1
|
Unicsovics M, Molnár Z, Mézes M, Posta K, Nagyéri G, Várbíró S, Ács N, Sára L, Szőke Z. The Possible Role of Mycotoxins in the Pathogenesis of Endometrial Cancer. Toxins (Basel) 2024; 16:236. [PMID: 38922131 PMCID: PMC11209310 DOI: 10.3390/toxins16060236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Endometrial cancer is one of the most common cancer types among women. Many factors can contribute to the development of this disease, including environmental factors and, thus, eating habits. Our study aims to determine the levels of various mycotoxins and their metabolites in the blood serum and endometrial tissue samples of participants with previously proven endometrial cancer and to find possible contributions to cancer development. In the cohort clinical trial, 52 participants aged between 44 and 86 were studied. The participants were divided into two groups: patients or matched controls. All patients had previously histologically diagnosed endometrial cancer. The cancer patients were divided into low-grade endometrioid and low- plus high-grade endometrioid groups. Controls had no history of endometrial malignancy or premalignancy. Blood serum and endometrial tissue samples were obtained from all study patients. We compared the concentrations of total Aflatoxins (Afs), Deoxynivalenol (DON), Ochratoxin-A (OTA), T2-toxin and HT2 toxin (T2/HT2 toxin), Zearalenone (ZEN), alpha-Zearalenol (α-ZOL), and Fumonisin B1 (FB1) in the serum and endometrium between the different study groups. As a result, we can see a significant correlation between the higher levels of Afs and zearalenone and the presence of endometrial cancer. In the case of Afs, DON, OTA, T2/HT2 toxins, ZEN, and alpha-ZOL, we measured higher endometrial concentrations than in serum. Considering the effect of mycotoxins and eating habits on cancer development, our results might lead to further research exploring the relationship between certain mycotoxins and endometrium cancer.
Collapse
Affiliation(s)
- Márkó Unicsovics
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (S.V.); (N.Á.); (L.S.)
| | - Zsófia Molnár
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (G.N.); (Z.S.)
| | - Miklós Mézes
- Department of Feed Safety, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Katalin Posta
- Department of Microbiology and Applied Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - György Nagyéri
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (G.N.); (Z.S.)
| | - Szabolcs Várbíró
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (S.V.); (N.Á.); (L.S.)
- Department of Obstetrics and Gynecology, University of Szeged, 6725 Szeged, Hungary
| | - Nándor Ács
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (S.V.); (N.Á.); (L.S.)
| | - Levente Sára
- Department of Obstetrics and Gynecology, Semmelweis University, 1088 Budapest, Hungary; (S.V.); (N.Á.); (L.S.)
| | - Zsuzsanna Szőke
- Department of Animal Biotechnology, Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary; (Z.M.); (G.N.); (Z.S.)
| |
Collapse
|
2
|
Liu WC, Pushparaj K, Meyyazhagan A, Arumugam VA, Pappusamy M, Bhotla HK, Baskaran R, Issara U, Balasubramanian B, Khaneghah AM. Ochratoxin A as alarming health in livestock and human: A review on molecular interactions, mechanism of toxicity, detection, detoxification, and dietary prophylaxis. Toxicon 2022; 213:59-75. [PMID: 35452686 DOI: 10.1016/j.toxicon.2022.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
Ochratoxin A (OTA) is a toxic metabolite produced by Aspergillus and Penicillium fungi commonly found in raw plant sources and other feeds. This review comprises an extensive evaluation of the origin and proprieties of OTA, toxicokinetics, biotransformation, and toxicodynamics of ochratoxins. In in vitro and in vivo studies, the compatibility of OTA with oxidative stress is observed through the production of free radicals, resulting in genotoxicity and carcinogenicity. The OTA leads to nephrotoxicity as the chief target organ is the kidney. Other OTA excretion and absorption rates are observed, and the routes of elimination include faeces, urine, and breast milk. The alternations in the Phe moiety of OTA are the precursor for the amino acid alternation, bringing about Phe-hydroxylase and Phe-tRNA synthase, resulting in the complete dysfunction of cellular metabolism. Biodetoxification using specific microorganisms decreased the DNA damage, lipid peroxidation, and cytotoxicity. This review addressed the ability of antioxidants and the dietary components as prophylactic measures to encounter toxicity and demonstrated their capability to counteract the chronic exposure through supplementation as feed additives.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Karthika Pushparaj
- Department of Zoology, School of Biosciences, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India.
| | - Vijaya Anand Arumugam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Manikantan Pappusamy
- Department of Life Science, CHRIST (Deemed to be University), Bengaluru, Karnataka, 560076, India
| | - Haripriya Kuchi Bhotla
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, PR China
| | - Rathinasamy Baskaran
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
| | - Utthapon Issara
- Division of Food Science and Technology Management, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | | | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
3
|
Chansawhang A, Phochantachinda S, Temviriyanukul P, Chantong B. Corticosterone potentiates ochratoxin A-induced microglial activation. Biomol Concepts 2022; 13:230-241. [DOI: 10.1515/bmc-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Microglial activation in the central nervous system (CNS) has been associated with brain damage and neurodegenerative disorders. Ochratoxin A (OTA) is a mycotoxin that occurs naturally in food and feed and has been associated with neurotoxicity, while corticosteroids are CNS’ physiological function modulators. This study examined how OTA affected microglia activation and how corticosteroids influenced microglial neuroinflammation. Murine microglial cells (BV-2) were stimulated by OTA, and the potentiation effects on OTA-induced inflammation were determined by corticosterone pre-treatment. Expressions of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), and inducible nitric oxide synthase (iNOS) were determined. Phosphorylation of mitogen-activated protein kinases (MAPKs) was analyzed by western blotting. OTA significantly increased the mRNA expression of IL-6, TNF-α, IL-1β, and iNOS and also elevated IL-6 and NO levels. Corticosterone pre-treatment enhanced the neuroinflammatory response to OTA in a mineralocorticoid receptor (MR)-dependent mechanism, which is associated with increases in extracellular signal-regulated kinase (ERK) and p38 MAPK activation. In response to OTA, microglial cells produced pro-inflammatory cytokines and NO, while corticosterone increased OTA-induced ERK and p38 MAPK phosphorylation via MR. Findings indicated the direct role of OTA in microglia activation and neuroinflammatory response and suggested that low corticosterone concentrations in the brain exacerbated neurodegeneration.
Collapse
Affiliation(s)
- Anchana Chansawhang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand
| | - Sataporn Phochantachinda
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand
| | - Boonrat Chantong
- Department of Pre-clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University , Salaya , Phutthamonthon, Nakhon Pathom 73170 , Thailand
| |
Collapse
|
4
|
Darbuka E, Gürkaşlar C, Yaman I. Ochratoxin A induces ERK1/2 phosphorylation-dependent apoptosis through NF-κB/ERK axis in human proximal tubule HK-2 cell line. Toxicon 2021; 199:79-86. [PMID: 34116085 DOI: 10.1016/j.toxicon.2021.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/15/2021] [Accepted: 06/04/2021] [Indexed: 12/08/2022]
Abstract
Ochratoxin A (OTA) is a food contaminant mycotoxin with hazardous effects on human and animal health, primarily affecting the kidneys. OTA's mode of action is not well understood. OTA activates both MAPK/ERK and PI3K/Akt signaling pathways, which play role in apoptosis and cell survival, respectively. OTA is also known to induce toxicity by activating the NF-κB pathway in immune cells. However, its role in determining the cell fate upon OTA exposure in a human kidney cell line (HK-2) has not been fully explored. We made use of pharmacological inhibition of NF-κB to define its role in viability of OTA-treated HK-2 cells. We show that OTA-induced p65 NF-κB subunit translocation into the nucleus in a time-dependent manner using both Western blotting and immunofluorescence (IF). We also document the DNA-binding and reporter gene expression activities of NF-κB by electrophoretic mobility shift (EMSA) and luciferase reporter assays, respectively. Our results indicate that, following 6 h of exposure, OTA fully activates NF-κB pathway and its downstream effectors in HK-2 cells. In addition, Bay11-7085 treatment causes attenuation of the relative levels of OTA-mediated ERK1/2 phosphorylation, suggesting a cross-talk between NF-κB and the MAPK/ERK pathway. Critically, co-treatment of HK-2 cells with OTA and Bay11-7085 leads to the inhibition of OTA-induced apoptosis in a time-dependent manner. Our results support a robust association between NF-κB and the MAPK/ERK pathways in the modulation of apoptotic effects of OTA in HK-2 cells.
Collapse
Affiliation(s)
- Elif Darbuka
- Bogazici University, Department of Molecular Biology and Genetics, Molecular Toxicology and Cancer Research Laboratory, Bebek, Istanbul, 34342, Turkey
| | - Can Gürkaşlar
- Bogazici University, Department of Molecular Biology and Genetics, Molecular Toxicology and Cancer Research Laboratory, Bebek, Istanbul, 34342, Turkey
| | - Ibrahim Yaman
- Bogazici University, Department of Molecular Biology and Genetics, Molecular Toxicology and Cancer Research Laboratory, Bebek, Istanbul, 34342, Turkey; Bogazici University, Center for Life Sciences and Technologies, Bebek, Istanbul, 34342, Turkey.
| |
Collapse
|
5
|
Zingales V, Fernández-Franzón M, Ruiz MJ. Sterigmatocystin-induced DNA damage triggers cell-cycle arrest via MAPK in human neuroblastoma cells. Toxicol Mech Methods 2021; 31:479-488. [PMID: 34039253 DOI: 10.1080/15376516.2021.1916801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sterigmatocystin (STE) is a common mycotoxin found in food and feed. Many studies showed that STE is genotoxic. However, up to now, the potential genotoxicity of STE on human neuronal system remains unknown. In this study, we explored the effect of STE on DNA damage and cell-cycle progression on human neuroblastoma SH-SY5Y cells exposed to various concentrations of STE (0.78, 1.56 and 3.12 µM) for 24 h. The results indicated that STE exposure induced DNA damage, as evidenced by DNA comet tails formation and increased γH2AX foci. Additionally, genotoxicity was confirmed by micronuclei (MN) analysis. Furthermore, we found that STE exposure led to cell-cycle arrest at the S and the G2/M phase. Considering the important role played by MAPK and p53 signaling pathways in cell-cycle arrest, we explored their potential involvement in STE-induced cell-cycle arrest by using specific inhibitors. The inhibition of JNK and ERK resulted to attenuate S and G2/M arrest, whereas the inhibition of p38 and p53 attenuated only STE-induced S phase arrest. In conclusion, the present study demonstrates that STE induced DNA damage and triggered MAPK and p53 pathways activation, resulting in cell-cycle arrest at the S and the G2/M phase.
Collapse
Affiliation(s)
- Veronica Zingales
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Mónica Fernández-Franzón
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Maria-José Ruiz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| |
Collapse
|
6
|
Non-cytotoxic dosage of fumonisin B1 aggravates ochratoxin A-induced nephrocytotoxicity and apoptosis via ROS-dependent JNK/MAPK signaling pathway. Toxicology 2021; 457:152802. [PMID: 33905761 DOI: 10.1016/j.tox.2021.152802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/03/2021] [Accepted: 04/22/2021] [Indexed: 01/04/2023]
Abstract
Ochratoxin A (OTA) and fumonisin B1 (FB1), two of the most toxicologically important mycotoxins, often coexist in a variety of foodstuff and feed in humans and animals. Because of the low content of FB1 in foodstuff and feed, alone harmfulness of FB1 is often ignored. However, it is unknown whether the lower dosage of FB1 aggravates the toxicity of other mycotoxins. In this article, we aimed to investigate the effects of the lower dosage of FB1 on OTA-induced nephrotoxicity and apoptosis, and its underlying mechanism in porcine kidney cells (PK-15). Our current study showed that the non-cytotoxic concentration of FB1 (8 μM) could enhance OTA(5 μM)-induced nephrocytotoxicity and the expression of pro-apoptosis-associated genes in PK-15 cells. We also observed that the production of reactive oxygen species (ROS) was increased. However, the expression of pro-apoptosis-associated genes were down-regulated when the N-acetylcysteine (NAC), a ROS scavenger, was used in our experiment. Besides, we found that the combined toxins could increase the protein expression of p-JNK instead of p-p38 and p-ERK. Pretreatment with SP600125, a JNK inhibitor, could significantly block the promotion effects of FB1 on OTA-induced nephrocytotoxicity and apoptosis. The protein expression of p-JNK was also inhibited and the promotion effects of FB1 were significantly alleviated when NAC was used. In conclusion, the non-cytotoxic dosage of FB1 could aggravate the nephrocytotoxicity and apoptosis caused by OTA via ROS-dependent JNK/MAPK signaling pathway.
Collapse
|
7
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
8
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
9
|
Liu K, Zheng M, Lu R, Du J, Zhao Q, Li Z, Li Y, Zhang S. The role of CDC25C in cell cycle regulation and clinical cancer therapy: a systematic review. Cancer Cell Int 2020; 20:213. [PMID: 32518522 PMCID: PMC7268735 DOI: 10.1186/s12935-020-01304-w] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
One of the most prominent features of tumor cells is uncontrolled cell proliferation caused by an abnormal cell cycle, and the abnormal expression of cell cycle-related proteins gives tumor cells their invasive, metastatic, drug-resistance, and anti-apoptotic abilities. Recently, an increasing number of cell cycle-associated proteins have become the candidate biomarkers for early diagnosis of malignant tumors and potential targets for cancer therapies. As an important cell cycle regulatory protein, Cell Division Cycle 25C (CDC25C) participates in regulating G2/M progression and in mediating DNA damage repair. CDC25C is a cyclin of the specific phosphatase family that activates the cyclin B1/CDK1 complex in cells for entering mitosis and regulates G2/M progression and plays an important role in checkpoint protein regulation in case of DNA damage, which can ensure accurate DNA information transmission to the daughter cells. The regulation of CDC25C in the cell cycle is affected by multiple signaling pathways, such as cyclin B1/CDK1, PLK1/Aurora A, ATR/CHK1, ATM/CHK2, CHK2/ERK, Wee1/Myt1, p53/Pin1, and ASK1/JNK-/38. Recently, it has evident that changes in the expression of CDC25C are closely related to tumorigenesis and tumor development and can be used as a potential target for cancer treatment. This review summarizes the role of CDC25C phosphatase in regulating cell cycle. Based on the role of CDC25 family proteins in the development of tumors, it will become a hot target for a new generation of cancer treatments.
Collapse
Affiliation(s)
- Kai Liu
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Rui Lu
- Department of Pathology, Tianjin Nankai Hospital, Tianjin, People's Republic of China
| | - Jiaxing Du
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Qi Zhao
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Zugui Li
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Yuwei Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121 People's Republic of China
| |
Collapse
|
10
|
Aşcı Çelik D, Gurbuz N, Toğay VA, Özçelik N. Ochratoxin A causes cell cycle arrest in G1 and G1/S phases through p53 in HK-2 cells. Toxicon 2020; 180:11-17. [DOI: 10.1016/j.toxicon.2020.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/18/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
|
11
|
Zhang TY, Kong L, Hao JX, Wang H, Yan ZH, Sun XF, Shen W. Effects of Ochratoxin A exposure on DNA damage in porcine granulosa cells in vitro. Toxicol Lett 2020; 330:167-175. [PMID: 32454083 DOI: 10.1016/j.toxlet.2020.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/19/2023]
Abstract
Ochratoxin A (OTA), a feed mycotoxin, tends to impair the reproductive performance of animals. Our previous studies have demonstrated that OTA exposure inhibits porcine ovarian granulosa cell (GC) proliferation and induces their apoptosis, but the underlying toxic mechanism is still uncertain. In this study, we explored the OTA exposure on porcine GCs in vitro and found that OTA exposure inhibited the proliferation of porcine GCs and arrested cell cycle of GCs in the G2/M phase. The results based on RNA-Seq revealed that 20 μM and 40 μM OTA exposure increase DNA damage of porcine GCs in vitro. The differentially expressed genes (DEGs) of 40 μM OTA exposure were enriched in the pathways of mismatch repair, nucleotide excision repair and homologous recombination in DNA replication compared with control group and 20 μM OTA exposure group. Meanwhile, OTA exposure increased the expression levels of DNA double-strand breaks (DSBs) gene γ-H2AX, and DNA repair related genes, such as BRCA1, XRCC1, PARP1, and RAD51. Above all, our research revealed that OTA might exert deleterious effects on porcine ovarian GCs, influencing DNA repair-related biological processes and causing DNA damage response.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China; School of Public Health, Qingdao University, Qingdao 266034, China
| | - Li Kong
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Jia-Xing Hao
- Center for Reproductive Medicine, Qingdao Women's and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Han Wang
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Zi-Hui Yan
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Feng Sun
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
12
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
13
|
Xu R, Karrow NA, Shandilya UK, Sun LH, Kitazawa H. In-Vitro Cell Culture for Efficient Assessment of Mycotoxin Exposure, Toxicity and Risk Mitigation. Toxins (Basel) 2020; 12:E146. [PMID: 32120954 PMCID: PMC7150844 DOI: 10.3390/toxins12030146] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Mycotoxins are toxic secondary fungal metabolites that commonly contaminate crops and food by-products and thus, animal feed. Ingestion of mycotoxins can lead to mycotoxicosis in both animals and humans, and at subclinical concentrations may affect animal production and adulterate feed and animal by-products. Mycotoxicity mechanisms of action (MOA) are largely unknown, and co-contamination, which is often the case, raises the likelihood of mycotoxin interactions. Mitigation strategies for reducing the risk of mycotoxicity are diverse and may not necessarily provide protection against all mycotoxins. These factors, as well as the species-specific risk of toxicity, collectively make an assessment of exposure, toxicity, and risk mitigation very challenging and costly; thus, in-vitro cell culture models provide a useful tool for their initial assessment. Since ingestion is the most common route of mycotoxin exposure, the intestinal epithelial barrier comprised of epithelial cells (IECs) and immune cells such as macrophages, represents ground zero where mycotoxins are absorbed, biotransformed, and elicit toxicity. This article aims to review different in-vitro IEC or co-culture models that can be used for assessing mycotoxin exposure, toxicity, and risk mitigation, and their suitability and limitations for the safety assessment of animal foods and food by-products.
Collapse
Affiliation(s)
- Ran Xu
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.X.); (U.K.S.)
| | - Lv-hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan;
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
14
|
Wang J, Yang X, Han S, Zhang L. CEP131 knockdown inhibits cell proliferation by inhibiting the ERK and AKT signaling pathways in non-small cell lung cancer. Oncol Lett 2020; 19:3145-3152. [PMID: 32218865 PMCID: PMC7068694 DOI: 10.3892/ol.2020.11411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupted centrosome-associated family protein expression can result in the detrimental duplication of centrosomes, causing genomic instability and subsequent carcinogenesis. Limited research has demonstrated that centrosomal protein 131 (CEP131) exhibits oncogenic activity in osteosarcoma, hepatocellular carcinoma and breast cancer. The present study demonstrated that there is an association between CEP131 expression and advanced Tumor-Node-Metastasis stage (P=0.016), and positive regional lymph node metastasis (P=0.023) in 91 cases of non-small cell lung cancer. A549 and SPC-A-1 cells, with moderate expression levels of CEP131, were selected as representative cell lines. The results indicated that downregulation of CEP131 induced G1/S cell cycle arrest, inhibition of cyclins D1/E and cyclin-dependent kinases 2/4/6, and induction of inhibitory p21/p27, all of which are regulated by ERK and AKT signaling, suggesting that CEP131 exhibits potential as a novel target in the treatment of lung cancer.
Collapse
Affiliation(s)
- Junying Wang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Xiaoping Yang
- Department of Anesthesiology, Dalian Obstetrics and Gynecology Hospital, Dalian, Liaoning 116033, P.R. China
| | - Shixin Han
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Lizhi Zhang
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
15
|
Liu K, Lu R, Zhao Q, Du J, Li Y, Zheng M, Zhang S. Association and clinicopathologic significance of p38MAPK-ERK-JNK-CDC25C with polyploid giant cancer cell formation. Med Oncol 2019; 37:6. [PMID: 31734829 DOI: 10.1007/s12032-019-1330-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND We previously showed that cobalt chloride (CoCl2) induction of polyploid giant cancer cells (PGCCs) was characterized by abnormal cell cycle-related protein expression and G2/M arrest. The role of the p38MAPK-ERK-JNK signaling pathway in cell cycle regulation has been reported, but the mechanism by which p38MAPK-ERK-JNK regulates PGCCs formation remains unclear. This study examined p38MAPK-ERK-JNK-CDC25C expression in PGCCs and their daughter and control cells and assessed the clinicopathological significance of p38MAPK, ERK, JNK, and CDC25C expression in human ovarian and breast cancers. METHODS CoCl2 was used to induce the formation of PGCCs in HEY and BT-549 cells. Western blotting and immunocytochemical staining were used to compare the expression and subcellular localization of p38MAPK, ERK, JNK, and CDC25C in the control group and CDC25C knockdown before and after CoCl2 treatment. The specific combination of p38MAPK and ERK with pCDC25C-Ser216 was detected by immunoprecipitation. In addition, p38MAPK, ERK, JNK, and CDC25C immunohistochemical staining were performed to compare the clinicopathologic significances in 81 cases of ovarian cancer tissue, including 20 cases of primary breast cancer with lymph node metastasis (group I), and their corresponding metastatic lymph nodes (group II), 31 cases of primary breast cancer without metastasis (group III), and 10 cases of benign breast tumors (group IV). Breast tumor tissue from 229 was divided into two groups: 167 cases of primary invasive breast cancer (group 1) and 62 cases of lymph node metastatic breast cancer (group 2). RESULTS Compared to the control cells, p38MAPK and JNK expression were higher and CDC25C expression was lower in CoCl2-treated cells. Moreover, ERK displayed a trend of increased expression in HEY PGCCs and decreased expression in BT-549 PGCCs. p38MAPK and ERK regulated CDC25C by phosphorylating the CDC25C-Ser216 site and participated in the G2/M phase transition. Immunohistochemical (IHC) analysis of the ovarian tumor tissues showed significant positive staining rates of p38MAPK (P = 0.001), ERK (P = 0.002), JNK (P = 0.000), and CDC25C (P = 0.000) among the four groups. In breast tumor tissues, the overall expression in p38MAPK (P = 0.029), ERK (P = 0.002), JNK (P = 0.013), and CDC25C (P = 0.001) also differed significantly between the two groups. CONCLUSION The p38MAPK-ERK-JNK signaling pathway was involved in cell cycle progression and the formation of PGCCs by regulation of CDC25C.
Collapse
Affiliation(s)
- Kai Liu
- Graduate School, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Rui Lu
- Graduate School, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,Department of Pathology, Tianjin Nankai Hospital, Tianjin, People's Republic of China
| | - Qi Zhao
- Graduate School, Tianjin Medical University, Tianjin, 300070, People's Republic of China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Jiaxing Du
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People's Republic of China.,Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Yuwei Li
- Departments of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, People's Republic of China.
| |
Collapse
|
16
|
Zhang B, Zhu L, Dai Y, Li H, Huang K, Luo Y, Xu W. An in vitro attempt at precision toxicology reveals the involvement of DNA methylation alteration in ochratoxin A-induced G0/G1 phase arrest. Epigenetics 2019; 15:199-214. [PMID: 31314649 DOI: 10.1080/15592294.2019.1644878] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Precision toxicology evaluates the toxicity of certain substances by isolating a small group of cells with a typical phenotype of interest followed by a single cell sequencing-based analysis. In this in vitro attempt, ochratoxin A (OTA), a typical mycotoxin and food contaminant, is found to induce G0/G1 phase cell cycle arrest in human renal proximal tubular HKC cells at a concentration of 20 μM after a 24h-treatment. A small number of G0/G1 phase HKC cells are evaluated in both the presence and absence of OTA. These cells are sorted with a flow cytometer and subjected to mRNA and DNA methylation sequencing using Smart-Seq2 and single-cell reduced-representation bisulfite sequencing (scRRBS) technology, respectively. Integrated analysis of the transcriptome and methylome profiles reveals that OTA causes abnormal expression of the essential genes that regulate G1/S phase transition, act as signal transductors in G1 DNA damage checkpoints, and associate with the anaphase-promoting complex/cyclosome. The alteration of their DNA methylation status is a significant underlying epigenetic mechanism. Furthermore, Notch signaling and Ras/MAPK/CREB pathways are found to be suppressed by OTA. This attempt at precision toxicology paves the way for a deeper understanding of OTA toxicity and provides an innovative strategy to researchers in the toxicology and pharmacology field.
Collapse
Affiliation(s)
- Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Ministry of Agriculture, Beijing, China
| |
Collapse
|
17
|
Liu Y, Fan D. Ginsenoside Rg5 induces G2/M phase arrest, apoptosis and autophagy via regulating ROS-mediated MAPK pathways against human gastric cancer. Biochem Pharmacol 2019; 168:285-304. [PMID: 31301277 DOI: 10.1016/j.bcp.2019.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
Ginsenoside Rg5, a rare saponin belonging to the family of protopanaxadiol ginsenosides, has been demonstrated to have potential anti-tumor effects in various cancers. However, the effect of Rg5 on human gastric cancer and the underlying molecular mechanisms remain to be elucidated. In this study, Rg5 could suppress cell proliferation by causing G2/M phase arrest. Treatment with Rg5 could induce apoptosis through the extrinsic death receptor and intrinsic mitochondrial pathways. Autophagy induction was demonstrated by the formation of autophagosomes and autophagy-related proteins. Rg5-induced cell death was inhibited by the autophagy inhibitor 3-MA and apoptosis inhibitor Z-VAD-FMK. Moreover, the suppression of apoptosis weakened Rg5-induced autophagy, while the inhibition of autophagy attenuated Rg5-induced apoptosis. Further studies revealed that Rg5 induced ROS production and activated MAPK signaling pathways. The ROS scavenger NAC markedly diminished G2/M arrest, apoptosis, autophagy and activation of MAPK pathways induced by Rg5. The p38 inhibitor SB203580 or knockdown of p38 by siRNA clearly reversed Rg5-induced apoptosis and G2/M arrest. The JNK inhibitor SP600125 or knockdown of JNK by siRNA markedly attenuated Rg5-induced G2/M arrest, apoptosis and autophagy. The inhibition of ERK inhibitor U0126 or knockdown of ERK by siRNA clearly restored Rg5-induced apoptosis and autophagy. Finally, Rg5 significantly suppressed the growth of xenograft gastric tumors with fewer side effects. Overall, the evidence suggested that Rg5 is a novel and promising strategy for the treatment of gastric cancer owing to its high efficacy, multiple mechanisms and fewer side effects.
Collapse
Affiliation(s)
- Yannan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Reserch Institute, Northwest University, Taibai North Road 229, Xi'an 710069 Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 North Taibai Road, Xi'an, Shaanxi 710069, China; Biotech. & Biomed. Reserch Institute, Northwest University, Taibai North Road 229, Xi'an 710069 Shaanxi, China.
| |
Collapse
|
18
|
Wang H, Li H, Chen X, Huang K. ERK1/2-mediated autophagy is essential for cell survival under Ochratoxin A exposure in IPEC-J2 cells. Toxicol Appl Pharmacol 2018; 360:38-44. [DOI: 10.1016/j.taap.2018.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 01/29/2023]
|
19
|
Hou L, Zhou X, Gan F, Liu Z, Zhou Y, Qian G, Huang K. Combination of Selenomethionine and N-Acetylcysteine Alleviates the Joint Toxicities of Aflatoxin B1 and Ochratoxin A by ERK MAPK Signal Pathway in Porcine Alveolar Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5913-5923. [PMID: 29799741 DOI: 10.1021/acs.jafc.8b01858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our previous studies showed that aflatoxin B1 (AFB1) and ochratoxin A (OTA) could trigger joint immune toxicity. Little is known about the combined effects of selenomethionine (SeMet) and N-acetylcysteine (NAC) on the joint toxicities of the two toxins. In this study, results showed that SeMet or NAC alone or in combination significantly alleviated the downswing of cell viability, glutathione production, and phagorytosis induced by AFB1 and OTA in porcine alveolar macrophages. The uptrend of lactate dehydrogenase activities, apoptosis, reactive oxygen species levels, and the relative mRNA of inflammatory cytokines triggered by the two toxins was decreased. Combination of them was more effective than single application. Knockdown of p38, c-JUN N-terminal kinase (JNK), or extracellular signal-regulated kinase (ERK) via use of the corresponding specific siRNA could alleviate the joint toxicities of AFB1 and OTA. However, the ERK but not p38 or JNK pathway was involved in the protection of SeMet and NAC against the immunotoxicity. In conclusion, combination of SeMet and NAC might be a new therapeutic orientation for preventing the joint toxicities induced by AFB1 and OTA.
Collapse
Affiliation(s)
- Lili Hou
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Xuan Zhou
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Fang Gan
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Zixuan Liu
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Yajiao Zhou
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Gang Qian
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| | - Kehe Huang
- College of Veterinary Medicine , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls , Nanjing Agricultural University , Nanjing 210095 , Jiangsu Province , China
| |
Collapse
|
20
|
Cui J, Wang J, Huang S, Jiang X, Li Y, Wu W, Zhang X. The G2 phase arrest induced by sterigmatocystin is dependent on hMLH1- ERK/p38-p53 pathway in human esophageal epithelium cells in vitro. Food Chem Toxicol 2018; 115:205-211. [DOI: 10.1016/j.fct.2018.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 01/12/2023]
|
21
|
Zhang X, Zheng Q, Wang C, Zhou H, Jiang G, Miao Y, Zhang Y, Liu Y, Li Q, Qiu X, Wang E. CCDC106 promotes non-small cell lung cancer cell proliferation. Oncotarget 2018; 8:26662-26670. [PMID: 28460455 PMCID: PMC5432287 DOI: 10.18632/oncotarget.15792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/16/2017] [Indexed: 12/24/2022] Open
Abstract
Coiled-coil domain containing (CCDC) family members enhance tumor cell proliferation, and high CCDC protein levels correlate with unfavorable prognoses. Limited research demonstrated that CCDC106 may promote the degradation of p53/TP53 protein and inhibit its transactivity. The present study demonstrated that CCDC106 expression correlates with advanced TNM stage (P = 0.008), positive regional lymph node metastasis (P < 0.001), and poor overall survival (P < 0.001) in 183 non-small cell lung cancer cases. A549 and H1299 cells were selected as representative of CCDC106-low and CCDC106-high expressing cell lines, respectively. CCDC106 overexpression promoted A549 cell proliferation and xenograft tumor growth in nude mice, while siRNA-mediated CCDC106 knockdown inhibited H1299 cell proliferation. CCDC106 promoted AKT phosphorylation and upregulated the cell cycle-regulating proteins Cyclin A2 and Cyclin B1. Cell proliferation promoted by CCDC106 via Cyclin A2 and Cyclin B1 was rescued by treatment with the AKT inhibitor, LY294002. Our studies revealed that CCDC106 is associated with non-small cell lung cancer progression and unfavorable prognosis. CCDC106 enhanced Cyclin A2 and Cyclin B1 expression and promoted A549 and H1299 cell proliferation, which depended on AKT signaling. These results suggest that CCDC106 may be a novel target for lung cancer treatment.
Collapse
Affiliation(s)
- Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qin Zheng
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Chen Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Haijing Zhou
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Guiyang Jiang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yuan Miao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Enhua Wang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, China.,Department of Pathology, First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
22
|
Peng Q, Deng Z, Pan H, Gu L, Liu O, Tang Z. Mitogen-activated protein kinase signaling pathway in oral cancer. Oncol Lett 2017; 15:1379-1388. [PMID: 29434828 DOI: 10.3892/ol.2017.7491] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2017] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is associated with tumor cell proliferation, differentiation, apoptosis, angiogenesis, invasion and metastasis. The present review assesses the involvement of the MAPK signaling pathway in oral cancer progression and invasion based on analysis of individual sub-pathways and their mechanisms of action. The regulation of this pathway for targeted oral cancer therapy is explored and the challenges confronting this, as well as corresponding potential solutions, are discussed. Exploring this pathway with an emphasis on its components, subfamilies, sub-pathways, interactions with other pathways and clinical practice modes may improve oral cancer treatment.
Collapse
Affiliation(s)
- Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiyuan Deng
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hao Pan
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liqun Gu
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ousheng Liu
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
23
|
Gan F, Hou L, Zhou Y, Liu Y, Huang D, Chen X, Huang K. Effects of ochratoxin A on ER stress, MAPK signaling pathway and autophagy of kidney and spleen in pigs. ENVIRONMENTAL TOXICOLOGY 2017; 32:2277-2286. [PMID: 28699257 DOI: 10.1002/tox.22443] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/18/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Ochratoxin A (OTA), a worldwide mycotoxin found in food and feeds, is a potent nephrotoxin and immunotoxin in animals and humans. This research was conducted to evaluate whether endoplasmic reticulum (ER) stress, MAPK signaling pathway and autophagy were induced by OTA in kidney and spleen of pigs. Twenty-seven crossbred pigs randomly allocated to 3 groups were fed for 42 days ad libitum a basal diet without (Con group, 0.00 μg OTA/kg) and with supplementation of OTA at 400 (OTA-L group) and 800 μg/kg (OTA-H group). From each group, 6 pigs were randomly selected for blood collection on days 0, 21, and 42 and 3 pigs were randomly selected for tissue collection on day 42. The results showed that OTA at 400 and 800 μg/kg diets significantly increased OTA concentrations in serum and kidney and spleen induced the histopathological lesions of kidney and spleen, decreased TCR-stimulated T lymphocyte viabilities and IL-2 concentration, increased TNF-α concentration, and decreased T-AOC levels. OTA increased glucose regulated protein 78, p38, and ERK1/2 phosphorylation, and LC3 II and Atg5 protein expression in kidney and spleen of pigs. These results provide new insights into the relationship between OTA and ER stress, p38 and ERK1/2 MAPK signaling pathway and autophagy in pigs.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yajiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Da Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
- Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| |
Collapse
|
24
|
Gan F, Zhou Y, Hou L, Qian G, Chen X, Huang K. Ochratoxin A induces nephrotoxicity and immunotoxicity through different MAPK signaling pathways in PK15 cells and porcine primary splenocytes. CHEMOSPHERE 2017; 182:630-637. [PMID: 28527416 DOI: 10.1016/j.chemosphere.2017.05.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/26/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Ochratoxin A (OTA) is reported to be a potent nephrotoxin and immunotoxin in animals and humans. However, the mechanisms underlying OTA toxicity have not been clearly determined until now. Toxicity of OTA and its mechanism was investigated in PK15 cells and in porcine primary splenocytes. The results showed that OTA at 2.0-8.0 μg/mL for 24 h induced cytotoxicity and apoptosis in a dose-dependent manner in PK 15 cells. OTA at 0.5-4.0 μg/mL for 24 h induced cytotoxicity and apoptosis in a dose-dependent manner in porcine primary splenocytes. In addition, OTA induced p38 and ERK1/2 phosphorylation both in PK15 cells and porcine primary splenocytes. Knock-down of p38 instead of ERK by their specific siRNA significantly eliminated the nephrotoxicity induced by OTA. Contrary, knock-down of ERK1/2 instead of p38 by their specific siRNA significantly eliminated the immunotoxicity induced by OTA. The observed effects indicate that OTA induced nephrotoxicity by p38 signaling pathway in PK15 cells and immunotoxicity by ERK signaling pathway in porcine primary splenocytes.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yaojiao Zhou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
25
|
Yin S, Liu X, Fan L, Hu H. Mechanisms of cell death induction by food-borne mycotoxins. Crit Rev Food Sci Nutr 2017; 58:1406-1417. [DOI: 10.1080/10408398.2016.1260526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Xiaoyi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, National Engineering Research Center for Fruit and Vegetable Processing, Beijing, China, Haidian District, Beijing, China
| |
Collapse
|
26
|
Effect of heme oxygenase-1 on ochratoxin A-induced nephrotoxicity in mice. Int J Biochem Cell Biol 2017; 84:46-57. [DOI: 10.1016/j.biocel.2017.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 11/19/2022]
|
27
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|
28
|
Gan F, Zhang Z, Hu Z, Hesketh J, Xue H, Chen X, Hao S, Huang Y, Cole Ezea P, Parveen F, Huang K. Ochratoxin A promotes porcine circovirus type 2 replication in vitro and in vivo. Free Radic Biol Med 2015; 80:33-47. [PMID: 25542137 PMCID: PMC7126689 DOI: 10.1016/j.freeradbiomed.2014.12.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022]
Abstract
Ochratoxin A (OTA), a worldwide mycotoxin found in food and feeds, is a potent nephrotoxin in animals and humans. Porcine circovirus-associated disease (PCVAD), including porcine dermatitis and nephropathy syndrome, is a worldwide swine disease. To date, little is known concerning the relationship between OTA and porcine circovirus type 2 (PCV2), the primary causative agent of PCVAD. The effects of OTA on PCV2 replication and their mechanisms were investigated in vitro and in vivo. The results in vitro showed that low doses of OTA significantly increased PCV2 DNA copies and the number of infected cells. Maximum effects were observed at 0.05 μg/ml OTA. The results in vivo showed that PCV2 replication was significantly increased in serum and tissues of pigs fed 75 μg/kg OTA compared with the control group and pigs fed 150 μg/kg OTA. In addition, low doses of OTA significantly depleted reduced glutathione and mRNA expression of NF-E2-related factor 2 and γ-glutamylcysteine synthetase; increased reactive oxygen species, oxidants, and malondialdehyde; and induced p38 and ERK1/2 phosphorylation in PK15 cells. Adding N-acetyl-L-cysteine reversed the changes induced by OTA. Knockdown of p38 and ERK1/2 by their respective specific siRNAs or inhibition of p38 and ERK1/2 phosphorylation by their respective inhibitors (SB203580 and U0126) eliminated the increase in PCV2 replication induced by OTA. These data indicate that low doses of OTA promoted PCV2 replication in vitro and in vivo via the oxidative stress-mediated p38/ERK1/2 MAPK signaling pathway. This suggests that low doses of OTA are potentially harmful to animals, as they enhance virus replication, and partly explains why the morbidity and severity of PCVAD vary significantly in different pig farms.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zheqian Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Zhihua Hu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - John Hesketh
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hongxia Xue
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Shu Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yu Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Patience Cole Ezea
- Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Fahmida Parveen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
29
|
Liu W, Ning R, Chen RN, Huang XF, Dai QS, Hu JH, Wang YW, Wu LL, Xiong J, Hu G, Guo QL, Yang J, Wang H. Aspafilioside B induces G2/M cell cycle arrest and apoptosis by up-regulating H-Ras and N-Ras via ERK and p38 MAPK signaling pathways in human hepatoma HepG2 cells. Mol Carcinog 2015; 55:440-57. [PMID: 25683703 DOI: 10.1002/mc.22293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 01/28/2023]
Abstract
We recently establish that aspafilioside B, a steroidal saponin extracted from Asparagus filicinus, is an active cytotoxic component. However, its antitumor activity is till unknown. In this study, the anticancer effect of aspafilioside B against HCC cells and the underlying mechanisms were investigated. Our results showed that aspafilioside B inhibited the growth and proliferation of HCC cell lines. Further study revealed that aspafilioside B could significantly induce G2 phase cell cycle arrest and apoptosis, accompanying the accumulation of reactive oxygen species (ROS), but blocking ROS generation with N-acetyl-l-cysteine (NAC) could not prevent G2/M arrest and apoptosis. Additionally, treatment with aspafilioside B induced phosphorylation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase. Moreover, both ERK inhibitor PD98059 and p38 inhibitor SB203580 almost abolished the G2/M phase arrest and apoptosis induced by aspafilioside B, and reversed the expression of cell cycle- and apoptosis-related proteins. We also found that aspafilioside B treatment increased both Ras and Raf activation, and transfection of cells with H-Ras and N-Ras shRNA almost attenuated aspafilioside B-induced G2 phase arrest and apoptosis as well as the ERK and p38 activation. Finally, in vivo, aspafilioside B suppressed tumor growth in mouse xenograft models, and the mechanism was the same as in vitro study. Collectively, these findings indicated that aspafilioside B may up-regulate H-Ras and N-Ras, causing c-Raf phosphorylation, and lead to ERK and p38 activation, which consequently induced the G2 phase arrest and apoptosis. This study provides the evidence that aspafilioside B is a promising therapeutic agent against HCC.
Collapse
Affiliation(s)
- Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Rui Ning
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Rui-Ni Chen
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Xue-Feng Huang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Qin-Sheng Dai
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Jin-Hua Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yu-Wen Wang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Li-Li Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Qing-Long Guo
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hao Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
30
|
Liang R, Shen XL, Zhang B, Li Y, Xu W, Zhao C, Luo Y, Huang K. Apoptosis signal-regulating kinase 1 promotes Ochratoxin A-induced renal cytotoxicity. Sci Rep 2015; 5:8078. [PMID: 25627963 PMCID: PMC5389036 DOI: 10.1038/srep08078] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/05/2015] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress and apoptosis are involved in Ochratoxin A (OTA)-induced renal cytotoxicity. Apoptosis signal-regulating kinase 1 (ASK1) is a Mitogen-Activated Protein Kinase Kinase Kinase (MAPKKK, MAP3K) family member that plays an important role in oxidative stress-induced cell apoptosis. In this study, we performed RNA interference of ASK1 in HEK293 cells and employed an iTRAQ-based quantitative proteomics approach to globally investigate the regulatory mechanism of ASK1 in OTA-induced renal cytotoxicity. Our results showed that ASK1 knockdown alleviated OTA-induced ROS generation and Δψm loss and thus desensitized the cells to OTA-induced apoptosis. We identified 33 and 24 differentially expressed proteins upon OTA treatment in scrambled and ASK1 knockdown cells, respectively. Pathway classification and analysis revealed that ASK1 participated in OTA-induced inhibition of mRNA splicing, nucleotide metabolism, the cell cycle, DNA repair, and the activation of lipid metabolism. We concluded that ASK1 plays an essential role in promoting OTA-induced renal cytotoxicity.
Collapse
Affiliation(s)
- Rui Liang
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Xiao Li Shen
- 1] Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China [2] School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Boyang Zhang
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Yuzhe Li
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Wentao Xu
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Changhui Zhao
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - YunBo Luo
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| | - Kunlun Huang
- Laboratory of food safety and molecular biology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P.R. China
| |
Collapse
|
31
|
Gu Y, Chen X, Shang C, Singh K, Barzegar M, Mahdavian E, Salvatore BA, Jiang S, Huang S. Fusarochromanone induces G1 cell cycle arrest and apoptosis in COS7 and HEK293 cells. PLoS One 2014; 9:e112641. [PMID: 25384025 PMCID: PMC4226581 DOI: 10.1371/journal.pone.0112641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/09/2014] [Indexed: 11/19/2022] Open
Abstract
Fusarochromanone (FC101), a mycotoxin produced by the fungus Fusarium equiseti, is frequently observed in the contaminated grains and feedstuffs, which is toxic to animals and humans. However, the underlying molecular mechanism remains to be defined. In this study, we found that FC101 inhibited cell proliferation and induced cell death in COS7 and HEK293 cells in a concentration-dependent manner. Flow cytometric analysis showed that FC101 induced G1 cell cycle arrest and apoptosis in the cells. Concurrently, FC101 downregulated protein expression of cyclin D1, cyclin-dependent kinases (CDK4 and CDK6), and Cdc25A, and upregulated expression of the CDK inhibitors (p21Cip1 and p27Kip1), resulting in hypophosphorylation of Rb. FC101 also inhibited protein expression of Bcl-2, Bcl-xL, Mcl-1 and survivin, and induced expression of BAD, leading to activation of caspase 3 and cleavage of PARP, indicating caspase-dependent apoptosis. However, Z-VAD-FMK, a pan-caspase inhibitor, only partially prevented FC101-induced cell death, implying that FC101 may induce cell death through both caspase-dependent and -independent mechanisms. Our results support the notion that FC101 executes its toxicity at least by inhibiting cell proliferation and inducing cell death.
Collapse
Affiliation(s)
- Ying Gu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Xin Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Chaowei Shang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Karnika Singh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Mansoureh Barzegar
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Elahe Mahdavian
- Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana, United States of America
| | - Brian A. Salvatore
- Department of Chemistry and Physics, Louisiana State University, Shreveport, Louisiana, United States of America
| | - Shanxiang Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, P. R. China
- * E-mail: (SH); (SJ)
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail: (SH); (SJ)
| |
Collapse
|
32
|
Rumora L, Domijan AM, Žanić Grubišić T, Šegvić Klarić M. Differential activation of MAPKs by individual and combined ochratoxin A and citrinin treatments in porcine kidney PK15 cells. Toxicon 2014; 90:174-83. [DOI: 10.1016/j.toxicon.2014.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/24/2022]
|
33
|
Ochratoxin A activates opposing c-MET/PI3K/Akt and MAPK/ERK 1-2 pathways in human proximal tubule HK-2 cells. Arch Toxicol 2014; 89:1313-27. [PMID: 25002221 DOI: 10.1007/s00204-014-1311-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/01/2014] [Indexed: 12/17/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced as a secondary metabolite by filamentous fungi, such as Aspergillus and Penicillium. Because OTA is a common contaminant of food and feeds, humans and animals are frequently exposed to OTA in daily life. It has been classified as a carcinogen in rodents and a possible carcinogen in humans. OTA has been shown to deregulate a variety of different signal transduction pathways in a cell type- and dosage-depending manner resulting in contrasting physiological effects, such as survival or cell death. While the ERK1-2 and JNK/SAPK MAPK pathways are major targets, knowledge about their role in OTA-mediated cell survival and death is fragmented. Similarly, the contribution of the PI3K/Akt pathway to the carcinogenic effect of OTA in proximal tubule cells has not been elucidated in detail. In this study, we demonstrated that OTA induced sustained activation of the PI3K/Akt and MEK/ERK1-2 signaling pathways in a dose- and time-dependent manner in HK-2 cells. Chemical inhibition of ERK1-2 activation or overexpression of dominant-negative and kinase-dead MEK1 leads to increased cell viability and decreased apoptosis in OTA-treated cells. Blockage of PI3K/Akt with Wortmannin aggravated the negative effect of OTA on cell viability and increased the levels of apoptosis. Moreover, we identified the c-MET proto-oncogene as an upstream receptor tyrosine kinase responsible for OTA-induced activation of PI3K/Akt signaling in HK-2 cells. Our data suggest that OTA may potentiate carcinogenesis by sustained activation of c-MET/PI3K/Akt signaling through suppression of apoptosis induced by MEK/ERK1-2 activation in damaged renal proximal tubule epithelial cells.
Collapse
|
34
|
Zhang Y, Zheng K, Yan H, Jin G, Shao C, Zhou X, Zhou Y, He T. Growth inhibition and apoptosis induced by 6-fluoro-3-formylchromone in hepatocellular carcinoma. BMC Gastroenterol 2014; 14:62. [PMID: 24708487 PMCID: PMC4005831 DOI: 10.1186/1471-230x-14-62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/19/2014] [Indexed: 11/17/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in human population. The 6-fluoro-3-formylchromone (FCC) has been shown to have anti-tumor activity against various tumor cells. However, the effects of FCC on HCC cell lines have not yet been reported. This study aims to research the effects of FCC on HCC and advance the understanding of the molecular mechanism. Methods HCC cell line SMMC-7721 was treated with FCC at various concentrations (0, 2, 5, 10, and 20 μg/ml) for 24, 48 and 72 h, respectively. The proliferations of SMMC-7721 cells were measured by MTT assays. After cultured 24 hours, cell cycle distribution and apoptosis were determined by flow cytometry. However, the expression levels of PCNA, Bax and Bcl-2 were measured by western blotting after 48 hours. Results FCC displayed a dose- and time-dependent inhibition of the SMMC-7721 cell proliferations in vitro. It also induced apoptosis with 45.4% and caused cell accumulation in G0/G1 phase with 21.5%. PCNA and Bcl-2 expression was significantly suppressed by FCC in a dose-dependent manner (P < 0.05), while Bax expression was increased. Conclusions FCC could significantly inhibit HCC cell growth in vitro through cell cycle arrest and inducing apoptosis by suppressing PCNA expression and modulating the Bax/Bcl-2 ratio.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianlin He
- Department of General Surgery, Changhai Hospital, No,168 Changhai Road, Shanghai, Yangpu District 200433, China.
| |
Collapse
|
35
|
Impairment of cell cycle progression by sterigmatocystin in human pulmonary cells in vitro. Food Chem Toxicol 2014; 66:89-95. [DOI: 10.1016/j.fct.2014.01.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/11/2014] [Accepted: 01/14/2014] [Indexed: 01/11/2023]
|
36
|
Downregulation of Rad51 participates in OTA-induced DNA double-strand breaks in GES-1 cells in vitro. Toxicol Lett 2014; 226:214-21. [PMID: 24525463 DOI: 10.1016/j.toxlet.2014.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/24/2014] [Accepted: 02/03/2014] [Indexed: 11/23/2022]
Abstract
Ochratoxin A (OTA), a mycotoxin produced by ubiquitous Aspergilli, is carcinogenic, teratogenic, and nephrotoxic in both humans and animals. Our previous study found that OTA induced DNA double-strand breaks (DSBs) and resulted in G2 phase arrest in human gastric epithelium immortalized (GES-1) cells. DSBs can cause genomic instability, mutations, and neoplastic transformations, and improper repair of DSBs may lead to the development of cancer. Rad51 is a key protein in the homologous recombination (HR) pathway of DSBs repair. The roles of Rad51 in the repair of DNA damage vary in response to different types of cytotoxic agents. The effect of OTA on Rad51 expression and its putative role in the OTA-induced DSBs in GES-1 cells are still not clear enough. The aim of the current study is to elucidate the role of Rad51 in OTA-induced DSBs in GES-1 cells. The results showed that OTA treatment decreased Rad51 expression in a dose- and time-dependent manner. Specific downregulation of Rad51 by siRNA induced DSBs and G2 phase arrest. Rad51 overexpression by transfection with a Rad51-expressing plasmid partly rescued the DSBs and G2 phase arrest in OTA-treated cells. The findings indicate that downregulation of Rad51 contributes to OTA-induced DNA damage in GES-1 cells. Knockdown of p53 with siRNA for 48h effectively reversed the downregulation of Rad51, and decreased the OTA-induced DSBs in GES-1 cells. In addition, the downregulation of Rad51 induced by OTA could be significantly attenuated with specific ERK inhibitor PD98059 or specific p38 MAPK inhibitor SB203580 pre-treatment in GES-1 cells. Thus, the results suggest that downregulation of Rad51 participates in OTA-induced DNA double-strand breaks in GES-1 cells in vitro. And p53, ERK and p38 signaling pathways are all involved in the process.
Collapse
|
37
|
Cui J, Liu J, Wu S, Wang Y, Shen H, Xing L, Wang J, Yan X, Zhang X. Oxidative DNA damage is involved in ochratoxin A-induced G2 arrest through ataxia telangiectasia-mutated (ATM) pathways in human gastric epithelium GES-1 cells in vitro. Arch Toxicol 2013; 87:1829-40. [PMID: 23515941 DOI: 10.1007/s00204-013-1043-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 03/08/2013] [Indexed: 01/17/2023]
Abstract
Ochratoxin A (OTA), one of the most abundant mycotoxin food contaminants, is classified as "possibly carcinogenic to humans." Our previous study showed that OTA could induce a G2 arrest in immortalized human gastric epithelium cells (GES-1). To explore the putative roles of oxidative DNA damage and the ataxia telangiectasia-mutated (ATM) pathways on the OTA-induced G2 arrest, the current study systematically evaluated the roles of reactive oxygen species (ROS) production, DNA damage, and ATM-dependent pathway activation on the OTA-induced G2 phase arrest in GES-1 cells. The results showed that OTA exposure elevated intracellular ROS production, which directly induced DNA damage and increased the levels of 8-OHdG and DNA double-strand breaks (DSBs). In addition, it was found that OTA treatment induced the phosphorylation of the ATM protein, as well as its downstream molecules Chk2 and p53, in response to DNA DSBs. Inhibition of ATM by the pharmacological inhibitor caffeine or siRNA effectively prevented the activation of ATM-dependent pathways and rescued the G2 arrest elicited by OTA. Finally, pretreatment with the antioxidant N-acetyl-L-cysteine (NAC) reduced the OTA-induced DNA DSBs, ATM phosphorylation, and G2 arrest. In conclusion, the results of this study suggested that OTA-induced oxidative DNA damage triggered the ATM-dependent pathways, which ultimately elicited a G2 arrest in GES-1 cells.
Collapse
Affiliation(s)
- Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, No. 215, Heping Western Road, Shijiazhuang, Hebei, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tseng HL, Li CJ, Huang LH, Chen CY, Tsai CH, Lin CN, Hsu HY. Quercetin 3-O-methyl ether protects FL83B cells from copper induced oxidative stress through the PI3K/Akt and MAPK/Erk pathway. Toxicol Appl Pharmacol 2012; 264:104-13. [DOI: 10.1016/j.taap.2012.07.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022]
|
39
|
Poór M, Kunsági-Máté S, Czibulya Z, Li Y, Peles-Lemli B, Petrik J, Vladimir-Knežević S, Kőszegi T. Fluorescence spectroscopic investigation of competitive interactions between ochratoxin A and 13 drug molecules for binding to human serum albumin. LUMINESCENCE 2012; 28:726-33. [PMID: 22987806 DOI: 10.1002/bio.2423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 11/11/2022]
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin found worldwide in cereals, foods, animal feeds and different drinks. Based on previous studies, OTA is one of the major causes of the chronic tubulointerstitial nephropathy known as Balkan endemic nephropathy (BEN) and exerts several other adverse effects shown by cell and/or animal models. It is a well-known fact that OTA binds to various albumins with very high affinity. Recently, a few studies suggested that reducing the bound fraction of OTA might reduce its toxicity. Hypothetically, certain drugs can be effective competitors displacing OTA from its albumin complex. Therefore, we examined 13 different drug molecules to determine their competing abilities to displace OTA from human serum albumin (HSA). Competitors and ineffective chemicals were identified with a steady-state fluorescence polarization-based method. After characterization the competitive abilities of individual drugs, drug pairs were formed and their displacing activity were tested in OTA-HSA system. Indometacin, phenylbutazone, warfarin and furosemide showed the highest competing capacity but ibuprofen, glipizide and simvastatin represented detectable interaction too. Investigations of drug pairs raised the possibility of the presence of diverse binding sites of competing drugs. Apart from the chemical information obtained in our model, this explorative research might initiate future designs for epidemiologic studies to gain further in vivo evidence of long-term (potentially protective) effects of competing drugs administered to human patients.
Collapse
Affiliation(s)
- Miklós Poór
- Institute of Laboratory Medicine, University of Pécs, H-7624, Pécs, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bio-guided isolation of the cytotoxic terpenoids from the roots of Euphorbia kansui against human normal cell lines L-O2 and GES-1. Int J Mol Sci 2012; 13:11247-11259. [PMID: 23109850 PMCID: PMC3472742 DOI: 10.3390/ijms130911247] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/23/2022] Open
Abstract
The dried roots of Euphorbia kansui (kansui) have been used for centuries in China as a herbal medicine for edema, ascites, and asthma. The 95% ethanol extract showed a significant inhibition of cell proliferation against human normal cell lines L-O2 and GES-1. Bioassay-guided separation of the 95% ethanol extract from the roots of E. kansui led to the isolation of 12 diverse terpenoids whose structures were identified by 1H, 13C NMR spectroscopy and ESI-MS as kansuinine A (1), kansuinine B (2), kansuinine C (3), kansuiphorin C (4), 3-O-(2′E,4′Z-decadienoyl)-20-O-acetylingenol (5), 3-O-(2′E,4′Edecadienoyl)-20-O-acetylingenol (6), 3-O-(2′E,4′Z-decadienoyl)-20-deoxyingenol (7), 3-O-benzoyl-20-deoxyingenol (8), 5-O-benzoyl-20-deoxyingenol (9), kansenone (10), epi-kansenone (11), euphol (12). All these 12 terpernoids were evaluated in vitro for cytotoxicity on L-O2 and GES-1 cell lines. Most ingenane-type diterpenoids and 8-ene-7-one triterpenoids (5–11) exhibited a relatively lower IC50 value; therefore, these compounds had stronger cytotoxicity against human normal cell lines L-O2 and GES-1 with dose-dependent relationships. These results will be significantly helpful to reveal the mechanism of toxicity of kansui and to effectively guide safer clinical application of this herb.
Collapse
|