1
|
Yang H, Yao Y, Gu X, Chen H, Zeng Q, Mao Z, Xiang T. Bloom-forming planktonic Microcystis and benthic Oscillatoria-induced oxidative stress and inflammatory responses in juvenile silver carp and bighead carp. Toxicon 2025; 253:108183. [PMID: 39577703 DOI: 10.1016/j.toxicon.2024.108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/02/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
As global warming and water eutrophication, the multiple proliferation of harmful cyanobacteria can form algal blooms and cause serious ecological problems. In recent years, the large-scale and persistent cyanobacterial blooms occur frequently worldwide and have attracted widespread attention due to the harmful impacts. Among these harmful bloom-forming cyanobacteria, the ecological and toxicological impacts of planktonic cyanobacteria have been extensively studied. However, research on the ecological risks and adverse effects of harmful benthic cyanobacteria is lagging. Filter-feeding fish could suffer from more toxic stimuli than other fish due to their special feeding habits. To investigate and compare the complex toxic effects of different kinds of harmful cyanobacteria on fish, three different-sized (i.e. small, medium, and large) juvenile silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) were exposed to cyanobacterial blooms-related density (1 × 106 cells/mL) of Microcystis aeruginosa (i.e. generating microcystins) and Oscillatoria sp. (i.e. generating cylindrospermopsin) for 3 d, after which biomarkers of oxidative stress and inflammation in the liver of fish were detected. The silver carp and bighead carp can effectively ingest Microcystis cells but cannot effectively ingest Oscillatoria cells through the measurement of the levels of cyanotoxins. Both Microcystis and Oscillatoria cells can induce different levels of oxidative stress and inflammatory responses in the liver of these juvenile filter-feeding fish via altering the biochemical parameters of the antioxidant system (e.g. superoxide dismutase activity) and immune system (e.g. interleukin-1β level). Therefore, our research identified potential data gaps that how the different types of cyanobacteria induce toxic effects in the liver of juvenile filter-feeding fish in a short time. This study contributes to a better understanding of the short-term adverse effects of different cyanobacterial species on juvenile fish, suggesting that the benthic toxic cyanobacteria-induced ecological and health risks require further attention.
Collapse
Affiliation(s)
- Huiting Yang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yujia Yao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Gu
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian, 223300, China.
| | - Huihui Chen
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qingfei Zeng
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhigang Mao
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Tao Xiang
- Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
2
|
Chowdhury RR, Grosso MF, Gadara DC, Spáčil Z, Vidová V, Sovadinová I, Babica P. Cyanotoxin cylindrospermopsin disrupts lipid homeostasis and metabolism in a 3D in vitro model of the human liver. Chem Biol Interact 2024; 397:111046. [PMID: 38735451 DOI: 10.1016/j.cbi.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Riju Roy Chowdhury
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Marina Felipe Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Veronika Vidová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
3
|
El Haddad L, Lai E, Murthy PKL, Biswas DD, Soufny R, Roger AL, Tata PR, ElMallah MK. GAA deficiency disrupts distal airway cells in Pompe disease. Am J Physiol Lung Cell Mol Physiol 2023; 325:L288-L298. [PMID: 37366541 PMCID: PMC10625827 DOI: 10.1152/ajplung.00032.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Pompe disease is an autosomal recessive glycogen storage disease caused by mutations in the gene that encodes acid alpha-glucosidase (GAA)-an enzyme responsible for hydrolyzing lysosomal glycogen. GAA deficiency results in systemic lysosomal glycogen accumulation and cellular disruption. Glycogen accumulation in skeletal muscles, motor neurons, and airway smooth muscle cells is known to contribute to respiratory insufficiency in Pompe disease. However, the impact of GAA deficiency on the distal alveolar type 1 and type 2 cells (AT1 and AT2) has not been evaluated. AT1 cells rely on lysosomes for cellular homeostasis so that they can maintain a thin barrier for gas exchange, whereas AT2 cells depend on lysosome-like structures (lamellar bodies) for surfactant production. Using a mouse model of Pompe disease, the Gaa-/- mouse, we investigated the consequences of GAA deficiency on AT1 and AT2 cells using histology, pulmonary function and mechanics, and transcriptional analysis. Histological analysis revealed increased accumulation of lysosomal-associated membrane protein 1 (LAMP1) in the Gaa-/- mice lungs. Furthermore, ultrastructural examination showed extensive intracytoplasmic vacuoles enlargement and lamellar body engorgement. Respiratory dysfunction was confirmed using whole body plethysmography and forced oscillometry. Finally, transcriptomic analysis demonstrated dysregulation of surfactant proteins in AT2 cells, specifically reduced levels of surfactant protein D in the Gaa-/- mice. We conclude that GAA enzyme deficiency leads to glycogen accumulation in the distal airway cells that disrupts surfactant homeostasis and contributes to respiratory impairments in Pompe disease.NEW & NOTEWORTHY This research highlights the impact of Pompe disease on distal airway cells. Prior to this work, respiratory insufficiency in Pompe disease was classically attributed to pathology in respiratory muscles and motor neurons. Using the Pompe mouse model, we note significant pathology in alveolar type 1 and 2 cells with reductions in surfactant protein D and disrupted surfactant homeostasis. These novel findings highlight the potential contributions of alveolar pathology to respiratory insufficiency in Pompe disease.
Collapse
Affiliation(s)
- Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | - Elias Lai
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | | | - Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | - Rania Soufny
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | - Angela L Roger
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| | | | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, School of Medicine, Duke University, Durham, North Carolina, United States
| |
Collapse
|
4
|
Niture S, Gadi S, Qi Q, Rios-Colon L, Khatiwada S, Vandana, Fernando RA, Levine KE, Kumar D. Cyanotoxins Increase Cytotoxicity and Promote Nonalcoholic Fatty Liver Disease Progression by Enhancing Cell Steatosis. Toxins (Basel) 2023; 15:411. [PMID: 37505679 PMCID: PMC10467139 DOI: 10.3390/toxins15070411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
Freshwater prokaryotic cyanobacteria within harmful algal blooms produce cyanotoxins which are considered major pollutants in the aquatic system. Direct exposure to cyanotoxins through inhalation, skin contact, or ingestion of contaminated drinking water can target the liver and may cause hepatotoxicity. In the current study, we investigated the effect of low concentrations of cyanotoxins on cytotoxicity, inflammation, modulation of unfolded protein response (UPR), steatosis, and fibrosis signaling in human hepatocytes and liver cell models. Exposure to low concentrations of microcystin-LR (MC-LR), microcystin-RR (MC-RR), nodularin (NOD), and cylindrospermopsin (CYN) in human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines HepG2 and SK-Hep1 resulted in increased cell toxicity. MC-LR, NOD, and CYN differentially regulated inflammatory signaling, activated UPR signaling and lipogenic gene expression, and induced cellular steatosis and fibrotic signaling in HCC cells. MC-LR, NOD, and CYN also regulated AKT/mTOR signaling and inhibited autophagy. Chronic exposure to MC-LR, NOD, and CYN upregulated the expression of lipogenic and fibrosis biomarkers. Moreover, RNA sequencing (RNA seq) data suggested that exposure of human hepatocytes, HepaRG, and HCC HepG2 cells to MC-LR and CYN modulated expression levels of several genes that regulate non-alcoholic fatty liver disease (NAFLD). Our data suggest that low concentrations of cyanotoxins can cause hepatotoxicity and cell steatosis and promote NAFLD progression.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Sashi Gadi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Leslimar Rios-Colon
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Sabin Khatiwada
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Vandana
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Reshan A. Fernando
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, NC 27707, USA
| | - Keith E. Levine
- NCCU-RTI Center for Applied Research in Environmental Sciences (CARES), RTI International, Durham, NC 27707, USA
| | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
5
|
Labohá P, Sychrová E, Brózman O, Sovadinová I, Bláhová L, Prokeš R, Ondráček J, Babica P. Cyanobacteria, cyanotoxins and lipopolysaccharides in aerosols from inland freshwater bodies and their effects on human bronchial cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104073. [PMID: 36738853 DOI: 10.1016/j.etap.2023.104073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Components of cyanobacterial water blooms were quantified in aerosols above agitated water surfaces of five freshwater bodies. The thoracic and respirable aerosol fraction (0.1-10 µm) was sampled using a high-volume sampler. Cyanotoxins microcystins were detected by LC-MS/MS at levels 0.3-13.5 ng/mL (water) and < 35-415 fg/m3 (aerosol). Lipopolysaccharides (endotoxins) were quantified by Pyrogene rFC assay at levels < 10-119 EU/mL (water) and 0.13-0.64 EU/m3 (aerosol). Cyanobacterial DNA was detected by qPCR at concentrations corresponding to 104-105 cells eq./mL (water) and 101-103 cells eq./m3 (aerosol). Lipopolysaccharides isolated from bloom samples induced IL-6 and IL-8 cytokine release in human bronchial epithelial cells Beas-2B, while extracted cyanobacterial metabolites induced both pro-inflammatory and cytotoxic effects. Bloom components detected in aerosols and their bioactivities observed in upper respiratory airway epithelial cells together indicate that aerosols formed during cyanobacterial water blooms could induce respiratory irritation and inflammatory injuries, and thus present an inhalation health risk.
Collapse
Affiliation(s)
- Petra Labohá
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Ondřej Brózman
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Lucie Bláhová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Roman Prokeš
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; Department of Atmospheric Matter Fluxes and Long-range Transport, Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 60300 Brno, Czech Republic
| | - Jakub Ondráček
- Department of Aerosol Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 16502 Prague, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic; Department of Experimental Phycology and Ecotoxicology, Institute of Botany of the Czech Academy of Sciences, Lidická 25/27, 60200 Brno, Czech Republic.
| |
Collapse
|
6
|
Shi Y, Li J, Huang D, Wang X, Huang Y, Chen C, Li R. Specific Adsorption and Efficient Degradation of Cylindrospermopsin on Oxygen-Vacancy Sites of BiOBr. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yan Shi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| | - Jingzhi Li
- College of Biology & Pharmacy, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| | - Di Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Xiawei Wang
- College of Biology & Pharmacy, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| | - Chuncheng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Ruiping Li
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang443002, China
- Engineering Research Center of Eco-environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang443002, China
| |
Collapse
|
7
|
Zhang Q, Wang L, Chen G, Wang M, Hu T. Cylindrospermopsin impairs vascular smooth muscle cells by P53-mediated apoptosis due to ROS overproduction. Toxicol Lett 2021; 353:83-92. [PMID: 34687773 DOI: 10.1016/j.toxlet.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/05/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023]
Abstract
Cylindrospermopsin (CYN) is a toxic secondary metabolite from cyanobacteria that can cause cardiovascular disease. However, the study of CYN-induced cardiovascular toxicity in vitro is very limited and the mechanism is remain to be clarified. Vascular smooth muscle cells (VMSCs) have an important function in maintaining the structural and functional integrity of the aortic wall, and are an important in vitro model for cardiovascular research. Thus, the effects of CYN exposure (2, 20, 200, and 2000 nM) on VMSCs were analyzed. In vitro study, results showed that CYN exposure decreased VMSCs viability, inhibited VMSCs migration, induced DNA damage, destroyed cytoskeleton, changed cell morphology, promoted VMSCs apoptosis, and increased intracellular reactive oxygen species (ROS) levels. In addition, CYN could induce the activities of SOD, CAT and GPX, and promote the expressions of SOD1, CAT, GPx1, p53 and Bax genes and inhibit the expression of Bcl-2 gene, leading to a higher ratio of Bax/Bcl-2. Taken together, CYN may induce ROS overproduction, leading to increased p53 expression and ultimately promoting VSMC apoptosis. Therefore, the present study demonstrates that CYN could impair VMSCs, leading to vascular developmental defects and angiocardiopathy.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Linping Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guoliang Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Mingxing Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Tingzhang Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
| |
Collapse
|