1
|
Torgeman A, Diamant E, Dor E, Schwartz A, Baruchi T, Ben David A, Zichel R. A Rabbit Model for the Evaluation of Drugs for Treating the Chronic Phase of Botulism. Toxins (Basel) 2021; 13:toxins13100679. [PMID: 34678971 PMCID: PMC8537128 DOI: 10.3390/toxins13100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Antitoxin, the only licensed drug therapy for botulism, neutralizes circulating botulinum neurotoxin (BoNT). However, antitoxin is no longer effective when a critical amount of BoNT has already entered its target nerve cells. The outcome is a chronic phase of botulism that is characterized by prolonged paralysis. In this stage, blocking toxin activity within cells by next-generation intraneuronal anti-botulinum drugs (INABDs) may shorten the chronic phase of the disease and accelerate recovery. However, there is a lack of adequate animal models that simulate the chronic phase of botulism for evaluating the efficacy of INABDs. Herein, we report the development of a rabbit model for the chronic phase of botulism, induced by intoxication with a sublethal dose of BoNT. Spirometry monitoring enabled us to detect deviations from normal respiration and to quantitatively define the time to symptom onset and disease duration. A 0.85 rabbit intramuscular median lethal dose of BoNT/A elicited the most consistent and prolonged disease duration (mean = 11.8 days, relative standard deviation = 27.9%) that still enabled spontaneous recovery. Post-exposure treatment with antitoxin at various time points significantly shortened the disease duration, providing a proof of concept that the new model is adequate for evaluating novel therapeutics for botulism.
Collapse
|
2
|
Small Molecule Receptor Binding Inhibitors with In Vivo Efficacy against Botulinum Neurotoxin Serotypes A and E. Int J Mol Sci 2021; 22:ijms22168577. [PMID: 34445283 PMCID: PMC8395308 DOI: 10.3390/ijms22168577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most poisonous substances in nature. Currently, the only therapy for botulism is antitoxin. This therapy suffers from several limitations and hence new therapeutic strategies are desired. One of the limitations in discovering BoNT inhibitors is the absence of an in vitro assay that correlates with toxin neutralization in vivo. In this work, a high-throughput screening assay for receptor-binding inhibitors against BoNT/A was developed. The assay is composed of two chimeric proteins: a receptor-simulating protein, consisting of the fourth luminal loop of synaptic vesicle protein 2C fused to glutathione-S-transferase, and a toxin-simulating protein, consisting of the receptor-binding domain of BoNT/A fused to beta-galactosidase. The assay was applied to screen the LOPAC1280 compound library. Seven selected compounds were evaluated in mice exposed to a lethal dose of BoNT/A. The compound aurintricarboxylic acid (ATA) conferred 92% protection, whereas significant delayed time to death (p < 0.005) was observed for three additional compounds. Remarkably, ATA was also fully protective in mice challenged with a lethal dose of BoNT/E, which also uses the SV2 receptor. This study demonstrates that receptor-binding inhibitors have the potential to serve as next generation therapeutics for botulism, and therefore the assay developed may facilitate discovery of new anti-BoNT countermeasures.
Collapse
|
3
|
Jmel MA, Aounallah H, Bensaoud C, Mekki I, Chmelař J, Faria F, M’ghirbi Y, Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int J Mol Sci 2021; 22:E892. [PMID: 33477394 PMCID: PMC7831016 DOI: 10.3390/ijms22020892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Hajer Aounallah
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Chaima Bensaoud
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Youmna M’ghirbi
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| |
Collapse
|
4
|
Thompson JC, Dao WT, Ku A, Rodriguez-Beltran SL, Amezcua M, Palomino AY, Lien T, Salzameda NT. Synthesis and activity of isoleucine sulfonamide derivatives as novel botulinum neurotoxin serotype A light chain inhibitors. Bioorg Med Chem 2020; 28:115659. [PMID: 32828426 DOI: 10.1016/j.bmc.2020.115659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022]
Abstract
The botulinum neurotoxin (BoNT) is the most lethal protein known to man causing the deadly disease botulinum. The neurotoxin, composed of a heavy (HC) and light (LC) chain, work in concert to cause muscle paralysis. A therapeutic strategy to treat individuals infected with the neurotoxin is inhibiting the catalytic activity of the BoNT LC. We report the synthesis, inhibition study and computational docking analysis of novel small molecule BoNT/A LC inhibitors. A structure activity relationship study resulted in the discovery of d-isoleucine functionalized with a hydroxamic acid on the C-terminal and a biphenyl with chlorine at C- 2 connected by a sulfonamide linker at the N-terminus. This compound has a measured IC50 of 0.587 µM for the BoNT/A LC. Computational docking analysis indicates the sulfonamide linker adopts a geometry that is advantageous for binding to the BoNT LC active site. In addition, Arg363 is predicted to be involved in key binding interactions with the scaffold in this study.
Collapse
Affiliation(s)
- Jordan C Thompson
- Department of Chemistry & Biochemistry, California State University, 800 N. State College, Fullerton, CA, 92834, USA
| | - Wendy T Dao
- Department of Chemistry & Biochemistry, California State University, 800 N. State College, Fullerton, CA, 92834, USA
| | - Alex Ku
- Department of Chemistry & Biochemistry, California State University, 800 N. State College, Fullerton, CA, 92834, USA
| | - Sandra L Rodriguez-Beltran
- Department of Chemistry & Biochemistry, California State University, 800 N. State College, Fullerton, CA, 92834, USA
| | - Martin Amezcua
- Department of Chemistry & Biochemistry, California State University, 800 N. State College, Fullerton, CA, 92834, USA
| | - Alejandra Y Palomino
- Department of Chemistry & Biochemistry, California State University, 800 N. State College, Fullerton, CA, 92834, USA
| | - Thanh Lien
- Department of Chemistry & Biochemistry, California State University, 800 N. State College, Fullerton, CA, 92834, USA
| | - Nicholas T Salzameda
- Department of Chemistry & Biochemistry, California State University, 800 N. State College, Fullerton, CA, 92834, USA.
| |
Collapse
|
5
|
Aminianfar M, Parvardeh S, Soleimani M. In vitro and in vivo Assessment of Silver Nanoparticles Against Clostridium botulinum Type A Botulinum. Curr Drug Discov Technol 2020; 16:113-119. [PMID: 29623844 DOI: 10.2174/1570163815666180403163946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Clostridium botulinum causes botulism, a serious paralytic illness that results from the ingestion of a botulinum toxin. Because silver nanoparticle products exhibit strong antimicrobial activity, applications for silver nanoparticles in healthcare have expanded. Therefore, the objective of the current study was to assess a therapeutic strategy for the treatment of botulism toxicity using silver nanoparticles. METHODS A preliminary test was conducted using doses that produce illness in laboratory animals to determine the absolute lethal dose (LD100) of botulinum toxin type A (BoNT/A) in mice. Next, the test animals were divided into six groups containing six mice each. Groups I, II and III were the negative control (botulinum toxin only), positive control-1 (nano-silver only) and positive control-2 (no treatment), respectively. The remaining groups were allocated to the toxin that was supplemented with three nano-silver treatments. RESULTS The mortality rates of mice caused by BoNT/A significantly reduced in the treatment groups with different doses and injection intervals of nano-silver when compared to the negative control group. BoNT/A toxicity induced by intraperitoneal injection of the toxin of Clostridium botulinum causes rapid death while when coupled with nano-osilver results in delayed death in mice. CONCLUSION These results, while open to future improvement, represent a preliminary step towards the satisfactory control of BoNT/A with the use of silver nanoparticles for human protection against this bioterrorism threat. Further study in this area can elucidate the underlying mechanism for detoxifying BoNT/A by silver nanoparticles.
Collapse
Affiliation(s)
- Mohammad Aminianfar
- Department of Infectious Diseases, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soleimani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Pitard I, Malliavin TE. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Toxins (Basel) 2019; 11:toxins11060369. [PMID: 31238550 PMCID: PMC6628625 DOI: 10.3390/toxins11060369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the functions and mechanisms of biological systems is an outstanding challenge. One way to overcome it is to combine together several approaches such as molecular modeling and experimental structural biology techniques. Indeed, the interplay between structural and dynamical properties of the system is crucial to unravel the function of molecular machinery’s. In this review, we focus on how molecular simulations along with structural information can aid in interpreting biological data. Here, we examine two different cases: (i) the endosomal translocation toxins (diphtheria, tetanus, botulinum toxins) and (ii) the activation of adenylyl cyclase inside the cytoplasm (edema factor, CyA, ExoY).
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, 75005 Paris, France.
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
| |
Collapse
|
7
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
8
|
Natural Compounds and Their Analogues as Potent Antidotes against the Most Poisonous Bacterial Toxin. Appl Environ Microbiol 2018; 84:AEM.01280-18. [PMID: 30389764 DOI: 10.1128/aem.01280-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/28/2018] [Indexed: 01/30/2023] Open
Abstract
Botulinum neurotoxins (BoNTs), the most poisonous proteins known to humankind, are a family of seven (serotype A to G) immunologically distinct proteins synthesized primarily by different strains of the anaerobic bacterium Clostridium botulinum Being the causative agents of botulism, the toxins block neurotransmitter release by specifically cleaving one of the three soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins, thereby inducing flaccid paralysis. The development of countermeasures and therapeutics against BoNTs is a high-priority research area for public health because of their extreme toxicity and potential for use as biowarfare agents. Extensive research has focused on designing antagonists that block the catalytic activity of BoNTs. In this study, we screened 300 small natural compounds and their analogues extracted from Indian plants for their activity against BoNT serotype A (BoNT/A) as well as its light chain (LCA) using biochemical and cellular assays. One natural compound, a nitrophenyl psoralen (NPP), was identified to be a specific inhibitor of LCA with an in vitro 50% inhibitory concentration (IC50) value of 4.74 ± 0.03 µM. NPP was able to rescue endogenous synaptosome-associated protein 25 (SNAP-25) from cleavage by BoNT/A in human neuroblastoma cells with an IC50 of 12.2 ± 1.7 µM, as well as to prolong the time to the blocking of neutrally elicited twitch tensions in isolated mouse phrenic nerve-hemidiaphragm preparations.IMPORTANCE The long-lasting endopeptidase activity of BoNT is a critical biological activity inside the nerve cell, as it prompts proteolysis of the SNARE proteins, involved in the exocytosis of the neurotransmitter acetylcholine. Thus, the BoNT endopeptidase activity is an appropriate clinical target for designing new small-molecule antidotes against BoNT with the potential to reverse the paralysis syndrome of botulism. In principle, small-molecule inhibitors (SMIs) can gain entry into BoNT-intoxicated cells if they have a suitable octanol-water partition coefficient (log P) value and other favorable characteristics (P. Leeson, Nature 481:455-456, 2012, https://doi.org/10.1038/481455a). Several efforts have been made in the past to develop SMIs, but inhibitors effective under in vitro conditions have not in general been effective in vivo or in cellular models (L. M. Eubanks, M. S. Hixon, W. Jin, S. Hong, et al., Proc Natl Acad Sci U S A 104:2602-2607, 2007, https://doi.org/10.1073/pnas.0611213104). The difference between the in vitro and cellular efficacy presumably results from difficulties experienced by the compounds in crossing the cell membrane, in conjunction with poor bioavailability and high cytotoxicity. The screened nitrophenyl psoralen (NPP) effectively antagonized BoNT/A in both in vitro and ex vivo assays. Importantly, NPP inhibited the BoNT/A light chain but not other general zinc endopeptidases, such as thermolysin, suggesting high selectivity for its target. Small-molecule (nonpeptidic) inhibitors have better oral bioavailability, better stability, and better tissue and cell permeation than antitoxins or peptide inhibitors.
Collapse
|
9
|
Konstantinović J, Kiris E, Kota KP, Kugelman-Tonos J, Videnović M, Cazares LH, Terzić Jovanović N, Verbić TŽ, Andjelković B, Duplantier AJ, Bavari S, Šolaja BA. New Steroidal 4-Aminoquinolines Antagonize Botulinum Neurotoxin Serotype A in Mouse Embryonic Stem Cell Derived Motor Neurons in Postintoxication Model. J Med Chem 2018; 61:1595-1608. [PMID: 29385334 DOI: 10.1021/acs.jmedchem.7b01710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesis and inhibitory potencies against botulinum neurotoxin serotype A light chain (BoNT/A LC) using in vitro HPLC based enzymatic assay for various steroidal, benzothiophene, thiophene, and adamantane 4-aminoquinoline derivatives are described. In addition, the compounds were evaluated for the activity against BoNT/A holotoxin in mouse embryonic stem cell derived motor neurons. Steroidal derivative 16 showed remarkable protection (up to 89% of uncleaved SNAP-25) even when administered 30 min postintoxication. This appears to be the first example of LC inhibitors antagonizing BoNT intoxication in mouse embryonic stem cell derived motor neurons (mES-MNs) in a postexposure model. Oral administration of 16 was well tolerated in the mouse up to 600 mg/kg, q.d. Although adequate unbound drug levels were not achieved at this dose, the favorable in vitro ADMET results strongly support further work in this series.
Collapse
Affiliation(s)
- Jelena Konstantinović
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Krishna P Kota
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Johanny Kugelman-Tonos
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Milica Videnović
- Faculty of Chemistry Innovative Centre , Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Lisa H Cazares
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Nataša Terzić Jovanović
- Institute of Chemistry, Technology, and Metallurgy, University of Belgrade , Njegoševa 12, 11000 Belgrade, Serbia
| | - Tatjana Ž Verbić
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Boban Andjelković
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia
| | - Allen J Duplantier
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Sina Bavari
- United States Army Medical Research Institute of Infectious Diseases , 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Bogdan A Šolaja
- Faculty of Chemistry, University of Belgrade , Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia.,Serbian Academy of Sciences and Arts , Knez Mihailova 35, 11158 Belgrade, Serbia
| |
Collapse
|