TTX-bearing flatworms seem to be restricted to specific Planocera lineages belonging to the suborder Acotylea. During our ongoing study of flatworm toxins, high concentrations of TTXs were detected for the first time in the flatworm Prosthiostomum trilineatum, suborder Cotylea, from the coastal area of Hayama, Kanagawa, Japan. Toxin levels were investigated by high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), revealing that this species contains comparable concentrations of toxins as seen in planocerid flatworms such as Planocera multitentaculata. This finding indicated that there may be other species with significant levels of TTXs. The distribution of TTXs among other flatworm species is thus of great interest.
Collapse
|
14
|
A Microencapsulation Method for Delivering Tetrodotoxin to Bivalves to Investigate Uptake and Accumulation. Mar Drugs 2021; 19:md19010033. [PMID: 33450969 PMCID: PMC7828407 DOI: 10.3390/md19010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Most marine biotoxins are produced by microalgae. The neurotoxin tetrodotoxin (TTX) has been reported in many seafood species worldwide but its source is unknown, making accumulation and depuration studies in shellfish difficult. Tetrodotoxin is a water-soluble toxin and cannot be directly ingested by shellfish. In the present study, a method was developed which involved binding TTX to solid particles of humic acid and encapsulating them in agar-gelatin capsules. A controlled quantity of TTX-containing microcapsules (size range 20–280 μm) was fed to Paphies australis, a bivalve known to accumulate TTX in the wild. The TTX-containing microcapsules were fed to P. australis every second day for 13 days. Ten P. australis (including five controls fed non-toxic microalgae) were harvested after 7 days and ten after 13 days. Paphies australis accumulated TTX, reaching concentrations of up to 103 µg kg−1 by day 13, exceeding the European Food Safety Authority recommended concentration of 44 μg kg−1 in shellfish. This novel method will allow future studies to explore the effects, accumulation and depuration rates of TTX in different animals and document how it is transferred through food webs.
Collapse
|
15
|
Kashitani M, Okabe T, Oyama H, Noguchi K, Yamazaki H, Suo R, Mori T, Sugita H, Itoi S. Taxonomic Distribution of Tetrodotoxin in Acotylean Flatworms (Polycladida: Platyhelminthes). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:805-811. [PMID: 32415408 DOI: 10.1007/s10126-020-09968-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Tetrodotoxin (TTX), also known as pufferfish toxin, causes a respiratory disorder by blocking neurotransmission, with voltage-gated sodium channel inhibition on muscle and nerve tissues. The toxin is widely distributed across vertebrates, invertebrates and bacteria. Therefore, it is generally thought that TTX in pufferfish accumulates via the food webs, beginning with marine bacteria as a primary producer. Polyclad flatworms in the genus Planocera are also known to be highly toxic, TTX-bearing organisms. Unlike the case of pufferfish, the source of TTX in these flatworms is unknown. In this study, taxonomical distribution patterns of TTX were investigated for acotylean flatworms from coastal waters using molecular phylogenetic analysis and high performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). A maximum likelihood tree based on the 28S rRNA gene sequence showed that the flatworms belonged to several different lineages among the genera Planocera, Stylochus, Paraplanocera, Discocelis, Notocomplana, Notoplana, Callioplana and Peudostylochus. After LC-MS/MS analysis, the distribution of TTX was mapped onto the molecular phylogenetic tree. TTX-bearing flatworm species were seen to be restricted to specific Planocera lineages, suggesting that the TTX-bearing flatworm species have common genes for TTX-accumulating mechanisms.
Collapse
Affiliation(s)
- Maho Kashitani
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Taiki Okabe
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Hikaru Oyama
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Kaede Noguchi
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Haruka Yamazaki
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Rei Suo
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, 252-0880, Japan.
| |
Collapse
|
16
|
First Detection of Tetrodotoxin in Bivalves and Gastropods from the French Mainland Coasts. Toxins (Basel) 2020; 12:toxins12090599. [PMID: 32947992 PMCID: PMC7551754 DOI: 10.3390/toxins12090599] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/20/2022] Open
Abstract
In 2015, tetrodotoxins (TTXs) were considered a potential threat in Europe since several studies had shown the presence of these toxins in European bivalve molluscs. In this study, we investigated the occurrence of TTXs in 127 bivalve samples (mussels and oysters) and in 66 gastropod samples (whelks) collected all along the French mainland coasts in 2017 and 2018. Analyses were carried out after optimization and in-house validation of a performing hydrophilic interaction liquid chromatography associated with tandem mass spectrometry (HILIC-MS/MS) method. The concentration set by European Food Safety Authority (EFSA) not expected to result in adverse effects (44 µg TTX equivalent/kg) was never exceeded, but TTX was detected in three mussel samples and one whelk sample (1.7-11.2 µg/kg). The tissue distribution of TTX in this whelk sample showed higher concentrations in the digestive gland, stomach and gonads (7.4 µg TTX/kg) than in the rest of the whelk tissues (below the limit of detection of 1.7 µg TTX/kg). This is the first study to report the detection of TTX in French molluscs.
Collapse
|
17
|
Survey of Tetrodotoxin in New Zealand Bivalve Molluscan Shellfish over a 16-Month Period. Toxins (Basel) 2020; 12:toxins12080512. [PMID: 32784980 PMCID: PMC7472152 DOI: 10.3390/toxins12080512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Tetrodotoxin (TTX) is a heat-stable neurotoxin typically associated with pufferfish intoxications. It has also been detected in shellfish from Japan, the United Kingdom, Greece, China, Italy, the Netherlands and New Zealand. A recent European Food Safety Authority (EFSA) scientific opinion concluded that a level of <0.044 mg TTX/kg in marine bivalves and gastropods, based on a 400 g portion size, does not result in adverse effects in humans. There have been no reports of human illness attributed to the consumption of New Zealand shellfish containing TTX. To obtain a greater understanding of its presence, a survey of non-commercial New Zealand shellfish was performed between December 2016 and March 2018. During this period, 766 samples were analysed from 8 different species. TTX levels were found to be low and similar to those observed in shellfish from other countries, except for pipi (Paphies australis), a clam species endemic to New Zealand. All pipi analysed as part of the survey were found to contain detectable levels of TTX, and pipi from a sampling site in Hokianga Harbour contained consistently elevated levels. In contrast, no TTX was observed in cockles from this same sampling site. No recreationally harvested shellfish species, including mussels, oysters, clams and tuatua, contained TTX levels above the recommended EFSA safe guidance level. The levels observed in shellfish were considerably lower than those reported in other marine organisms known to contain TTX and cause human intoxication (e.g., pufferfish). Despite significant effort, the source of TTX in shellfish, and indeed all animals, remains unresolved making it a difficult issue to understand and manage.
Collapse
|
18
|
Biessy L, Pearman JK, Smith KF, Hawes I, Wood SA. Seasonal and Spatial Variations in Bacterial Communities From Tetrodotoxin-Bearing and Non-tetrodotoxin-Bearing Clams. Front Microbiol 2020; 11:1860. [PMID: 32849450 PMCID: PMC7419435 DOI: 10.3389/fmicb.2020.01860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/15/2020] [Indexed: 11/13/2022] Open
Abstract
Tetrodotoxin (TTX) is one of the most potent naturally occurring compounds and is responsible for many human intoxications worldwide. Paphies australis are endemic clams to New Zealand which contain varying concentrations of TTX. Research suggests that P. australis accumulate the toxin exogenously, but the source remains uncertain. The aim of this study was to identify potential bacterial TTX-producers by exploring differences in bacterial communities in two organs of P. australis: the siphon and digestive gland. Samples from the digestive glands of a non-toxic bivalve Austrovenus stutchburyi that lives amongst toxic P. australis populations were also analyzed. Bacterial communities were characterized using 16S ribosomal RNA gene metabarcoding in P. australis sourced monthly from the Hokianga Harbor, a site known to have TTX-bearing clams, for 1 year, from ten sites with varying TTX concentrations around New Zealand, and in A. stutchburyi from the Hokianga Harbor. Tetrodotoxin was detected in P. australis from sites all around New Zealand and in all P. australis collected monthly from the Hokianga Harbor. The toxin averaged 150 μg kg-1 over the year of sampling in the Hokianga Harbor but no TTX was detected in the A. stutchburyi samples from the same site. Bacterial species diversity differed amongst sites (p < 0.001, F = 5.9) and the diversity in siphon samples was significantly higher than in digestive glands (p < 0.001, F = 65.8). Spirochaetaceae (4-60%) and Mycoplasmataceae (16-78%) were the most abundant families in the siphons and the digestive glands, respectively. The bacterial communities were compared between sites with the lowest TTX concentrations and the Hokianga Harbor (site with the highest TTX concentrations), and the core bacterial communities from TTX-bearing individuals were analyzed. The results from both spatial and temporal studies corroborate with previous hypotheses that Vibrio and Bacillus could be responsible for the source of TTX in bivalves. The results from this study also indicate that marine cyanobacteria, in particular picocyanobacteria (e.g., Cyanobium, Synechococcus, Pleurocapsa, and Prochlorococcus), should be investigated further as potential TTX producers.
Collapse
Affiliation(s)
- Laura Biessy
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand.,Department of Biological Sciences, University of Waikato, Hamilton, New Zealand.,New Zealand Food Safety Science and Research Centre, Palmerston North, New Zealand
| | - John K Pearman
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| | - Kirsty F Smith
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| | - Ian Hawes
- Department of Biological Sciences, University of Waikato, Hamilton, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
19
|
Biessy L, Boundy MJ, Smith KF, Harwood DT, Hawes I, Wood SA. Tetrodotoxin in marine bivalves and edible gastropods: A mini-review. CHEMOSPHERE 2019; 236:124404. [PMID: 31545201 DOI: 10.1016/j.chemosphere.2019.124404] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin responsible for countless human intoxications and deaths around the world. The distribution of TTX and its analogues is diverse and the toxin has been detected in organisms from both marine and terrestrial environments. Increasing detections seafood species, such as bivalves and gastropods, has drawn attention to the toxin, reinvigorating scientific interest and regulatory concerns. There have been reports of TTX in 21 species of bivalves and edible gastropods from ten countries since the 1980's. While TTX is structurally dissimilar to saxitoxin (STX), another neurotoxin detected in seafood, it has similar sodium channel blocking action and potency and both neurotoxins have been shown to have additive toxicities. The global regulatory level for the STX group toxins applied to shellfish is 800 μg/kg. The presence of TTX in shellfish is only regulated in one country; The Netherlands, with a regulatory level of 44 μg/kg. Due to the recent interest surrounding TTX in bivalves, the European Food Safety Authority established a panel to assess the risk and regulation of TTX in bivalves, and their final opinion was that a concentration below 44 μg of TTX per kg of shellfish would not result in adverse human effects. In this article, we review current knowledge on worldwide TTX levels in edible gastropods and bivalves over the last four decades, the different methods of detection used, and the current regulatory status. We suggest research needs that will assist with knowledge gaps and ultimately allow development of robust monitoring and management protocols.
Collapse
Affiliation(s)
- Laura Biessy
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand; Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand; New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand.
| | | | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand.
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand; New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand.
| | - Ian Hawes
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand.
| |
Collapse
|
20
|
Biessy L, Smith KF, Harwood DT, Boundy MJ, Hawes I, Wood SA. Spatial variability and depuration of tetrodotoxin in the bivalve Paphies australis from New Zealand. Toxicon X 2019; 2:100008. [PMID: 32550565 PMCID: PMC7286059 DOI: 10.1016/j.toxcx.2019.100008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 01/11/2023] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin responsible for many human intoxications globally. Despite its potency and widespread occurrence in taxonomically diverse species, the primary source of TTX remains uncertain. Paphies australis, an endemic clam found in New Zealand, has been found to contain TTX in several locations. However, it is unknown if this represents endogenous production or accumulation from an external source. To address this question, the concentrations of TTX in whole P. australis and dissected organs (siphons, foot, digestive gland and the ‘rest’) from thirteen sites around New Zealand were determined using liquid chromatography-tandem quadrupole mass spectrometry analysis (LC-MS/MS). Depuration rate of TTX was also investigated by harvesting and measuring concentrations in P. australis maintained in captivity on a toxin-free diet every three to 15 days for 150 days. The LC-MS/MS analyses of the spatial samples showed that TTX was present in P. australis from all regions tested, with significantly (p < 0.001) higher concentrations (15–50 μg kg−1) observed at lower latitudes of the North Island compared with trace levels (0.5–3 μg kg−1) in the South Island of New Zealand. Tetrodotoxin was detected in all the dissected organs but the siphons contained the highest concentrations of TTX at all sites analysed. A linear model of the depuration data identified a significant (p < 0.001) decline in total TTX concentrations in P. australis over the study period. The siphons maintained the highest amount of TTX across the entire depuration study. The digestive glands contained low concentrations at the start of the experiment, but this depurated rapidly and only traces remained after 21 days. These results provide evidence to suggest that P. australis does not produce TTX endogenously but obtains the neurotoxin from an exogenous source (e.g., diet) with the source more prevalent in warmer northern waters. The association of higher TTX concentrations in shellfish with warmer environments raises concerns that this toxin's distribution and abundance could become an increasing human health issue with global warming. TTX-containing Paphies australis were maintained in captivity for 150 days and significantly depurated the toxin. Thirteen populations of Paphies australis from around New Zealand were collected and tested for TTX. All populations tested contained TTX but a significant latitudinal gradient was observed. This study provides further evidence of an exogenous source of TTX in marine bivalves.
Collapse
Affiliation(s)
- Laura Biessy
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
- New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand
- Corresponding author. Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand.
| | - Kirsty F. Smith
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| | - D. Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
- New Zealand Food Safety Science & Research Centre, Palmerston North, 4442, New Zealand
| | | | - Ian Hawes
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand
| | - Susanna A. Wood
- Cawthron Institute, Private Bag 2, Nelson, 7010, New Zealand
| |
Collapse
|
21
|
Göransson U, Jacobsson E, Strand M, Andersson HS. The Toxins of Nemertean Worms. Toxins (Basel) 2019; 11:E120. [PMID: 30781381 PMCID: PMC6410017 DOI: 10.3390/toxins11020120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
Most ribbon worms (phylum: Nemertea) are found in marine environments, where they act as predators and scavengers. They are characterized by an eversible proboscis that isused to hunt for prey and thick mucus covering their skin. Both proboscis and epidermal mucus mediate toxicity to predators and preys. Research into the chemical nature of the substances that render toxicity has not been extensive, but it has nevertheless led to the identification of several compounds of potential medicinal use or for application in biotechnology. This review provides a complete account of the current status of research into nemertean toxins.
Collapse
Affiliation(s)
- Ulf Göransson
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden.
| | - Erik Jacobsson
- Pharmacognosy, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, 75123 Uppsala, Sweden.
| | - Malin Strand
- Swedish Species Information Centre, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Håkan S Andersson
- Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry and Biomedical Sciences, Linnaeus University, 39231 Kalmar, Sweden.
| |
Collapse
|
22
|
Turner AD, Fenwick D, Powell A, Dhanji-Rapkova M, Ford C, Hatfield RG, Santos A, Martinez-Urtaza J, Bean TP, Baker-Austin C, Stebbing P. New Invasive Nemertean Species ( Cephalothrix Simula) in England with High Levels of Tetrodotoxin and a Microbiome Linked to Toxin Metabolism. Mar Drugs 2018; 16:E452. [PMID: 30453540 PMCID: PMC6266807 DOI: 10.3390/md16110452] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
The marine nemertean Cephalothrix simula originates from the Pacific Ocean but in recent years has been discovered in northern Europe. The species has been associated with high levels of the marine neurotoxin Tetrodotoxin, traditionally associated with Pufferfish Poisoning. This study reports the first discovery of two organisms of C. simula in the UK, showing the geographical extent of this species is wider than originally described. Species identification was initially conducted morphologically, with confirmation by Cox 1 DNA sequencing. 16S gene sequencing enabled the taxonomic assignment of the microbiome, showing the prevalence of a large number of bacterial genera previously associated with TTX production including Alteromonas, Vibrio and Pseudomonas. LC-MS/MS analysis of the nemertean tissue revealed the presence of multiple analogues of TTX, dominated by the parent TTX, with a total toxin concentration quantified at 54 µg TTX per g of tissue. Pseudomonas luteola isolated from C. simula, together with Vibrio alginolyticus from the native nemertean Tubulanus annulatus, were cultured at low temperature and both found to contain TTX. Overall, this paper confirms the high toxicity of a newly discovered invasive nemertean species with links to toxin-producing marine bacteria and the potential risk to human safety. Further work is required to assess the geographical extent and toxicity range of C. simula along the UK coast in order to properly gauge the potential impacts on the environment and human safety.
Collapse
Affiliation(s)
- Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | | | - Andy Powell
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Monika Dhanji-Rapkova
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Charlotte Ford
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Robert G Hatfield
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Andres Santos
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
- Laboratory of Applied and Molecular Biology, Avenida Alemania 0458, 4810296 Temuco, Chile.
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 4811230 Temuco, Chile.
| | - Jaime Martinez-Urtaza
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Tim P Bean
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Craig Baker-Austin
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Paul Stebbing
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
23
|
Yıldırım Y, Anderson MJ, Hansson B, Patel S, Millar CD, Rainey PB. Genetic structure of the grey side-gilled sea slug (Pleurobranchaea maculata) in coastal waters of New Zealand. PLoS One 2018; 13:e0202197. [PMID: 30114275 PMCID: PMC6095540 DOI: 10.1371/journal.pone.0202197] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 07/30/2018] [Indexed: 01/09/2023] Open
Abstract
Pleurobranchaea maculata is a rarely studied species of the Heterobranchia found throughout the south and western Pacific-and recently recorded in Argentina-whose population genetic structure is unknown. Interest in the species was sparked in New Zealand following a series of dog deaths caused by ingestions of slugs containing high levels of the neurotoxin tetrodotoxin. Here we describe the genetic structure and demographic history of P. maculata populations from five principle locations in New Zealand based on extensive analyses of 12 microsatellite loci and the COI and CytB regions of mitochondrial DNA (mtDNA). Microsatellite data showed significant differentiation between northern and southern populations with population structure being associated with previously described regional variations in tetrodotoxin concentrations. However, mtDNA sequence data did not support such structure, revealing a star-shaped haplotype network with estimates of expansion time suggesting a population expansion in the Pleistocene era. Inclusion of publicly available mtDNA sequence sea slugs from Argentina did not alter the star-shaped network. We interpret our data as indicative of a single founding population that fragmented following geographical changes that brought about the present day north-south divide in New Zealand waters. Lack of evidence of cryptic species supports data indicating that differences in toxicity of individuals among regions are a consequence of differences in diet.
Collapse
Affiliation(s)
- Yeşerin Yıldırım
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
| | - Marti J. Anderson
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| | - Selina Patel
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Craig D. Millar
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand
- Department of Microbial Population Biology, Max Planck Institute for Evolutionary Biology, Plön, Germany
- Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI ParisTech), CNRS UMR 8231, PSL Research University, Paris, France
| |
Collapse
|
24
|
Biessy L, Smith KF, Boundy MJ, Webb SC, Hawes I, Wood SA. Distribution of Tetrodotoxin in the New Zealand Clam, Paphies australis, Established Using Immunohistochemistry and Liquid Chromatography-Tandem Quadrupole Mass Spectrometry. Toxins (Basel) 2018; 10:E282. [PMID: 29986427 PMCID: PMC6070791 DOI: 10.3390/toxins10070282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 01/28/2023] Open
Abstract
Tetrodotoxin (TTX) is one of the most potent neurotoxins known. It was originally thought to only occur in puffer fish but has now been identified in twelve different classes of freshwater and marine organisms, including bivalves. Despite being one of the world’s most studied biotoxins, its origin remains uncertain. There is contradictory evidence regarding the source of TTX and its pathway through food webs. To date, the distribution of TTX has not been examined in bivalves. In the present study, 48 Paphies australis, a TTX-containing clam species endemic to New Zealand, were collected. Thirty clams were dissected, and organs and tissues pooled into five categories (siphons, digestive gland, adductor muscles, and the ‘rest’) and analyzed for TTX using liquid chromatography-mass spectrometry (LC-MS). The micro-distribution of TTX was visualized in the remaining 18 individuals using an immunohistological technique incorporating a TTX-specific monoclonal antibody. The LC-MS analysis revealed that siphons contained the highest concentrations of TTX (mean 403.8 µg/kg). Immunohistochemistry analysis showed TTX in the outer cells of the siphons, but also in the digestive system, foot, and gill tissue. Observing TTX in organs involved in feeding provides initial evidence to support the hypothesis of an exogenous source in P. australis.
Collapse
Affiliation(s)
- Laura Biessy
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand.
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Kirsty F Smith
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand.
| | | | - Stephen C Webb
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand.
| | - Ian Hawes
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Susanna A Wood
- Cawthron Institute, Private Bag 2, Nelson 7010, New Zealand.
| |
Collapse
|
25
|
Bökenhans V, Fernández Alfaya JE, Bigatti G, Averbuj A. Diet of the invasive sea slug Pleurobranchaea maculata in Patagonian coastal waters. NEW ZEALAND JOURNAL OF ZOOLOGY 2018. [DOI: 10.1080/03014223.2018.1464035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Verena Bökenhans
- LARBIM - IBIOMAR. CCT CONICET-CENPAT, Puerto Madryn, Argentina
- Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Argentina
| | - José E. Fernández Alfaya
- LARBIM - IBIOMAR. CCT CONICET-CENPAT, Puerto Madryn, Argentina
- Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Argentina
| | - Gregorio Bigatti
- LARBIM - IBIOMAR. CCT CONICET-CENPAT, Puerto Madryn, Argentina
- Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Puerto Madryn, Argentina
| | - Andrés Averbuj
- LARBIM - IBIOMAR. CCT CONICET-CENPAT, Puerto Madryn, Argentina
| |
Collapse
|
26
|
Ueda H, Itoi S, Sugita H. TTX-Bearing Planocerid Flatworm (Platyhelminthes: Acotylea) in the Ryukyu Islands, Japan. Mar Drugs 2018; 16:E37. [PMID: 29351203 PMCID: PMC5793085 DOI: 10.3390/md16010037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 12/02/2022] Open
Abstract
Polyclad flatworms comprise a highly diverse and cosmopolitan group of marine turbellarians. Although some species of the genera Planocera and Stylochoplana are known to be tetrodotoxin (TTX)-bearing, there are few new reports. In this study, planocerid-like flatworm specimens were found in the sea bottom off the waters around the Ryukyu Islands, Japan. The bodies were translucent with brown reticulate mottle, contained two conical tentacles with eye spots clustered at the base, and had a slightly frilled-body margin. Each specimen was subjected to TTX extraction followed by liquid chromatography with tandem mass spectrometry analysis. Mass chromatograms were found to be identical to those of the TTX standards. The TTX amounts in the two flatworm specimens were calculated to be 468 and 3634 μg. Their external morphology was found to be identical to that of Planocera heda. Phylogenetic analysis based on the sequences of the 28S rRNA gene and cytochrome-c oxidase subunit I gene also showed that both specimens clustered with the flatworms of the genus Planocera (Planocera multitentaculata and Planocera reticulata). This fact suggests that there might be other Planocera species that also possess highly concentrated TTX, contributing to the toxification of TTX-bearing organisms, including fish.
Collapse
Affiliation(s)
- Hiroyuki Ueda
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Shiro Itoi
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| | - Haruo Sugita
- Department of Marine Science and Resources, Nihon University, Fujisawa, Kanagawa 252-0880, Japan.
| |
Collapse
|
27
|
Turner AD, Dhanji-Rapkova M, Coates L, Bickerstaff L, Milligan S, O'Neill A, Faulkner D, McEneny H, Baker-Austin C, Lees DN, Algoet M. Detection of Tetrodotoxin Shellfish Poisoning (TSP) Toxins and Causative Factors in Bivalve Molluscs from the UK. Mar Drugs 2017; 15:E277. [PMID: 28867772 PMCID: PMC5618416 DOI: 10.3390/md15090277] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/11/2017] [Accepted: 08/28/2017] [Indexed: 12/27/2022] Open
Abstract
Tetrodotoxins (TTXs) are traditionally associated with the occurrence of tropical Pufferfish Poisoning. In recent years, however, TTXs have been identified in European bivalve mollusc shellfish, resulting in the need to assess prevalence and risk to shellfish consumers. Following the previous identification of TTXs in shellfish from southern England, this study was designed to assess the wider prevalence of TTXs in shellfish from around the coast of the UK. Samples were collected between 2014 and 2016 and subjected to analysis using HILIC-MS/MS. Results showed the continued presence of toxins in shellfish harvested along the coast of southern England, with the maximum concentration of total TTXs reaching 253 µg/kg. TTX accumulation was detected in Pacific oysters (Crassostreagigas), native oysters (Ostreaedulis) common mussels (Mytilusedulis) and hard clams (Mercenariamercenaria), but not found in cockles (Cerastodermaedule), razors (Ensis species) or scallops (Pectenmaximus). Whilst the highest concentrations were quantified in samples harvested during the warmer summer months, TTXs were still evident during the winter. An assessment of the potential causative factors did not reveal any links with the phytoplankton species Prorocentrumcordatum, instead highlighting a greater level of risk in areas of shallow, estuarine waters with temperatures above 15 °C.
Collapse
Affiliation(s)
- Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Monika Dhanji-Rapkova
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Lewis Coates
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Lesley Bickerstaff
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Steve Milligan
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Alison O'Neill
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Dermot Faulkner
- Agri-Food and Biosciences Institute (AFBI), Marine Biotoxin Unit, Chemical Surveillance Branch, Agri-Food and Biosciences Institute-Stormont, Belfast BT4 3SD, UK.
| | - Hugh McEneny
- Agri-Food and Biosciences Institute (AFBI), Marine Biotoxin Unit, Chemical Surveillance Branch, Agri-Food and Biosciences Institute-Stormont, Belfast BT4 3SD, UK.
| | - Craig Baker-Austin
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - David N Lees
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| | - Myriam Algoet
- Centre for Environment Fisheries and Aquaculture Science (CEFAS), Food Safety Group, Barrack Road, Weymouth, Dorset DT4 8UB, UK.
| |
Collapse
|
28
|
Seasonal Changes in the Tetrodotoxin Content of the Flatworm Planocera multitentaculata. Mar Drugs 2017; 15:md15030056. [PMID: 28245608 PMCID: PMC5367013 DOI: 10.3390/md15030056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 11/18/2022] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin that acts specifically on voltage-gated sodium channels on excitable membranes of muscle and nerve tissues. The biosynthetic process for TTX is unclear, although marine bacteria are generally thought to be the primary producers. The marine flatworm Planocera multitentaculata is a known TTX-bearing organism, and is suspected to be a TTX supplier to pufferfish. In this study, flatworm specimens were collected from an intertidal zone in Hayama, Kanagawa, Japan, the TTX content of the flatworm was measured using liquid chromatography with tandem mass spectrometry (LC-MS/MS), and seasonal changes in TTX content were investigated. No significant difference in TTX concentration of the flatworm body was found between the spawning period and other periods. However, the TTX content in individual flatworms was significantly higher in the spawning period than at other times. The TTX content rose in association with an increase in the body weight of the flatworm.
Collapse
|
29
|
Bane V, Brosnan B, Barnes P, Lehane M, Furey A. High-resolution mass spectrometry analysis of tetrodotoxin (TTX) and its analogues in puffer fish and shellfish. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1468-89. [DOI: 10.1080/19440049.2016.1218070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Vaishali Bane
- Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | - Brid Brosnan
- Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | - Paul Barnes
- Agri-food and Biosciences Institute, Belfast, UK
| | - Mary Lehane
- Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| | - Ambrose Furey
- Mass Spectrometry Research Centre (MSRC), Department of Physical Sciences, Cork Institute of Technology, Cork, Ireland
| |
Collapse
|
30
|
Convergent Evolution of Tetrodotoxin-Resistant Sodium Channels in Predators and Prey. CURRENT TOPICS IN MEMBRANES 2016; 78:87-113. [DOI: 10.1016/bs.ctm.2016.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Turner AD, Higgins C, Higman W, Hungerford J. Potential Threats Posed by Tetrodotoxins in UK Waters: Examination of Detection Methodology Used in Their Control. Mar Drugs 2015; 13:7357-76. [PMID: 26690455 PMCID: PMC4699243 DOI: 10.3390/md13127070] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tetrodotoxin is a neurotoxin responsible for many human fatalities, most commonly following the consumption of pufferfish. Whilst the source of the toxin has not been conclusively proven, it is thought to be associated with various species of marine bacteria. Whilst the toxins are well studied in fish and gastropods, in recent years, there have been a number of reports of tetrodotoxin occurring in bivalve shellfish, including those harvested from the UK and other parts of Europe. This paper reviews evidence concerning the prevalence of tetrodotoxins in the UK together with methodologies currently available for testing. Biological, biomolecular and chemical methods are reviewed, including recommendations for further work. With the recent development of quantitative chromatographic methods for these and other hydrophilic toxins, as well as the commercial availability of rapid testing kits, there are a number of options available to ensure consumers are protected against this threat.
Collapse
Affiliation(s)
- Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| | - Cowan Higgins
- Agri-food and Biosciences Institute (AFBI), Newforge Lane, Belfast BT9 5PX, UK.
| | - Wendy Higman
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, The Nothe, Weymouth, Dorset DT4 8UB, UK.
| | - James Hungerford
- Pacific Laboratory Northwest, United States Food and Drug Administration (USFDA), 22201 23rd Dr, S.E., Bothell, WA 98021, USA.
| |
Collapse
|
32
|
Kudo Y, Chiba C, Konoki K, Cho Y, Yotsu-Yamashita M. Confirmation of the absence of tetrodotoxin and its analogues in the juveniles of the Japanese fire-bellied newt, Cynops pyrrhogaster, captive-reared from eggs in the laboratory using HILIC-LC-MS. Toxicon 2015; 101:101-5. [PMID: 25986913 DOI: 10.1016/j.toxicon.2015.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/31/2015] [Accepted: 05/14/2015] [Indexed: 01/20/2023]
Abstract
The tetrodotoxin (TTX) contents of the Japanese fire-bellied newt, Cynops pyrrhogaster, captive-reared from eggs to metamorphosed juveniles with a non-toxic diet for 70 weeks, as well as wild-caught juvenile newts, were investigated using a high-resolution hydrophilic interaction chromatography-LC-MS. TTX was detected in 0- to 22-week-old captive-reared juvenile newts but was not detected (<15 ng/g) in the 36- to 70-week-old newts, while significant levels of TTX (1.3-14 μg/g) were detected in the wild-caught juveniles.
Collapse
Affiliation(s)
- Yuta Kudo
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Chikafumi Chiba
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.
| |
Collapse
|
33
|
No evidence for a culturable bacterial tetrodotoxin producer in Pleurobranchaea maculata (Gastropoda: Pleurobranchidae) and Stylochoplana sp. (Platyhelminthes: Polycladida). Toxins (Basel) 2015; 7:255-73. [PMID: 25635464 PMCID: PMC4344623 DOI: 10.3390/toxins7020255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/20/2015] [Indexed: 01/03/2023] Open
Abstract
Tetrodotoxin (TTX) is a potent neurotoxin found in the tissues of many taxonomically diverse organisms. Its origin has been the topic of much debate, with suggestions including endogenous production, acquisition through diet, and symbiotic bacterial synthesis. Bacterial production of TTX has been reported in isolates from marine biota, but at lower than expected concentrations. In this study, 102 strains were isolated from Pleurobranchaea maculata (Opisthobranchia) and Stylochoplana sp. (Platyhelminthes). Tetrodotoxin production was tested utilizing a recently developed sensitive method to detect the C9 base of TTX via liquid chromatography—mass spectrometry. Bacterial strains were characterized by sequencing a region of the 16S ribosomal RNA gene. To account for the possibility that TTX is produced by a consortium of bacteria, a series of experiments using marine broth spiked with various P. maculata tissues were undertaken. Sixteen unique strains from P. maculata and one from Stylochoplana sp. were isolated, representing eight different genera; Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales. Molecular fingerprinting of bacterial communities from broth experiments showed little change over the first four days. No C9 base or TTX was detected in isolates or broth experiments (past day 0), suggesting a culturable microbial source of TTX in P. maculata and Stylochoplana sp. is unlikely.
Collapse
|
34
|
Salvitti LR, Wood SA, Winsor L, Cary SC. Intracellular immunohistochemical detection of tetrodotoxin in Pleurobranchaea maculata (Gastropoda) and Stylochoplana sp. (Turbellaria). Mar Drugs 2015; 13:756-69. [PMID: 25636158 PMCID: PMC4344600 DOI: 10.3390/md13020756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/06/2015] [Accepted: 01/23/2015] [Indexed: 12/04/2022] Open
Abstract
Tetrodotoxin (TTX), is a potent neurotoxin targeting sodium channels that has been identified in multiple marine and terrestrial organisms. It was recently detected in the Opisthobranch Pleurobranchaea maculata and a Platyhelminthes Stylochoplana sp. from New Zealand. Knowledge on the distribution of TTX within these organisms is important to assist in elucidating the origin and ecological role of this toxin. Intracellular micro-distribution of TTX was investigated using a monoclonal antibody-based immunoenzymatic technique. Tetrodotoxin was strongly localized in neutral mucin cells and the basement membrane of the mantle, the oocytes and follicles of the gonad tissue, and in the digestive tissue of P. maculata. The ova and pharynx were the only two structures to contain TTX in Stylochoplana sp. Using liquid chromatography-mass spectrometry, TTX was identified in the larvae and eggs, but not the gelatinous egg cases of P. maculata. Tetrodotoxin was present in egg masses of Stylochoplana sp. These data suggest that TTX has a defensive function in adult P. maculata, who then invest this in their progeny for protection. Localization in the digestive tissue of P. maculata potentially indicates a dietary source of TTX. Stylochoplana sp. may use TTX in prey capture and for the protection of offspring.
Collapse
Affiliation(s)
- Lauren R Salvitti
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Susanna A Wood
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| | - Leigh Winsor
- College of Marine and Environmental Sciences, James Cook University, Townsville QLD 4811, Australia.
| | - Stephen Craig Cary
- Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand.
| |
Collapse
|