1
|
Tomašek I, Eychenne J, Damby DE, Hornby AJ, Romanias MN, Moune S, Uzu G, Schiavi F, Dole M, Gardès E, Laumonier M, Gorce C, Minet‐Quinard R, Durif J, Belville C, Traoré O, Blanchon L, Sapin V. Physicochemical Properties and Bioreactivity of Sub-10 μm Geogenic Particles: Comparison of Volcanic Ash and Desert Dust. GEOHEALTH 2025; 9:e2024GH001171. [PMID: 39790373 PMCID: PMC11711107 DOI: 10.1029/2024gh001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM10) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St. Vincent, and two desert dust samples: a standardized test dust from Arizona and an aeolian Gobi Desert dust sampled in China. We determined particle size, morphology, mineralogy, surface texture and chemistry in sub-10 μm material to investigate associations between particle physicochemical properties and observed bioreactivity. We assessed cellular responses (cytotoxic and pro-inflammatory effects) to acute particle exposures (24 hr) in monocultures at the air-liquid interface using two types of cells of the human airways: BEAS-2B bronchial epithelial cells and A549 alveolar type II epithelial cells. In acellular assays, we also assessed particle oxidative potential and the presence of microorganisms. The results showed that volcanic ash and desert dust exhibit intrinsically different particle morphology, surface textures and chemistry, and variable mineralogical content. We found that Gobi Desert dust is more bioreactive than freshly erupted volcanic ash and Arizona test dust, which is possibly linked to the presence of microorganisms (bacteria) and/or nanoscale elongated silicate minerals (potentially clay such as illite or vermiculite) on particle surfaces.
Collapse
Affiliation(s)
- Ines Tomašek
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
- Istituto Nazionale di Geofisica e Vulcanologia (INGV)Osservatorio EtneoCataniaItaly
| | - Julia Eychenne
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
| | - David E. Damby
- U.S. Geological Survey (USGS)Volcano Science CenterMenlo ParkCAUSA
| | - Adrian J. Hornby
- Department of Earth and Atmospheric SciencesCornell UniversityIthacaNYUSA
- Department of Cellular and Molecular BiologySchool of MedicineUniversity of Texas at TylerTylerTXUSA
| | - Manolis N. Romanias
- Institut Mines‐Télécom (IMT) Nord EuropeCentre for Energy and EnvironmentUniversité LilleDouaiFrance
| | - Severine Moune
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Gaëlle Uzu
- IRDCNRSINRAEINP‐GIGE (UMR 5001)Université Grenoble AlpesGrenobleFrance
| | - Federica Schiavi
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Maeva Dole
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Emmanuel Gardès
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Mickael Laumonier
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Clara Gorce
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Régine Minet‐Quinard
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
- Biochemistry and Molecular Genetics DepartmentCentre Hospitalier Universitaire (CHU) Clermont‐FerrandClermont‐FerrandFrance
| | - Julie Durif
- Biochemistry and Molecular Genetics DepartmentCentre Hospitalier Universitaire (CHU) Clermont‐FerrandClermont‐FerrandFrance
| | - Corinne Belville
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Ousmane Traoré
- Infection Control DepartmentCentre Hospitalier Universitaire (CHU) Clermont‐FerrandClermont‐FerrandFrance
- Laboratoire Microorganismes: Génome Environnement (LMGE)UMRCNRSUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Loïc Blanchon
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Vincent Sapin
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
- Biochemistry and Molecular Genetics DepartmentCentre Hospitalier Universitaire (CHU) Clermont‐FerrandClermont‐FerrandFrance
| |
Collapse
|
2
|
Grytting VS, Refsnes M, Låg M, Erichsen E, Røhr TS, Snilsberg B, White RA, Øvrevik J. The importance of mineralogical composition for the cytotoxic and pro-inflammatory effects of mineral dust. Part Fibre Toxicol 2022; 19:46. [PMID: 35794670 PMCID: PMC9261052 DOI: 10.1186/s12989-022-00486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/21/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Respirable mineral particles represent a potential health hazard in occupational settings and ambient air. Previous studies show that mineral particles may induce cytotoxicity and inflammatory reactions in vitro and in vivo and that the potency varies between samples of different composition. However, the reason for these differences is largely unknown and the impact of mineralogical composition on the biological effects of mineral dust remains to be determined.
Methods
We have assessed the cytotoxic and pro-inflammatory effects of ten mineral particle samples of different composition in human bronchial epithelial cells (HBEC3-KT) and THP-1-derived macrophages, as well as their membranolytic properties in erythrocytes. Moreover, the results were compiled with the results of recently published experiments on the effects of stone particle exposure and analysed using linear regression models to elucidate which mineral components contribute most to the toxicity of mineral dust.
Results
While all mineral particle samples were more cytotoxic to HBEC3-KT cells than THP-1 macrophages, biotite and quartz were among the most cytotoxic in both cell models. In HBEC3-KT cells, biotite and quartz also appeared to be the most potent inducers of pro-inflammatory cytokines, while the quartz, Ca-feldspar, Na-feldspar and biotite samples were the most potent in THP-1 macrophages. All particle samples except quartz induced low levels of membranolysis. The regression analyses revealed associations between particle bioactivity and the content of quartz, muscovite, plagioclase, biotite, anorthite, albite, microcline, calcite, chlorite, orthopyroxene, actinolite and epidote, depending on the cell model and endpoint. However, muscovite was the only mineral consistently associated with increased cytotoxicity and cytokine release in both cell models.
Conclusions
The present study provides further evidence that mineral particles may induce cytotoxicity and inflammation in cells of the human airways and that particle samples of different mineralogical composition differ in potency. The results show that quartz, while being among the most potent samples, does not fully predict the toxicity of mineral dust, highlighting the importance of other particle constituents. Moreover, the results indicate that the phyllosilicates muscovite and biotite may be more potent than other minerals assessed in the study, suggesting that this group of sheet-like minerals may warrant further attention.
Collapse
|
3
|
Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions. Int J Mol Sci 2022; 23:ijms23126412. [PMID: 35742856 PMCID: PMC9224477 DOI: 10.3390/ijms23126412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 02/06/2023] Open
Abstract
The occupational exposure to particles such as crystalline quartz and its impact on the respiratory tract have been studied extensively in recent years. For hazard assessment, the development of physiologically more relevant in-vitro models, i.e., air-liquid interface (ALI) cell cultures, has greatly progressed. Within this study, pulmonary culture models employing A549 and differentiated THP-1 cells as mono-and co-cultures were investigated. The different cultures were exposed to α-quartz particles (Min-U-Sil5) with doses ranging from 15 to 66 µg/cm2 under submerged and ALI conditions and cytotoxicity as well as cytokine release were analyzed. No cytotoxicity was observed after ALI exposure. Contrarily, Min-U-Sil5 was cytotoxic at the highest dose in both submerged mono- and co-cultures. A concentration-dependent release of interleukin-8 was shown for both exposure types, which was overall stronger in co-cultures. Our findings showed considerable differences in the toxicological responses between ALI and submerged exposure and between mono- and co-cultures. A substantial influence of the presence or absence of serum in cell culture media was noted as well. Within this study, the submerged culture was revealed to be more sensitive. This shows the importance of considering different culture and exposure models and highlights the relevance of communication between different cell types for toxicological investigations.
Collapse
|
4
|
Grytting VS, Refsnes M, Øvrevik J, Halle MS, Schönenberger J, van der Lelij R, Snilsberg B, Skuland T, Blom R, Låg M. Respirable stone particles differ in their ability to induce cytotoxicity and pro-inflammatory responses in cell models of the human airways. Part Fibre Toxicol 2021; 18:18. [PMID: 33957952 PMCID: PMC8101231 DOI: 10.1186/s12989-021-00409-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background Respirable stone- and mineral particles may be a major constituent in occupational and ambient air pollution and represent a possible health hazard. However, with exception of quartz and asbestos, little is known about the toxic properties of mineral particles. In the present study, the pro-inflammatory and cytotoxic responses to six stone particle samples of different composition and with diameter below 10 μm were assessed in human bronchial epithelial cells (HBEC3-KT), THP-1 macrophages and a HBEC3-KT/THP-1 co-culture. Moreover, particle-induced lysis of human erythrocytes was assessed to determine the ability of the particles to lyse biological membranes. Finally, the role of the NLRP3 inflammasome was assessed using a NLRP3-specific inhibitor and detection of ASC oligomers and cleaved caspase-1 and IL-1β. A reference sample of pure α-quartz was included for comparison. Results Several stone particle samples induced a concentration-dependent increase in cytotoxicity and secretion of the pro-inflammatory cytokines CXCL8, IL-1α, IL-1β and TNFα. In HBEC3-KT, quartzite and anorthosite were the most cytotoxic stone particle samples and induced the highest levels of cytokines. Quartzite and anorthosite were also the most cytotoxic samples in THP-1 macrophages, while anorthosite and hornfels induced the highest cytokine responses. In comparison, few significant differences between particle samples were detected in the co-culture. Adjusting responses for differences in surface area concentrations did not fully account for the differences between particle samples. Moreover, the stone particles had low hemolytic potential, indicating that the effects were not driven by membrane lysis. Pre-incubation with a NLRP3-specific inhibitor reduced stone particle-induced cytokine responses in THP-1 macrophages, but not in HBEC3-KT cells, suggesting that the effects are mediated through different mechanisms in epithelial cells and macrophages. Particle exposure also induced an increase in ASC oligomers and cleaved caspase-1 and IL-1β in THP-1 macrophages, confirming the involvement of the NLRP3 inflammasome. Conclusions The present study indicates that stone particles induce cytotoxicity and pro-inflammatory responses in human bronchial epithelial cells and macrophages, acting through NLRP3-independent and -dependent mechanisms, respectively. Moreover, some particle samples induced cytotoxicity and cytokine release to a similar or greater extent than α-quartz. Thus, these minerals warrant further attention in future research. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00409-y.
Collapse
Affiliation(s)
- Vegard Sæter Grytting
- Section of Air Pollution and Noise, Department of Environmental Health, Domain of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.
| | - Magne Refsnes
- Section of Air Pollution and Noise, Department of Environmental Health, Domain of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | - Johan Øvrevik
- Section of Air Pollution and Noise, Department of Environmental Health, Domain of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | | | | | | | | | - Tonje Skuland
- Section of Air Pollution and Noise, Department of Environmental Health, Domain of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway
| | | | - Marit Låg
- Section of Air Pollution and Noise, Department of Environmental Health, Domain of Infectious Disease Control and Environmental Health, Norwegian Institute of Public Health, PO Box 4404, Nydalen, N-0403, Oslo, Norway.
| |
Collapse
|
5
|
Bouchab H, Ishaq A, El Kebbaj R, Nasser B, Saretzki G. Protective effect of argan oil on DNA damage in vivo and in vitro. Biomarkers 2021; 26:425-433. [PMID: 33843382 DOI: 10.1080/1354750x.2021.1905068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Iron-overload is a well-known cause for the development of chronic liver diseases and known to induce DNA damage.Material and methods: The protective effect of argan oil (AO) from the Argania spinosa fruit and olive oil (OO) (6% AO or OO for 28 days) was evaluated on a mouse model of iron overload (3.5mg Fe2+/liter) and in human fibroblasts where DNA damage was induced via culture under hyperoxia (40% oxygen).Results: Iron treatment induced DNA damage in liver tissue while both oils were able to decrease it. We confirmed this effect in vitro in MRC-5 fibroblasts under hyperoxia. A cell-free ABTS assay suggested that improvement of liver toxicity by both oils might depend on a high content in tocopherol, phytosterol and polyphenol compounds known for their antioxidant potential. The antioxidant effect of AO was confirmed in fibroblasts by reduced intracellular peroxide levels after hyperoxia. However, we could not find a significant decrease of genes encoding pro-inflammatory cytokines (TNFα, IL-6, IL-1β, COX-2) or senescence markers (p16 and p21) for the oils in mouse liver.Conclusion: We found a striking effect of AO by ameliorating DNA damage after iron overload in a mouse liver model and in human fibroblasts by hyperoxia adding compelling evidence to the protective mechanisms of AO and OO.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratoire Biochimie, Neurosciences, Ressources naturelles et Environnement, Faculté des Sciences et Techniques, Hassan First University of Settat, Settat, Morocco.,Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abbas Ishaq
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Riad El Kebbaj
- Laboratoire Biochimie, Neurosciences, Ressources naturelles et Environnement, Faculté des Sciences et Techniques, Hassan First University of Settat, Settat, Morocco.,Laboratory of Health Sciences and Technologies, Hassan First University of Settat, Higher Institute of Health Sciences, Settat, Morocco
| | - Boubker Nasser
- Laboratoire Biochimie, Neurosciences, Ressources naturelles et Environnement, Faculté des Sciences et Techniques, Hassan First University of Settat, Settat, Morocco
| | - Gabriele Saretzki
- Campus for Ageing and Vitality, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Billet S, Landkocz Y, Martin PJ, Verdin A, Ledoux F, Lepers C, André V, Cazier F, Sichel F, Shirali P, Gosset P, Courcot D. Chemical characterization of fine and ultrafine PM, direct and indirect genotoxicity of PM and their organic extracts on pulmonary cells. J Environ Sci (China) 2018; 71:168-178. [PMID: 30195675 DOI: 10.1016/j.jes.2018.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.5 and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B lung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.5. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.
Collapse
Affiliation(s)
- Sylvain Billet
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France.
| | - Yann Landkocz
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Perrine J Martin
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Anthony Verdin
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Frédéric Ledoux
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Capucine Lepers
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | | | - Fabrice Cazier
- University of the Littoral Opal Coast, Common Centre of Measurements, CCM, Dunkerque, France
| | - François Sichel
- Normandy Univ, UNICAEN, ABTE EA4651, Caen, France; Centre François Baclesse, Caen, France
| | - Pirouz Shirali
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| | - Pierre Gosset
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France; Department of Anatomy and Pathological Cytology, Saint-Vincent Hospital, Catholic Hospital, Lille, France
| | - Dominique Courcot
- University of the Littoral Opal Coast, Unit of Environmental Chmistry and Interactions with Living Organisms, UCEIV EA4492, SFR Condorcet FR CNRS 3417, Dunkerque, France
| |
Collapse
|
7
|
Pease C, Rücker T, Birk T. Review of the Evidence from Epidemiology, Toxicology, and Lung Bioavailability on the Carcinogenicity of Inhaled Iron Oxide Particulates. Chem Res Toxicol 2016; 29:237-54. [DOI: 10.1021/acs.chemrestox.5b00448] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Camilla Pease
- Ramboll ENVIRON
UK Limited, 1 Broad Gate, The Headrow, Leeds LS1 8EQ, U.K
| | - Thomas Rücker
- Ramboll ENVIRON
Germany GmbH, Aschauer Straße
32a, 81549 München, Germany
| | - Thomas Birk
- Ramboll ENVIRON
Germany GmbH, Friedrich-Ebert-Strasse
55, 45127 Essen, Germany
| |
Collapse
|
8
|
Stem Cell Tracking with Nanoparticles for Regenerative Medicine Purposes: An Overview. Stem Cells Int 2015; 2016:7920358. [PMID: 26839568 PMCID: PMC4709786 DOI: 10.1155/2016/7920358] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023] Open
Abstract
Accurate and noninvasive stem cell tracking is one of the most important needs in regenerative medicine to determine both stem cell destinations and final differentiation fates, thus allowing a more detailed picture of the mechanisms involved in these therapies.
Given the great importance and advances in the field of nanotechnology for stem cell imaging, currently, several nanoparticles have become standardized products and have been undergoing fast commercialization. This review has been intended to summarize the current use of different engineered nanoparticles in stem cell tracking for regenerative medicine purposes, in particular by detailing their main features and exploring their biosafety aspects, the first step for clinical application. Moreover, this review has summarized the advantages and applications of stem cell tracking with nanoparticles in experimental and preclinical studies and investigated present limitations for their employment in the clinical setting.
Collapse
|
9
|
Øvrevik J, Refsnes M, Låg M, Holme JA, Schwarze PE. Activation of Proinflammatory Responses in Cells of the Airway Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015; 5:1399-440. [PMID: 26147224 PMCID: PMC4598757 DOI: 10.3390/biom5031399] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022] Open
Abstract
Inflammation is considered to play a central role in a diverse range of disease outcomes associated with exposure to various types of inhalable particulates. The initial mechanisms through which particles trigger cellular responses leading to activation of inflammatory responses are crucial to clarify in order to understand what physico-chemical characteristics govern the inflammogenic activity of particulate matter and why some particles are more harmful than others. Recent research suggests that molecular triggering mechanisms involved in activation of proinflammatory genes and onset of inflammatory reactions by particles or soluble particle components can be categorized into direct formation of reactive oxygen species (ROS) with subsequent oxidative stress, interaction with the lipid layer of cellular membranes, activation of cell surface receptors, and direct interactions with intracellular molecular targets. The present review focuses on the immediate effects and responses in cells exposed to particles and central down-stream signaling mechanisms involved in regulation of proinflammatory genes, with special emphasis on the role of oxidant and non-oxidant triggering mechanisms. Importantly, ROS act as a central second-messenger in a variety of signaling pathways. Even non-oxidant mediated triggering mechanisms are therefore also likely to activate downstream redox-regulated events.
Collapse
Affiliation(s)
- Johan Øvrevik
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Magne Refsnes
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Marit Låg
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Jørn A Holme
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| | - Per E Schwarze
- Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, N-0403 Oslo, Norway.
| |
Collapse
|
10
|
Gerlofs-Nijland ME, Totlandsdal AI, Tzamkiozis T, Leseman DLAC, Samaras Z, Låg M, Schwarze P, Ntziachristos L, Cassee FR. Cell toxicity and oxidative potential of engine exhaust particles: impact of using particulate filter or biodiesel fuel blend. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5931-8. [PMID: 23597117 DOI: 10.1021/es305330y] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The link between emissions of vehicular particulate matter (PM) and adverse health effects is well established. However, the influence of new emission control technologies and fuel types on both PM emissions and health effects has been less well investigated. We examined the health impact of PM emissions from two vehicles equipped with or without a diesel particulate filter (DPF). Both vehicles were powered either with diesel (B0) or a 50% v/v biodiesel blend (B50). The DPF effectively decreased PM mass emissions (∼85%), whereas the fuel B50 without DPF lead to less reduction (∼50%). The hazard of PM per unit distance driven was decreased for the DPF-equipped vehicle as indicated by a reduced cytotoxicity, oxidative, and pro-inflammatory potential. This was not evident and even led to an increase when the hazard was expressed on a per unit of mass basis. In general, the PM oxidative potential was similar or reduced for the B50 compared to the B0 powered vehicle. However, the use of B50 resulted in increased cytotoxicity and IL-6 release in BEAS-2B cells irrespective of the expression metric. This study shows that PM mass reduction achieved by the use of B50 will not necessarily decrease the hazard of engine emissions, while the application of a DPF has a beneficial effect on both PM mass emission and PM hazard.
Collapse
Affiliation(s)
- Miriam E Gerlofs-Nijland
- Centre for Environmental Health, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Inflammation-related effects of diesel engine exhaust particles: studies on lung cells in vitro. BIOMED RESEARCH INTERNATIONAL 2013; 2013:685142. [PMID: 23509760 PMCID: PMC3586454 DOI: 10.1155/2013/685142] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 01/17/2023]
Abstract
Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers.
Collapse
|
12
|
Bølling AK, Totlandsdal AI, Sallsten G, Braun A, Westerholm R, Bergvall C, Boman J, Dahlman HJ, Sehlstedt M, Cassee F, Sandstrom T, Schwarze PE, Herseth JI. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 2012; 9:45. [PMID: 23176191 PMCID: PMC3544657 DOI: 10.1186/1743-8977-9-45] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 11/02/2012] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
Collapse
Affiliation(s)
| | | | - Gerd Sallsten
- Department of Occupational and Environmental Medicine, Sahlgrenska University Hospital and Academy, University of Gothenburg, Gothenburg, Sweden
| | - Artur Braun
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Roger Westerholm
- Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Christoffer Bergvall
- Department of Analytical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 106 91, Sweden
| | - Johan Boman
- Department of Chemistry, University of Gothenburg, Gothenburg, Sweden
| | - Hans Jørgen Dahlman
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Maria Sehlstedt
- Department of Respiratory Medicine and Allergy, University of Umeå, Umeå, Sweden
| | - Flemming Cassee
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Thomas Sandstrom
- Department of Respiratory Medicine and Allergy, University of Umeå, Umeå, Sweden
| | - Per E Schwarze
- Division of Environmental Medicine, Norwegian Institute of Public Health, Oslo, Norway
| | - Jan Inge Herseth
- Faculty of Health Sciences, Oslo and Akershus University College of Applied Sciences, Oslo, Norway
| |
Collapse
|
13
|
Bølling AK, Totlandsdal AI, Sallsten G, Braun A, Westerholm R, Bergvall C, Boman J, Dahlman HJ, Sehlstedt M, Cassee F, Sandstrom T, Schwarze PE, Herseth JI. Wood smoke particles from different combustion phases induce similar pro-inflammatory effects in a co-culture of monocyte and pneumocyte cell lines. Part Fibre Toxicol 2012. [PMID: 23176191 DOI: 10.1186/1743-8977-9-45/figures/4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Exposure to particulate matter (PM) has been linked to several adverse cardiopulmonary effects, probably via biological mechanisms involving inflammation. The pro-inflammatory potential of PM depends on the particles' physical and chemical characteristics, which again depend on the emitting source. Wood combustion is a major source of ambient air pollution in Northern countries during the winter season. The overall aim of this study was therefore to investigate cellular responses to wood smoke particles (WSPs) collected from different phases of the combustion cycle, and from combustion at different temperatures. RESULTS WSPs from different phases of the combustion cycle induced very similar effects on pro-inflammatory mediator release, cytotoxicity and cell number, whereas WSPs from medium-temperature combustion were more cytotoxic than WSPs from high-temperature incomplete combustion. Furthermore, comparisons of effects induced by native WSPs with the corresponding organic extracts and washed particles revealed that the organic fraction was the most important determinant for the WSP-induced effects. However, the responses induced by the organic fraction could generally not be linked to the content of the measured polycyclic aromatic hydrocarbons (PAHs), suggesting that also other organic compounds were involved. CONCLUSION The toxicity of WSPs seems to a large extent to be determined by stove type and combustion conditions, rather than the phase of the combustion cycle. Notably, this toxicity seems to strongly depend on the organic fraction, and it is probably associated with organic components other than the commonly measured unsubstituted PAHs.
Collapse
|
14
|
Vu'o'ng Lê B, Khorsi-Cauet H, Villegier AS, Bach V, Gay-Quéheillard J. New rat models of iron sucrose-induced iron overload. Exp Biol Med (Maywood) 2011; 236:790-9. [DOI: 10.1258/ebm.2011.010298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The majority of murine models of iron sucrose-induced iron overload were carried out in adult subjects. This cannot reflect the high risk of iron overload in children who have an increased need for iron. In this study, we developed four experimental iron overload models in young rats using iron sucrose and evaluated different markers of iron overload, tissue oxidative stress and inflammation as its consequences. Iron overload was observed in all iron-treated rats, as evidenced by significant increases in serum iron indices, expression of liver hepcidin gene and total tissue iron content compared with control rats. We also showed that total tissue iron content was mainly associated with the dose of iron whereas serum iron indices depended essentially on the duration of iron administration. However, no differences in tissue inflammatory and antioxidant parameters from controls were observed. Furthermore, only rats exposed to daily iron injection at a dose of 75 mg/kg body weight for one week revealed a significant increase in lipid peroxidation in iron-treated rats compared with their controls. The present results suggest a correlation between iron overload levels and the dose of iron, as well as the duration and frequency of iron injection and confirm that iron sucrose may not play a crucial role in inflammation and oxidative stress. This study provides important information about iron sucrose-induced iron overload in rats and may be useful for iron sucrose therapy for iron deficiency anemia as well as for the prevention and diagnosis of iron sucrose-induced iron overload in pediatric patients.
Collapse
Affiliation(s)
- Bá Vu'o'ng Lê
- Peritox Laboratory (Périnatalité et Risques Toxiques) EA4285-UMI01, Faculty of Medicine, Picardy Jules Verne University, 3 rue des Louvels, 80036 Amiens
| | - Hafida Khorsi-Cauet
- Peritox Laboratory (Périnatalité et Risques Toxiques) EA4285-UMI01, Faculty of Medicine, Picardy Jules Verne University, 3 rue des Louvels, 80036 Amiens
| | - Anne-Sophie Villegier
- Peritox Laboratory (Périnatalité et Risques Toxiques) EA4285-UMI01, Faculty of Medicine, Picardy Jules Verne University, 3 rue des Louvels, 80036 Amiens
- Experimental Toxicology Unit, Direction of Chronic Risks, National Institute for the Industrial Environment and Risks (INERIS), Parc technologique ALATA, BP.2 60550 Verneuil-en-Halatte, France
| | - Véronique Bach
- Peritox Laboratory (Périnatalité et Risques Toxiques) EA4285-UMI01, Faculty of Medicine, Picardy Jules Verne University, 3 rue des Louvels, 80036 Amiens
| | - Jérôme Gay-Quéheillard
- Peritox Laboratory (Périnatalité et Risques Toxiques) EA4285-UMI01, Faculty of Medicine, Picardy Jules Verne University, 3 rue des Louvels, 80036 Amiens
| |
Collapse
|
15
|
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res 2010; 44:1-46. [PMID: 19886744 DOI: 10.3109/10715760903300691] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schwarze PE, Øvrevik J, Hetland RB, Becher R, Cassee FR, Låg M, Løvik M, Dybing E, Refsnes M. Importance of Size and Composition of Particles for Effects on Cells In Vitro. Inhal Toxicol 2008; 19 Suppl 1:17-22. [PMID: 17886045 DOI: 10.1080/08958370701490445] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A primary goal of current research on particle-induced health effects is to reveal the critical characteristics that determine their biological effects. Experimental studies have shown that smaller particles induce stronger biological effects than larger particles of similar composition, due to their larger surface area to mass ratio. However, correlation for variations in surface area could not account for variation in biological reactivity among particles of differential composition. Hence, the importance of size and surface area does not override the importance of particle composition. Moreover, different particle characteristics appear to be involved in different biological effects in vitro. Our studies show that mineral particle-induced apoptosis mostly seems to depend on particle size, whereas composition and surface reactivity appeared to be most important for the proinflammatory potential of the particles. The ability of the particles to generate reactive oxygen species in vitro was not correlated with either inflammatory markers or apoptosis, suggesting that other mechanisms are at play. A single, specific component of the mineral particles, explaining the differences in response, has not been identified. In European-wide studies such as the Respiratory Allergy and Inflammation due to Air Pollution (RAIAP) study, particles have been sampled in different locations to study season- and site-dependent variations in responses particles, such as markers of inflammatory and allergic reactions in cells and animals. The data indicate that coarse particles can induce at least as strong inflammatory responses as fine particles. The allergic responses tended to be more associated with the organic fraction (PAH) of particles, whereas the inflammatory reactions seemed to be more associated with metals and endotoxin. Overall, coarse PM was found to have an inflammatory potential similar to fine PM on an equal mass basis. Even though one has to take into account different concentrations in ambient air as well as differences in respiratory system deposition of the size fractions, the potential of coarse particles to induce pulmonary effects should not be neglected.
Collapse
Affiliation(s)
- P E Schwarze
- Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hansen T, Seidel A, Borlak J. The environmental carcinogen 3-nitrobenzanthrone and its main metabolite 3-aminobenzanthrone enhance formation of reactive oxygen intermediates in human A549 lung epithelial cells. Toxicol Appl Pharmacol 2007; 221:222-34. [PMID: 17477947 DOI: 10.1016/j.taap.2007.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 03/02/2007] [Accepted: 03/07/2007] [Indexed: 01/18/2023]
Abstract
The environmental contaminant 3-nitrobenzanthrone (3-NBA) is highly mutagenic and a suspected human carcinogen. We aimed to evaluate whether 3-NBA is able to deregulate critical steps in cell cycle control and apoptosis in human lung epithelial A549 cells. Increased intracellular Ca(2+) and caspase activities were detected upon 3-NBA exposure. As shown by cell cycle analysis, an increased number of S-phase cells was observed after 24 h of treatment with 3-NBA. Furthermore, 3-NBA was shown to inhibit cell proliferation when added to subconfluent cell cultures. The main metabolite of 3-NBA, 3-ABA, induced statistically significant increases in tail moment as judged by alkaline comet assay. The potential of 3-NBA and 3-ABA to enhance the production of reactive oxygen species (ROS) was demonstrated by flow cytometry using 2',7'-dichlorofluorescein-diacetate (DCFH-DA). The enzyme inhibitors allopurinol, dicumarol, resveratrol and SKF525A were used to assess the impact of metabolic conversion on 3-NBA-mediated ROS production. Resveratrol decreased dichlorofluorescein (DCF) fluorescence by 50%, suggesting a role for CYP1A1 in 3-NBA-mediated ROS production. Mitochondrial ROS production was significantly attenuated (20% reduction) by addition of rotenone (complex I inhibition) and thenoyltrifluoroacetone (TTFA, complex II inhibition). Taken together, the results of the present study provide evidence for a genotoxic potential of 3-ABA in human epithelial lung cells. Moreover, both compounds lead to increased intracellular ROS and create an environment favorable to DNA damage and the promotion of cancer.
Collapse
Affiliation(s)
- Tanja Hansen
- Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany.
| | | | | |
Collapse
|
18
|
Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 2007. [PMID: 17326846 DOI: 10.1186/1743‐8977‐4‐2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The induction of cytokines by airway cells in vitro has been widely used to assess the effects of ambient and occupational particles. This study measured cytotoxicity and the release of the proinflammatory cytokines IL-6 and IL-8 by human bronchial epithelial cells treated with manufactured nano- and micron-sized particles of Al2O3, CeO2, Fe2O3, NiO, SiO2, and TiO2, with soil-derived particles from fugitive dust sources, and with the positive controls LPS, TNF-alpha, and VOSO4. RESULTS The nano-sized particles were not consistently more potent than an equal mass of micron-sized particles of the same nominal composition for the induction of IL-6 and IL-8 secretion in the in vitro models used in this study. The manufactured pure oxides were much less potent than natural PM2.5 particles derived from soil dust, and the cells were highly responsive to the positive controls. The nano-sized particles in the media caused artifacts in the measurement of IL-6 by ELISA due to adsorption of the cytokine on the high-surface-area particles. The potency for inducing IL-6 secretion by BEAS-2B cells did not correlate with the generation of reactive oxygen species in cell-free media. CONCLUSION Direct comparisons of manufactured metal oxide nanoparticles and previously studied types of particles and surrogate proinflammatory agonists showed that the metal oxide particles have low potency to induce IL-6 secretion in BEAS-2B cells. Particle artifacts from non-biological effects need to be considered in experiments of this type, and the limitations inherent in cell culture studies must be considered when interpreting in vitro results. This study suggests that manufactured metal oxide nanoparticles are not highly toxic to lung cells compared to environmental particles.
Collapse
Affiliation(s)
- John M Veranth
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | | | |
Collapse
|
19
|
Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS. Cytokine responses of human lung cells (BEAS-2B) treated with micron-sized and nanoparticles of metal oxides compared to soil dusts. Part Fibre Toxicol 2007; 4:2. [PMID: 17326846 PMCID: PMC1821039 DOI: 10.1186/1743-8977-4-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 02/27/2007] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The induction of cytokines by airway cells in vitro has been widely used to assess the effects of ambient and occupational particles. This study measured cytotoxicity and the release of the proinflammatory cytokines IL-6 and IL-8 by human bronchial epithelial cells treated with manufactured nano- and micron-sized particles of Al2O3, CeO2, Fe2O3, NiO, SiO2, and TiO2, with soil-derived particles from fugitive dust sources, and with the positive controls LPS, TNF-alpha, and VOSO4. RESULTS The nano-sized particles were not consistently more potent than an equal mass of micron-sized particles of the same nominal composition for the induction of IL-6 and IL-8 secretion in the in vitro models used in this study. The manufactured pure oxides were much less potent than natural PM2.5 particles derived from soil dust, and the cells were highly responsive to the positive controls. The nano-sized particles in the media caused artifacts in the measurement of IL-6 by ELISA due to adsorption of the cytokine on the high-surface-area particles. The potency for inducing IL-6 secretion by BEAS-2B cells did not correlate with the generation of reactive oxygen species in cell-free media. CONCLUSION Direct comparisons of manufactured metal oxide nanoparticles and previously studied types of particles and surrogate proinflammatory agonists showed that the metal oxide particles have low potency to induce IL-6 secretion in BEAS-2B cells. Particle artifacts from non-biological effects need to be considered in experiments of this type, and the limitations inherent in cell culture studies must be considered when interpreting in vitro results. This study suggests that manufactured metal oxide nanoparticles are not highly toxic to lung cells compared to environmental particles.
Collapse
Affiliation(s)
- John M Veranth
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Erin G Kaser
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Martha M Veranth
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Michael Koch
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| | - Garold S Yost
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Refsnes M, Hetland RB, Øvrevik J, Sundfør I, Schwarze PE, Låg M. Different particle determinants induce apoptosis and cytokine release in primary alveolar macrophage cultures. Part Fibre Toxicol 2006; 3:10. [PMID: 16774673 PMCID: PMC1533852 DOI: 10.1186/1743-8977-3-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 06/14/2006] [Indexed: 12/30/2022] Open
Abstract
Background Particles are known to induce both cytokine release (MIP-2, TNF-α), a reduction in cell viability and an increased apoptosis in alveolar macrophages. To examine whether these responses are triggered by the same particle determinants, alveolar macrophages were exposed in vitro to mineral particles of different physical-chemical properties. Results The crystalline particles of the different stone types mylonite, gabbro, basalt, feldspar, quartz, hornfels and fine grain syenite porphyr (porphyr), with a relatively equal size distribution (≤ 10 μm), but different chemical/mineral composition, all induced low and relatively similar levels of apoptosis. In contrast, mylonite and gabbro induced a marked MIP-2 response compared to the other particles. For particles of smaller size, quartz (≤ 2 μm) seemed to induce a somewhat stronger apoptotic response than even smaller quartz (≤ 0.5 μm) and larger quartz (≤ 10 μm) in relation to surface area, and was more potent than hornfels and porphyr (≤ 2 μm). The reduction in cell viability induced by quartz of the different sizes was roughly similar when adjusted to surface area. With respect to cytokines, the release was more marked after exposure to quartz ≤ 0.5 μm than to quartz ≤ 2 μm and ≤ 10 μm. Furthermore, hornfels (≤ 2 μm) was more potent than the corresponding hornfels (≤ 10 μm) and quartz (≤ 2 μm) to induce cytokine responses. Pre-treatment of hornfels and quartz particles ≤ 2 μm with aluminium lactate, to diminish the surface reactivity, did significantly reduce the MIP-2 response to hornfels. In contrast, the apoptotic responses to the particles were not affected. Conclusion These results indicate that different determinants of mineral/stone particles are critical for inducing cytokine responses, reduction in cell viability and apoptosis in alveolar macrophages. The data suggest that the particle surface reactivity was critical for cytokine responses, but contributed less to cell death for the types of particles tested. The size-dependent variations, specially in cytokine release, seem not to be explained only by particle surface area.
Collapse
Affiliation(s)
- Magne Refsnes
- Department of Air pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Ragna B Hetland
- Department of Air pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Johan Øvrevik
- Department of Air pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Idunn Sundfør
- Department of Air pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Per E Schwarze
- Department of Air pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| | - Marit Låg
- Department of Air pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, NO-0403 Oslo, Norway
| |
Collapse
|