1
|
Srinivasan K, Nampoothiri M, Khandibharad S, Singh S, Nayak AG, Hariharapura RC. Proteomic diversity of Russell's viper venom: exploring PLA2 isoforms, pharmacological effects, and inhibitory approaches. Arch Toxicol 2024; 98:3569-3584. [PMID: 39181947 PMCID: PMC11489194 DOI: 10.1007/s00204-024-03849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Snakebite envenomation is a serious health concern in tropical regions, resulting in high mortality. The World Health Organization (WHO) has declared it a neglected tropical disease and is working on strategies to reduce mortality. Russell's viper (Daboia russelii) is one of the most abundant venomous snakes found across Southeast Asia. Proteomic analysis of Russell's viper venom has demonstrated variation, with phospholipase A2 (PLA2) being the most abundant toxin across geographic boundaries. PLA2, a major constituent of the low-molecular-weight fraction of snake venom, hydrolyses phospholipids at the sn-2 position, releasing arachidonic acid and lysophospholipids. They are reported to cause various pharmacological effects, including hemolysis, anticoagulation, neurotoxicity, myotoxicity, and oedema. Though administration of antivenoms (ASV) is the primary treatment for envenomation, it has many drawbacks. Besides causing hypersensitivity reactions and life-threatening anaphylaxis, treatment with ASV is further complicated due to its inability to neutralize low-molecular-weight toxins. Thus, there is a greater need to produce next-generation antivenoms that can target specific toxins in the venom. In this review, we explored the classification of Russell's viper and the variation in its proteomic profile across Southeast Asia to date. In addition, we have also summarized the mechanism of action of PLA2 and discussed various isoforms of PLA2 found across different regions with their respective pharmacological effects. Finally, the drawbacks of commercially available antivenoms and the molecules investigated for inhibiting the low-molecular-weight toxin, PLA2 are discussed.
Collapse
Affiliation(s)
- Kishore Srinivasan
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shweta Khandibharad
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Akshatha Ganesh Nayak
- Division of Biochemistry, Department of Basic Medical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raghu Chandrashekar Hariharapura
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
2
|
Soopairin S, Patikorn C, Taychakhoonavudh S. Antivenom preclinical efficacy testing against Asian snakes and their availability in Asia: A systematic review. PLoS One 2023; 18:e0288723. [PMID: 37467278 DOI: 10.1371/journal.pone.0288723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Cross-neutralizing strategy has been applied to improve access to antivenoms, a key to reducing mortality and disability of snakebite envenoming. However, preclinical studies have been conducted to identify antivenoms' cross-neutralizing ability when clinical studies may not be considered ethical. Therefore, this study aimed to identify and summarize scattered evidence regarding the preclinical efficacy of antivenoms against Asian snakes. METHODOLOGY/PRINCIPLE FINDINGS In this systematic review, we searched for articles published until May 30, 2022, in PubMed, Scopus, Web of Science, and Embase. Preclinical studies that reported the available antivenoms' neutralizing ability against Asian snake lethality were included. Quality assessment was performed using the Systematic Review Centre for Laboratory animal Experimentation's risk of bias tool and the adapted the Animal Research Reporting In Vivo Experiments guidelines. The availability of effective antivenoms against Asian snakes was analyzed by comparing data from included studies with snakebite-information and data platforms developed by the World Health Organization. Fifty-two studies were included. Most studies assessed the antivenom efficacy against snakes from Southeast Asia (58%), followed by South Asia (35%) and East Asia (19%). Twenty-two (49%) medically important snakes had antivenom(s) with confirmed neutralizing ability. Situation analyses of the availability of effective antivenoms in Asia demonstrated that locally produced antivenoms did not cover all medically important snakes in each country. Among countries without local antivenom production, preclinical studies were conducted only in Bangladesh, Sri Lanka, and Malaysia. Risk of bias assessment was limited in some domains because of unreported data. CONCLUSIONS/SIGNIFICANCE Cross-neutralizing of antivenoms against some medically important snakes in Asia was confirmed. This strategy may improve access to geographically effective antivenoms and bypass investment in novel antivenom development, especially in countries without local antivenom production. A database should be developed to aid the development of a snakebite-information system.
Collapse
Affiliation(s)
- Sutinee Soopairin
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chanthawat Patikorn
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Suthira Taychakhoonavudh
- Department of Social and Administrative Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
op den Brouw B, Coimbra FCP, Casewell NR, Ali SA, Vonk FJ, Fry BG. A Genus-Wide Bioactivity Analysis of Daboia (Viperinae: Viperidae) Viper Venoms Reveals Widespread Variation in Haemotoxic Properties. Int J Mol Sci 2021; 22:13486. [PMID: 34948283 PMCID: PMC8706385 DOI: 10.3390/ijms222413486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
The snake genus Daboia (Viperidae: Viperinae; Oppel, 1811) contains five species: D. deserti, D. mauritanica, and D. palaestinae, found in Afro-Arabia, and the Russell's vipers D. russelii and D. siamensis, found in Asia. Russell's vipers are responsible for a major proportion of the medically important snakebites that occur in the regions they inhabit, and their venoms are notorious for their coagulopathic effects. While widely documented, the extent of venom variation within the Russell's vipers is poorly characterised, as is the venom activity of other species within the genus. In this study we investigated variation in the haemotoxic activity of Daboia using twelve venoms from all five species, including multiple variants of D. russelii, D. siamensis, and D. palaestinae. We tested the venoms on human plasma using thromboelastography, dose-response coagulometry analyses, and calibrated automated thrombography, and on human fibrinogen by thromboelastography and fibrinogen gels. We assessed activation of blood factors X and prothrombin by the venoms using fluorometry. Variation in venom activity was evident in all experiments. The Asian species D. russelii and D. siamensis and the African species D. mauritanica possessed procoagulant venom, while D. deserti and D. palaestinae were net-anticoagulant. Of the Russell's vipers, the venom of D. siamensis from Myanmar was most toxic and D. russelli of Sri Lanka the least. Activation of both factor X and prothrombin was evident by all venoms, though at differential levels. Fibrinogenolytic activity varied extensively throughout the genus and followed no phylogenetic trends. This venom variability underpins one of the many challenges facing treatment of Daboia snakebite envenoming. Comprehensive analyses of available antivenoms in neutralising these variable venom activities are therefore of utmost importance.
Collapse
Affiliation(s)
- Bianca op den Brouw
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| | - Francisco C. P. Coimbra
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK;
| | - Syed Abid Ali
- Third World Center for Science and Technology, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan;
| | - Freek J. Vonk
- Naturalis Biodiversity Center, 2333 CR Leiden, The Netherlands;
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Bryan G. Fry
- Venom Evolution Lab, School of Biological Sciences, The University of Queensland, St. Lucia 4072, Australia;
| |
Collapse
|
4
|
Lingam TMC, Tan KY, Tan CH. Capillary leak syndrome induced by the venoms of Russell's Vipers (Daboia russelii and Daboia siamensis) from eight locales and neutralization of the differential toxicity by three snake antivenoms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109186. [PMID: 34508870 DOI: 10.1016/j.cbpc.2021.109186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Snakebite envenomation caused by the Western and Eastern Russell's Vipers (Daboia russelii and Daboia siamensis) may potentially induce capillary leak syndrome (CLS), while the use of antivenom in treating this has not been well examined. This study investigated the CLS-inducing toxicity of Russell's Viper venoms from various sources and examined the neutralization activity of regionally available antivenoms, using a newly devised mouse model. D. russelii venoms demonstrated a more consistent vascular leakage activity (76,000-86,000 CLS unit of vascular leak index, a function of the diameter and intensity of Evans Blue dye extravasation into dermis) than D. siamensis venoms (33,000-88,000 CLS unit). Both species venoms increased hematocrits markedly (53-67%), indicating hemoconcentration. Regional antivenoms (DsMAV-Thailand, DsMAV-Taiwan, VPAV-India) preincubated with the venoms effectively neutralized the CLS effect to different extents. When the antivenoms were administered intravenously post-envenomation (challenge-rescue model), the neutralization was less effective, implying that CLS has a rapid onset that preceded the neutralizing activity of antivenom, and/or the antivenom has limited biodistribution to the venom's inoculation site. In conclusion, Russell's Viper venoms of both species from various locales induced CLS in mice. Antivenoms generally had limited efficacy in neutralizing the CLS effect. Innovative treatment for venom-induced CLS is needed.
Collapse
Affiliation(s)
- Thava Malar Changra Lingam
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research and Toxicology Laboratory, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Tan CH, Palasuberniam P, Tan KY. Snake Venom Proteomics, Immunoreactivity and Toxicity Neutralization Studies for the Asiatic Mountain Pit Vipers, Ovophis convictus, Ovophis tonkinensis, and Hime Habu, Ovophis okinavensis. Toxins (Basel) 2021; 13:toxins13080514. [PMID: 34437385 PMCID: PMC8402492 DOI: 10.3390/toxins13080514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/01/2023] Open
Abstract
Snakebite envenomation is a serious neglected tropical disease, and its management is often complicated by the diversity of snake venoms. In Asia, pit vipers of the Ovophis species complex are medically important venomous snakes whose venom properties have not been investigated in depth. This study characterized the venom proteomes of Ovophis convictus (West Malaysia), Ovophis tonkinensis (northern Vietnam, southern China), and Ovophis okinavensis (Okinawa, Japan) by applying liquid chromatography-tandem mass spectrometry, which detected a high abundance of snake venom serine proteases (SVSP, constituting 40–60% of total venom proteins), followed by phospholipases A2, snake venom metalloproteinases of mainly P-III class, L-amino acid oxidases, and toxins from other protein families which were less abundant. The venoms exhibited different procoagulant activities in human plasma, with potency decreasing from O. tonkinensis > O. okinavensis > O. convictus. The procoagulant nature of venom confirms that consumptive coagulopathy underlies the pathophysiology of Ovophis pit viper envenomation. The hetero-specific antivenoms Gloydius brevicaudus monovalent antivenom (GbMAV) and Trimeresurus albolabris monovalent antivenom (TaMAV) were immunoreactive toward the venoms, and cross-neutralized their procoagulant activities, albeit at variably limited efficacy. In the absence of species-specific antivenom, these hetero-specific antivenoms may be useful in treating coagulotoxic envenomation caused by the different snakes in their respective regions.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research, Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: (C.H.T.); (K.Y.T.)
| | - Praneetha Palasuberniam
- Venom Research, Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (C.H.T.); (K.Y.T.)
| |
Collapse
|
6
|
Tan CH, Palasuberniam P, Blanco FB, Tan KY. Immunoreactivity and neutralization capacity of Philippine cobra antivenom against Naja philippinensis and Naja samarensis venoms. Trans R Soc Trop Med Hyg 2021; 115:78-84. [PMID: 32945886 DOI: 10.1093/trstmh/traa087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/25/2020] [Accepted: 08/28/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The Philippine cobra (Naja philippinensis) and Samar cobra (Naja samarensis) are two WHO Category 1 medically important venomous snakes in the Philippines. Philippine cobra antivenom (PCAV) is the only antivenom available in the country, but its neutralization capacity against the venoms of N. philippinensis and hetero-specific N. samarensis has not been reported. This knowledge gap greatly hinders the optimization of antivenom use in the region. METHODS This study examined the immunological binding and neutralization capacity of PCAV against the two cobra venoms using WHO-recommended protocols. RESULTS In mice, both venoms were highly neurotoxic and lethal with a median lethal dose of 0.18 and 0.20 µg/g, respectively. PCAV exhibited strong and comparable immunoreactivity toward the venoms, indicating conserved venom antigenicity between the two allopatric species. In in vivo assay, PCAV was only moderately effective in neutralizing the toxicity of both venoms. Its potency was even lower against the hetero-specific N. samarensis venom by approximately two-fold compared with its potency against N. philippinensis venom. CONCLUSION The results indicated that PCAV could be used to treat N. samarensis envenomation but at a higher dose, which might increase the risk of hypersensitivity and worsen the shortage of antivenom supply in the field. Antivenom manufacturing should be improved by developing a low-dose, high-efficacy product against cobra envenomation.
Collapse
Affiliation(s)
- Choo Hock Tan
- Venom Research & Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Praneetha Palasuberniam
- Venom Research & Toxicology Research Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Biomedical Sciences & Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Francis Bonn Blanco
- Department of Emergency Medicine, Ospital ng Muntinlupa, Manila, The Philippinies.,Department of Emergency Medicine, Eastern Visayas Regional Medical Center, Tacloban, The Philippines
| | - Kae Yi Tan
- Protein and Interactomics Lab, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Yu C, Yu H, Li P. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy. Int J Biol Macromol 2020; 165:2994-3006. [PMID: 33122066 DOI: 10.1016/j.ijbiomac.2020.10.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023]
Abstract
Geographical variation of animal venom is common among venomous animals. This kind of intraspecific variation based on geographical location mainly concerned from envenomation cases and brought new problems in animal venom studies, including venom components regulatory mechanisms, differentiation of venom activities, and clinical treatment methods. At present, food is considered as the most related factor influencing venom development. Related research defined the variational venomous animal species by the comparison of venom components and activities in snakes, jellyfish, scorpions, cone snails, ants, parasitoid wasps, spiders and toads. In snake venom studies, researchers found that antivenom effectiveness was variated to different located venom samples. As described in some snake venom research, developing region-specific antivenom is the development trend. The difficulties of developing region-specific antivenom and theoretical solutions have been discussed. This review summarized biological studies of animal venom geographical variation by species, compared venom components and major biological activities of the vary venom from the same species, and listed the basic methods in comparing venom protein compositions and major toxicity differences to provide a comprehensive reference.
Collapse
Affiliation(s)
- Chunlin Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
8
|
Toxicity and cross-neutralization of snake venoms from two lesser-known arboreal pit vipers in Southeast Asia: Trimeresurus wiroti and Trimeresurus puniceus. Toxicon 2020; 185:91-96. [DOI: 10.1016/j.toxicon.2020.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
|
9
|
Lin JH, Lo CM, Chuang SH, Chiang CH, Wang SD, Lin TY, Liao JW, Hung DZ. Collocation of avian and mammal antibodies to develop a rapid and sensitive diagnostic tool for Russell's Vipers Snakebite. PLoS Negl Trop Dis 2020; 14:e0008701. [PMID: 32956365 PMCID: PMC7529284 DOI: 10.1371/journal.pntd.0008701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/01/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Russell's vipers (RVs) envenoming is an important public health issue in South-East Asia. Disseminated intravascular coagulopathy, systemic bleeding, hemolysis, and acute renal injury are obvious problems that develop in most cases, and neuromuscular junction blocks are an additional problem caused by western RV snakebite. The complex presentations usually are an obstacle to early diagnosis and antivenom administration. Here, we tried to produce highly specific antibodies in goose yolks for use in a paper-based microfluidic diagnostic kit, immunochromatographic test of viper (ICT-Viper), to distinguish RVs from other vipers and even cobra snakebite in Asia. We used indirect ELISA to monitor specific goose IgY production and western blotting to illustrate the interaction of avian or mammal antibody with venom proteins. The ICT-Viper was tested not only in prepared samples but also in stored patient serum to demonstrate its preliminary efficacy. The results revealed that specific anti-Daboia russelii IgY could be raised in goose eggs effectively without inducing adverse effects. When it was collocated with horse anti-Daboia siamensis antibody, which broadly reacted with most of the venom proteins of both types of Russell's viper, the false cross-reactivity was reduced, and the test showed good performance. The limit of detection was reduced to 10 ng/ml in vitro, and the test showed good detection ability in clinical snake envenoming case samples. The ICT-Viper performed well and could be combined with a cobra venom detection kit (ICT-Cobra) to create a multiple detection strip (ICT-VC), which broadens its applications while maintaining its detection ability for snake envenomation identification. Nonetheless, the use of the ICT-Viper in the South-East Asia region is pending additional laboratory and field investigations and regional collaboration. We believe that the development of this practical diagnostic tool marks the beginning of positive efforts to face the global snakebite issue.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| | - Che-Min Lo
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| | - Ssu-Han Chuang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Chao-Hung Chiang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Sheng-Der Wang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Tsung-Yi Lin
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Ratanabanangkoon K, Tan KY, Pruksaphon K, Klinpayom C, Gutiérrez JM, Quraishi NH, Tan CH. A pan-specific antiserum produced by a novel immunization strategy shows a high spectrum of neutralization against neurotoxic snake venoms. Sci Rep 2020; 10:11261. [PMID: 32647261 PMCID: PMC7347863 DOI: 10.1038/s41598-020-66657-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/30/2020] [Indexed: 11/17/2022] Open
Abstract
Snakebite envenomation is a neglected tropical disease of high mortality and morbidity largely due to insufficient supply of effective and affordable antivenoms. Snake antivenoms are mostly effective against the venoms used in their production. It is thus crucial that effective and affordable antivenom(s) with wide para-specificity, capable of neutralizing the venoms of a large number of snakes, be produced. Here we studied the pan-specific antiserum prepared previously by a novel immunization strategy involving the exposure of horses to a ‘diverse toxin repertoire’ consisting of 12 neurotoxic Asian snake toxin fractions/ venoms from six species. This antiserum was previously shown to exhibit wide para-specificity by neutralizing 11 homologous and 16 heterologous venoms from Asia and Africa. We now show that the antiserum can neutralize 9 out of 10 additional neurotoxic venoms. Altogether, 36 snake venoms belonging to 10 genera from 4 continents were neutralized by the antiserum. Toxin profiles previously generated using proteomic techniques of these 36 venoms identified α-neurotoxins, β-neurotoxins, and cytotoxins as predominant toxins presumably neutralized by the antiserum. The bases for the wide para-specificity of the antiserum are discussed. These findings indicate that it is feasible to generate antivenoms of wide para-specificity against elapid neurotoxic venoms from different regions in the world and raises the possibility of a universal neurotoxic antivenom. This should reduce the mortality resulting from neurotoxic snakebite envenomation.
Collapse
Affiliation(s)
- Kavi Ratanabanangkoon
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand. .,Laboratory of Immunology, Chulabhorn Research Institute, Bangkok, 10210, Thailand.
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chaiya Klinpayom
- Veterinary Hospital, The Veterinary and Remount Department, The Royal Thai Army, Nakorn Pathom, 73000, Thailand
| | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Naeem H Quraishi
- Anti Snake Venom/Anti Rabies Serology Laboratory, People's University of Medical and Health Sciences for Women, Nawabshah, Pakistan
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| |
Collapse
|
11
|
Hia YL, Tan KY, Tan CH. Comparative venom proteomics of banded krait (Bungarus fasciatus) from five geographical locales: Correlation of venom lethality, immunoreactivity and antivenom neutralization. Acta Trop 2020; 207:105460. [PMID: 32278639 DOI: 10.1016/j.actatropica.2020.105460] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
Abstract
The banded krait, Bungarus fasciatus is a medically important venomous snake in Asia. The wide distribution of this species in Southeast Asia and southern China indicates potential geographical variation of the venom which may impact the clinical management of snakebite envenomation. This study investigated the intraspecific venom variation of B. fasciatus from five geographical locales through a venom decomplexing proteomic approach, followed by toxinological and immunological studies. The venom proteomes composed of a total of 9 toxin families, comprising 22 to 31 proteoforms at varying abundances. The predominant proteins were phospholipase A2 (including beta-bungarotoxin), Kunitz-type serine protease inhibitor (KSPI) and three-finger toxins (3FTx), which are toxins that cause neurotoxicity and lethality. The venom lethality varied with geographical origins of the snake, with intravenous median lethal doses (LD50) ranging from 0.45-2.55 µg/g in mice. The Thai Bungarus fasciatus monovalent antivenom (BFMAV) demonstrated a dose-dependent increasing immunological binding activity toward all venoms; however, its in vivo neutralization efficacy varied vastly with normalized potency values ranging from 3 to 28 mg/g, presumably due to the compositional differences of dominant proteins in the different venoms. The findings support that antivenom use should be optimized in different geographical areas. The development of a pan-regional antivenom may be a more sustainable solution for the treatment of snakebite envenomation.
Collapse
|
12
|
Tan KY, Ng TS, Bourges A, Ismail AK, Maharani T, Khomvilai S, Sitprija V, Tan NH, Tan CH. Geographical variations in king cobra (Ophiophagus hannah) venom from Thailand, Malaysia, Indonesia and China: On venom lethality, antivenom immunoreactivity and in vivo neutralization. Acta Trop 2020; 203:105311. [PMID: 31862461 DOI: 10.1016/j.actatropica.2019.105311] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 01/27/2023]
Abstract
The wide distribution of king cobra (Ophiophagus hannah), a medically important venomous snake in Asia could be associated with geographical variation in the toxicity and antigenicity of the venom. This study investigated the lethality of king cobra venoms (KCV) from four geographical locales (Malaysia, Thailand, Indonesia, China), and the immunological binding as well as in vivo neutralization activities of three antivenom products (Thai Ophiophagus hannah monovalent antivenom, OHMAV; Indonesian Serum Anti Bisa Ular, SABU; Chinese Naja atra monovalent antivenom, NAMAV) toward the venoms. The Indonesian and Chinese KCV were more lethal (median lethal dose, LD50 ~0.5 μg/g) than those from Malaysia and Thailand (LD50 ~1.0 μg/g). The antivenoms, composed of F(ab)'2, were variably immunoreactive toward the KCV from all locales, with OHMAV exhibited the highest immunological binding activity. In mice, OHMAV neutralized the neurotoxic lethality of Thai KCV most effectively (normalized potency = 118 mg venom neutralized per g antivenom) followed by Malaysian, Indonesian and Chinese KCV. In comparison, the hetero-specific SABU was remarkably less potent by at least 6 to10 folds, whereas NAMAV appeared to be non-effective. The finding supports that a specific king cobra antivenom is needed for the effective treatment of king cobra envenomation in each region.
Collapse
Affiliation(s)
- Kae Yi Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Tzu Shan Ng
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Aymeric Bourges
- Venom Research & Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ahmad Khaldun Ismail
- Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Tri Maharani
- Department of Emergency, Daha Husada Hospital, Kediri, East Java Province, Indonesia
| | - Sumana Khomvilai
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Nget Hong Tan
- Protein and Interactomics Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Venom Research & Toxicology Lab, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Lingam TMC, Tan KY, Tan CH. Proteomics and antivenom immunoprofiling of Russell's viper ( Daboia siamensis) venoms from Thailand and Indonesia. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190048. [PMID: 32082369 PMCID: PMC7004479 DOI: 10.1590/1678-9199-jvatitd-2019-0048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
The Eastern Russell’s viper, Daboia siamensis, is a WHO Category
1 medically important venomous snake. It has a wide but disjunct distribution in
Southeast Asia. The specific antivenom, D. siamensis Monovalent
Antivenom (DsMAV-Thailand) is produced in Thailand but not available in
Indonesia, where a heterologous trivalent antivenom, Serum Anti Bisa Ular
(SABU), is used instead. This study aimed to investigate the geographical venom
variation of D. siamensis from Thailand (Ds-Thailand) and
Indonesia (Ds-Indonesia), and the immunorecognition of the venom proteins by
antivenoms.
Collapse
Affiliation(s)
| | - Kae Yi Tan
- Department of Molecular Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Chaisakul J, Alsolaiss J, Charoenpitakchai M, Wiwatwarayos K, Sookprasert N, Harrison RA, Chaiyabutr N, Chanhome L, Tan CH, Casewell NR. Evaluation of the geographical utility of Eastern Russell's viper (Daboia siamensis) antivenom from Thailand and an assessment of its protective effects against venom-induced nephrotoxicity. PLoS Negl Trop Dis 2019; 13:e0007338. [PMID: 31644526 PMCID: PMC6850557 DOI: 10.1371/journal.pntd.0007338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/12/2019] [Accepted: 09/18/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Daboia siamensis (Eastern Russell's viper) is a medically important snake species found widely distributed across Southeast Asia. Envenomings by this species can result in systemic coagulopathy, local tissue injury and/or renal failure. While administration of specific antivenom is an effective treatment for Russell's viper envenomings, the availability of, and access to, geographically-appropriate antivenom remains problematic in many rural areas. In this study, we determined the binding and neutralizing capability of antivenoms manufactured by the Thai Red Cross in Thailand against D. siamensis venoms from four geographical locales: Myanmar, Taiwan, China and Thailand. METHODOLOGY/PRINCIPLE FINDINGS The D. siamensis monovalent antivenom displayed extensive recognition and binding to proteins found in D. siamensis venom, irrespective of the geographical origin of those venoms. Similar immunological characteristics were observed with the Hemato Polyvalent antivenom, which also uses D. siamensis venom as an immunogen, but binding levels were dramatically reduced when using comparator monovalent antivenoms manufactured against different snake species. A similar pattern was observed when investigating neutralization of coagulopathy, with the procoagulant action of all four geographical venom variants neutralized by both the D. siamensis monovalent and the Hemato Polyvalent antivenoms, while the comparator monovalent antivenoms were ineffective. These in vitro findings translated into therapeutic efficacy in vivo, as the D. siamensis monovalent antivenom was found to effectively protect against the lethal effects of all four geographical venom variants preclinically. Assessments of in vivo nephrotoxicity revealed that D. siamensis venom (700 μg/kg) significantly increased plasma creatinine and blood urea nitrogen levels in anaesthetised rats. The intravenous administration of D. siamensis monovalent antivenom at three times higher than the recommended scaled therapeutic dose, prior to and 1 h after the injection of venom, resulted in reduced levels of markers of nephrotoxicity and prevented renal morphological changes, although lower doses had no therapeutic effect. CONCLUSIONS/SIGNIFICANCE This study highlights the potential broad geographical utility of the Thai D. siamensis monovalent antivenom for treating envenomings by the Eastern Russell's viper. However, only the early delivery of high antivenom doses appears to be capable of preventing venom-induced nephrotoxicity.
Collapse
Affiliation(s)
- Janeyuth Chaisakul
- Department of Pharmacology, Phramongkutklao College of Medicine, Bangkok, Thailand
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, United Kingdom
| | - Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, United Kingdom
| | | | - Kulachet Wiwatwarayos
- Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
- Institute of Pathology, Ministry of Public Health, Bangkok, Thailand
| | - Nattapon Sookprasert
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Robert A. Harrison
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, United Kingdom
| | | | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Bangkok, Thailand
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, Merseyside, United Kingdom
| |
Collapse
|