1
|
Suseela MNL, Viswanadh MK, Mehata AK, Priya V, Setia A, Malik AK, Gokul P, Selvin J, Muthu MS. Advances in solid-phase extraction techniques: Role of nanosorbents for the enrichment of antibiotics for analytical quantification. J Chromatogr A 2023; 1695:463937. [PMID: 37019063 DOI: 10.1016/j.chroma.2023.463937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/18/2023] [Indexed: 04/05/2023]
Abstract
Antibiotics are life-saving medications for treating bacterial infections; however it has been discovered that resistance developed by bacteria against these incredible agents is the primary contributing factor to rising global mortality rates. The fundamental cause of the emergence of antibiotic resistance in bacteria is the presence of antibiotic residues in various environmental matrices. Although antibiotics are present in diluted form in environmental matrices like water, consistent exposure of bacteria to these minute levels is enough for the resistance to develop. So, identifying these tiny concentrations of numerous antibiotics in various and complicated matrices will be a crucial step in controlling their disposal in those matrices. Solid phase extraction, a popular and customizable extraction technology, was developed according to the aspirations of the researchers. It is a unique alternative technique that could be implemented either alone or in combination with other approaches at different stages because of the multitude of sorbent varieties and techniques. Initially, sorbents are utilized for extraction in their natural state. The basic sorbent has been modified over time with nanoparticles and multilayer sorbents, which have indeed helped to accomplish the desired extraction efficiencies. Among the current traditional extraction techniques such as liquid-liquid extraction, protein precipitation, and salting out techniques, solid-phase extractions (SPE) with nanosorbents are most productive because, they can be automated, selective, and can be integrated with other extraction techniques. This review aims to provide a broad overview of advancements and developments in sorbents with a specific emphasis on the applications of SPE techniques used for antibiotic detection and quantification in various matrices in the last two decades.
Collapse
Affiliation(s)
| | - Matte Kasi Viswanadh
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, AP 522302, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Patharaj Gokul
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry 605014, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
2
|
Chavarria-Pizarro T, Resl P, Kuhl-Nagel T, Janjic A, Fernandez Mendoza F, Werth S. Antibiotic-Induced Treatments Reveal Stress-Responsive Gene Expression in the Endangered Lichen Lobaria pulmonaria. J Fungi (Basel) 2022; 8:jof8060625. [PMID: 35736108 PMCID: PMC9225190 DOI: 10.3390/jof8060625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Antibiotics are primarily found in the environment due to human activity, which has been reported to influence the structure of biotic communities and the ecological functions of soil and water ecosystems. Nonetheless, their effects in other terrestrial ecosystems have not been well studied. As a result of oxidative stress in organisms exposed to high levels of antibiotics, genotoxicity can lead to DNA damage and, potentially, cell death. In addition, in symbiotic organisms, removal of the associated microbiome by antibiotic treatment has been observed to have a big impact on the host, e.g., corals. The lung lichen Lobaria pulmonaria has more than 800 associated bacterial species, a microbiome which has been hypothesized to increase the lichen's fitness. We artificially exposed samples of L. pulmonaria to antibiotics and a stepwise temperature increase to determine the relative effects of antibiotic treatments vs. temperature on the mycobiont and photobiont gene expression and the viability and on the community structure of the lichen-associated bacteria. We found that the mycobiont and photobiont highly reacted to different antibiotics, independently of temperature exposure. We did not find major differences in bacterial community composition or alpha diversity between antibiotic treatments and controls. For these reasons, the upregulation of stress-related genes in antibiotic-treated samples could be caused by genotoxicity in L. pulmonaria and its photobiont caused by exposure to antibiotics, and the observed stress responses are reactions of the symbiotic partners to reduce damage to their cells. Our study is of great interest for the community of researchers studying symbiotic organisms as it represents one of the first steps to understanding gene expression in an endangered lichen in response to exposure to toxic environments, along with dynamics in its associated bacterial communities.
Collapse
Affiliation(s)
- Tania Chavarria-Pizarro
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Correspondence: (T.C.-P.); (S.W.)
| | - Philipp Resl
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010 Graz, Austria;
| | - Theresa Kuhl-Nagel
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute for Network Biology (INET), Ingolstädter Landstraße 1, 85764 Neuherberg, Germany;
| | - Aleksandar Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Großhaderner Straße 2-4, 82152 Planegg-Martinsried, Germany;
| | | | - Silke Werth
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, LMU Munich, Menzingerstraße 67, 80638 Munich, Germany;
- Correspondence: (T.C.-P.); (S.W.)
| |
Collapse
|
3
|
Ni Y, Hu L, Yang S, Ni L, Ma L, Zhao Y, Zheng A, Jin Y, Fu Z. Bisphenol A impairs cognitive function and 5-HT metabolism in adult male mice by modulating the microbiota-gut-brain axis. CHEMOSPHERE 2021; 282:130952. [PMID: 34082316 DOI: 10.1016/j.chemosphere.2021.130952] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/25/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol A (BPA) has been found to promote hepatotoxicity, reproductive toxicity, and developmental toxicity. However, the neurotoxicity and mechanism of BPA on cognitive function are still unclear. To that end, eight-week-old adult male and female C57BL/6J mice were exposed to 0.05, 0.5, 5, and 50 mg/kg BPA by dietary supplementation for 22 weeks. BPA exposure impaired learning and memory in male mice, associated with increased neuroinflammation and damaged blood-brain barrier. BPA exposure reduced the tight junctions in the colon, resulting in dysfunction of the gut barrier. The levels of neurotransmitters in the serum, hippocampus, and colon of male mice, including tryptophan, 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid, were all decreased by BPA, together with reduced expression of tryptophan and 5-HT metabolism-related genes. Cecal microbiota analysis revealed that the diversity and composition of the microbiota in male mice were markedly altered by BPA, leading to functional profile changes in the microbial community. These results suggest that the neurotoxicity of BPA in male mice may be partly regulated by the interactions of the microbiota-gut-brain axis. However, BPA has little effect on the cognitive function in female mice, which might be caused by the microbial differences and the role of estrogen receptors.
Collapse
Affiliation(s)
- Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Luting Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Song Yang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Liyang Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Lingyan Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yufeng Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Aqian Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, China.
| |
Collapse
|
4
|
Neha R, Adithya S, Jayaraman RS, Gopinath KP, M P, L P, Arun J. Nano-adsorbents an effective candidate for removal of toxic pharmaceutical compounds from aqueous environment: A critical review on emerging trends. CHEMOSPHERE 2021; 272:129852. [PMID: 33581563 DOI: 10.1016/j.chemosphere.2021.129852] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 05/12/2023]
Abstract
Advancements in medical research has resulted in the modernization of healthcare facilities, subsequently leading to a higher level of production and usage of pharmaceuticals to sustain better quality of life. Pharmaceutical active compounds (PhACs) possess high genotoxicity and eco-toxicity thus presenting numerous side effects to living beings on long-term exposure. The fate and toxicity of PhACs were explored in detail, aiming to elucidate their occurrence and transmission in wastewater treatment systems (WWTPs). Adsorption of pharmaceutical compounds using Nano-adsorbents has gained momentum in recent years owing to their low-cost, high surface area and effectiveness. This review has been conducted in order to widen the utilization of Nano adsorbents in the adsorption of pharmaceutical compounds with a focus on the aqueous environment. The synthesis routes and properties of Nano-adsorbents for removal of PhACs were assessed in a comprehensive way. The recovery and reuse ability of nano-adsorbents also forms an integral part of its application in the removal of PhACs and has hence been delineated.
Collapse
Affiliation(s)
- Rajendran Neha
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Srikanth Adithya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Ramesh Sai Jayaraman
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Chennai, 603110, Tamil Nadu, India
| | - Pandimadevi M
- Department of Biotechnology, School of Bioengineering, SRM-Institute of Science and Technology, Kattankulathur, 603 203, Tamil Nadu, India
| | - Praburaman L
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai, 600119, Tamil Nadu, India.
| |
Collapse
|
5
|
García-Medina S, Galar-Martínez M, Gómez-Oliván LM, Torres-Bezaury RMDC, Islas-Flores H, Gasca-Pérez E. The relationship between cyto-genotoxic damage and oxidative stress produced by emerging pollutants on a bioindicator organism (Allium cepa): The carbamazepine case. CHEMOSPHERE 2020; 253:126675. [PMID: 32278918 DOI: 10.1016/j.chemosphere.2020.126675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The carbamazepine (CBZ) is one of the most frequently detected anticonvulsant drugs in water bodies. Although there are reports of its ecotoxicological effects in the scientific literature, toxicity studies have not focused on establishing the mechanism by which CBZ produces its effect at environmentally relevant concentrations. The objective of this work was to evaluate cyto-genotoxicity and its relationship with oxidative stress produced by carbamazepine in the Allium cepa model. The cytotoxicity and genotoxicity, as well as the biomarkers of oxidative stress were analyzed in the roots of A. cepa, exposed to 1 and 31.36 μg L-1 after 2, 6, 12, 24, 48 and 72 h. The results show that genotoxic capacity of this drug in the roots of A. cepa is related to the generation of oxidative stress, in particular with production of hydroperoxides and oxidized proteins. Also, the cytotoxic effect has a high correlation with DNA damage. The results of the present study clearly indicate that bioassays with sensitive plants such as A. cepa are useful and complementary tools to evaluate the environmental impact of emerging contaminants.
Collapse
Affiliation(s)
- Sandra García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico.
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico.
| | - Leobardo Manuel Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan S/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Rosalía María Del Consuelo Torres-Bezaury
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| | - Hariz Islas-Flores
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan S/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Eloy Gasca-Pérez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico; Cátedra CONACYT, Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu S/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
6
|
Dutta J, Mala AA. Removal of antibiotic from the water environment by the adsorption technologies: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:401-426. [PMID: 32960788 DOI: 10.2166/wst.2020.335] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Antibiotics are known as emergent pollutants because of their toxicological properties. Due to continuous discharge and persistence in the aquatic environment, antibiotics are detected almost in every environmental matrix. Therefore antibiotics that are polluting the aquatic environment have gained significant research interest for their removal. Several techniques have been used to remove pollutants, but appropriate technology is still to be found. This review addresses the use of modified and cheap materials for antibiotic removal from the environment.
Collapse
Affiliation(s)
- Joydeep Dutta
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| | - Aijaz Ahmad Mala
- Department of Zoology School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India E-mail:
| |
Collapse
|
7
|
KAWABATA K, AKIMOTO S, NISHI H. Photo-Conversion of Phenytoin to Ecotoxicological Substance Benzophenone by Ultraviolet Light Irradiation in Aqueous Media. CHROMATOGRAPHY 2020. [DOI: 10.15583/jpchrom.2019.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | - Shiori AKIMOTO
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | |
Collapse
|
8
|
Kim DV, Makarova AV, Miftakhova RR, Zharkov DO. Base Excision DNA Repair Deficient Cells: From Disease Models to Genotoxicity Sensors. Curr Pharm Des 2020; 25:298-312. [PMID: 31198112 DOI: 10.2174/1381612825666190319112930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/13/2019] [Indexed: 12/29/2022]
Abstract
Base excision DNA repair (BER) is a vitally important pathway that protects the cell genome from many kinds of DNA damage, including oxidation, deamination, and hydrolysis. It involves several tightly coordinated steps, starting from damaged base excision and followed by nicking one DNA strand, incorporating an undamaged nucleotide, and DNA ligation. Deficiencies in BER are often embryonic lethal or cause morbid diseases such as cancer, neurodegeneration, or severe immune pathologies. Starting from the early 1980s, when the first mammalian cell lines lacking BER were produced by spontaneous mutagenesis, such lines have become a treasure trove of valuable information about the mechanisms of BER, often revealing unexpected connections with other cellular processes, such as antibody maturation or epigenetic demethylation. In addition, these cell lines have found an increasing use in genotoxicity testing, where they provide increased sensitivity and representativity to cell-based assay panels. In this review, we outline current knowledge about BER-deficient cell lines and their use.
Collapse
Affiliation(s)
- Daria V Kim
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation
| | - Alena V Makarova
- RAS Institute of Molecular Genetics, 2 Kurchatova Sq., Moscow 123182, Russian Federation
| | - Regina R Miftakhova
- Kazan Federal University, 18 Kremlevsakaya St., Kazan 420008, Russian Federation
| | - Dmitry O Zharkov
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russian Federation.,SB RAS Institute of Chemical Biology and Fu ndamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russian Federation
| |
Collapse
|
9
|
Khadra A, Pinelli E, Ezzariai A, Mohamed O, Merlina G, Lyamlouli K, Kouisni L, Hafidi M. Assessment of the genotoxicity of antibiotics and chromium in primary sludge and compost using Vicia faba micronucleus test. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109693. [PMID: 31550565 DOI: 10.1016/j.ecoenv.2019.109693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
The objective of this study was to investigate chemical, biological and eco-toxicological parameters of a compost produced through the co-composting of dewatered primary sludge (DPS) and date palm waste to evaluate in which extent it can exploited as a bio-fertilizer. DPS and date palm waste were co-composted in aerobic conditions for 210 days. Physico-chemical parameters were evaluated during composting (total organic carbon, total nitrogen, pH, available forms of phosphorus). Furthermore, heavy metals (Cd, Cu, Cr, Pb, Ni, Zn) and antibiotics (fluoroquinolones, macrolides and tetracyclines) content were analyzed in the DPS. To evaluate the genotoxicity of substrates, Vicia faba micronucleus test was carried out. Single and combined toxicities of a mixture of antibiotics (ciprofloxacin, enroflxacin, nalidixic acid, roxithromycin and sulfapyridin) and chromium (Cr2 (SO4)3 and K2Cr2O7) were examined. Although the final compost product showed a significant decrease of the genotoxicity, almost 50% of the micronucleus frequency still remained, which could be explained by the persistence of several recalcitrant compounds such as chromium and some antibiotics. Overall, the presence of antibiotics and chromium showed that some specific combination of contaminants represent an ecological risk for soil health and ecosystems even at environmentally negligible concentrations.
Collapse
Affiliation(s)
- Ahmed Khadra
- Laboratoire Ecologie et Environnement (Unité Associée Au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, Marrakech, Morocco
| | - Eric Pinelli
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326, Castanet-Tolosan, France
| | | | - Oubane Mohamed
- Laboratoire Ecologie et Environnement (Unité Associée Au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, Marrakech, Morocco
| | - Georges Merlina
- EcoLab, Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, Avenue de l'Agrobiopôle, F-31326, Castanet-Tolosan, France
| | - Karim Lyamlouli
- University Mohammed VI Polytechnic (UM6P), Agrobiosciences Program, Benguerir, Morocco
| | - Lamfeddal Kouisni
- University Mohammed VI Polytechnic (UM6P), Agrobiosciences Program, Benguerir, Morocco
| | - Mohamed Hafidi
- Laboratoire Ecologie et Environnement (Unité Associée Au CNRST, URAC 32), Faculté des Sciences Semlalia, Université Cadi Ayyad, BP 2390, Marrakech, Morocco; University Mohammed VI Polytechnic (UM6P), Agrobiosciences Program, Benguerir, Morocco.
| |
Collapse
|
10
|
Rodrigues S, Antunes SC, Correia AT, Golovko O, Žlábek V, Nunes B. Assessment of toxic effects of the antibiotic erythromycin on the marine fish gilthead seabream (Sparus aurata L.) by a multi-biomarker approach. CHEMOSPHERE 2019; 216:234-247. [PMID: 30384292 DOI: 10.1016/j.chemosphere.2018.10.124] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 05/17/2023]
Abstract
Erythromycin (ERY) is one of the most common antibiotics used in human and veterinary practices, leading to ubiquitous environmental distribution and possible toxicity to non-target organisms. The purpose of this study was to determine sub-lethal effects of ERY towards the marine fish Sparus aurata (gilthead seabream). S. aurata were acutely (0.3-323 μg/L, 96 h) and chronically (0.7-8.8 μg/L, 28 d) exposed to ERY. Detoxification [7-ethoxyresorufin O-deethylase (EROD), glutathione S-transferases (GSTs), uridine-diphosphate-glucuronosyltransferase (UGT)], oxidative stress [catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GRed)], lipid peroxidation [thiobarbituric acid reactive substances - (TBARS)], genotoxicity [genetic damage index (GDI) and erythrocytic nuclear abnormalities (ENAs)], neurotransmission [acetylcholinesterase (AChE)] and energy metabolism [lactate dehydrogenase (LDH)] biomarkers were evaluated. Results showed that ERY did not promote significant effects in detoxification biomarkers, but induced slight pro-oxidative effects (decrease of GPx activity in the liver after acute exposure and an increase in gills after chronic exposure; and an increase of hepatic GRed activity following chronic exposure). There was a significant decrease in TBARS after chronic exposure, which contradicts a full scenario of oxidative stress. In terms of genotoxicity, both ERY exposures caused only a significant increase of GDI. Neurotransmission and energy metabolism were not also affected by ERY. Although few toxic effects of ERY have been previously documented (involving different metabolic pathways, as tested in this work), these were mainly observed for freshwater species. These findings suggest low vulnerability of S. aurata to ERY at levels close to the ones found in the wild.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Sara C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Alberto T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Bruno Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Li M, Ding T, Wang H, Wang W, Li J, Ye Q. Uptake and translocation of 14C-Carbamazepine in soil-plant systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:1352-1359. [PMID: 30273861 DOI: 10.1016/j.envpol.2018.09.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/29/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Carbamazepine (CBZ) is an antiepileptic drug that is frequently detected in wastewater treatment plants, soil and plants after irrigation with treated wastewater or application of biosolids. However, little information is available on the fate and uptake of CBZ in edible vegetables. In this study, radioautographic visualization of the 14C distribution revealed that 14C-CBZ can be taken up by all three ready-to-eat vegetables. Furthermore, a mass-balance study was conducted to evaluate the dynamic processes of the uptake and translocation of CBZ by 14C labeling. 14C-CBZ was gradually taken up with the growth of vegetables, with maximum uptake ratios of 2.19 ± 0.15, 2.86 ± 0.24 and 0.25 ± 0.05% of applied 14C in celery, carrot and pak choi, respectively. The bioconcentration factors (BCFs) based on 14C measurements ranged from 7.6 to 26.1 for celery, 3.6-12.9 for carrot, and 4.4-44 for pak choi. 14C-CBZ was easily translocated from the roots to the leaves and/or stems. The amendment of biosolids had a significant inhibitory effect on the uptake and translocation of 14C-CBZ from soil.
Collapse
Affiliation(s)
- Ming Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China; Key Laboratory of Songliao Aquatic Environment Ministry of Education, College of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Haiyan Wang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, 310029, China
| |
Collapse
|
12
|
Rodrigues S, Antunes SC, Correia AT, Nunes B. Ecotoxicological evaluation of gilthead seabream (Sparus aurata) exposed to the antibiotic oxytetracycline using a multibiomarker approach. MARINE ENVIRONMENTAL RESEARCH 2018; 141:233-246. [PMID: 30227982 DOI: 10.1016/j.marenvres.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/06/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
Oxytetracycline (OTC) is an antibiotic widely used in human and veterinary medicines. Since the primary toxicity occurs mainly at molecular/biochemical levels, the study of different biological responses corresponds to a sensitive and crucial approach. The aim of the present study was to assess the toxic effects of OTC in gilthead seabream (Sparus aurata) through the use of multibiomarkers and elucidate about the possible toxicological mechanisms involved. S. aurata were acutely (96 h: 0.04-400 μg/L) and chronically (28 days: 0.0004-4 μg/L) exposed to OTC. Detoxification, antioxidant defense, lipid peroxidation, genotoxicity, neurotransmission and energy metabolism biomarkers were evaluated. OTC impaired the detoxification pathways and caused peroxidative damage and genotoxicity. The relevance of the here-obtained data is high, since significant effects were recorded for levels already reported to occur in the wild, meaning that environmentally-exposed marine organisms (including those cultured at fish farms) are not completely exempt of risks posed by OTC.
Collapse
Affiliation(s)
- S Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - S C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre S/N, 4169-007, Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - B Nunes
- Departamento de Biologia da Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
13
|
Magdaleno A, Carusso S, Moretton J. Toxicity and Genotoxicity of Three Antimicrobials Commonly Used in Veterinary Medicine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 99:315-320. [PMID: 28434066 DOI: 10.1007/s00128-017-2091-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
The toxicity of chlortetracycline (CTC), oxytetracycline (OTC) and enrofloxacin (ENF) was tested on two green algal species: the international standard Pseudokirchneriella subcapitata and the native Argentine species Ankistrodesmus fusiformis. All three antibiotics inhibited the algal growth. The most sensitive species was P. subcapitata, for which the EC50 for CTC, OTC and ENF were 1.19 ± 0.53, 0.92 ± 0.30 and 5.18 ± 3.80 mg L-1, respectively. The EC50 for A. fusiformis, were 3.23 ± 0.53, 7.15 ± 2.69 and 10.6 ± 1.28 mg L-1, respectively. The genotoxicity of these veterinary antibiotics was also assessed using chromosome aberration (CA) and micronuclei (MN) induction in Allium cepa roots. Three concentrations were tested (0.1, 1 and 10 mg L-1). Only ENF at 1 and 10 mg L-1 showed any significant MN induction. These data revealed that CTC, OTC and ENF could cause toxicity on green algae, whereas ENF could cause genotoxicity on A. cepa plants.
Collapse
Affiliation(s)
- Anahí Magdaleno
- Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Sofía Carusso
- Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan Moretton
- Salud Pública e Higiene Ambiental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junin 956, 4° Piso, C1113AAC, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
14
|
Pandey PK, Ajima MNO, Kumar K, Poojary N, Kumar S. Evaluation of DNA damage and physiological responses in Nile tilapia, Oreochromis niloticus (Linnaeus, 1758) exposed to sub-lethal diclofenac (DCF). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:205-214. [PMID: 28324828 DOI: 10.1016/j.aquatox.2017.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 06/06/2023]
Abstract
The frequent bioaccumulation of pharmaceuticals in the aquatic ecosystem has raised a concern about their possible ecotoxicological consequences. DNA damage, haematological changes and activities of oxidative stress enzymes in Nile tilapia, Oreochromis niloticus in response to diclofenac (DCF) exposure were investigated for up to 60 days at the concentrations of 0.17, 0.34 and 0.68mgL-1 in the fish liver. Evaluation of genotoxic effects of the drug in the liver, using single-cell gel electrophoresis, showed DNA damage on exposure at the concentrations of 0.34 and 0.68mgL-1 after day 30. Compared with the control, there was a reduction in haemoglobin and red blood cell counts with a significant increase (p<0.05) in white blood cell counts, mean corpuscular volume and mean corpuscular haemoglobin level after day 30 at 0.34 and 0.68mgL-1. The levels of pack cell volume, red cell distribution width and mean corpuscular haemoglobin concentration were not significant (p>0.05) between the exposed group and the control. The indices of hepatic oxidative stress biomarkers, including lipid peroxidation and carbonyl protein, showed elevated level, depicting a positive correlation with both time and concentration. More so, activity of catalase was inhibited while reduced glutathione level decreased in the liver tissue. There was increase in the activities of superoxide dismutase, glutathione peroxidase and glutathione-S-transferase after 30 days at 0.34mgL-1. Further, activity of Na+-K+-ATPase in the tissue was significantly inhibited (p<0.05) at the end of 60 days. Prolonged exposure to diclofenac at sub-lethal concentration can cause both DNA and oxidative damages in O. niloticus, suggesting the use of oxidative stress biomarkers as early warning signals in environmental monitoring of residual pharmaceutical and assessment.
Collapse
Affiliation(s)
- Pramod K Pandey
- College of Fisheries, Central Agriculture University, Agartala, Tripura, India
| | - Malachy N O Ajima
- Department of Fisheries and Aquaculture Technology, Federal University of Technology, Owerri, Nigeria; Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India.
| | - Kundan Kumar
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Nalini Poojary
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Saurav Kumar
- Aquatic Environment and Health Management Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
15
|
Liu Y, Wu X, Hu X, Chen Z, Liu H, Takeda S, Qing Y. Multiple repair pathways mediate cellular tolerance to resveratrol-induced DNA damage. Toxicol In Vitro 2017; 42:130-138. [PMID: 28431926 DOI: 10.1016/j.tiv.2017.04.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/01/2017] [Accepted: 04/12/2017] [Indexed: 02/05/2023]
Abstract
Resveratrol (RSV) has been reported to exert health benefits for the prevention and treatment of many diseases, including cancer. The anticancer mechanisms of RSV seem to be complex and may be associated with genotoxic potential. To better understand the genotoxic mechanisms, we used wild-type (WT) and a panel of isogenic DNA-repair deficient DT40 cell lines to identify the DNA damage effects and molecular mechanisms of cellular tolerance to RSV. Our results showed that RSV induced significant formation of γ-H2AX foci and chromosome aberrations (CAs) in WT cells, suggesting direct DNA damage effects. Comparing the survival of WT with isogenic DNA-repair deficient DT40 cell lines demonstrated that single strand break repair (SSBR) deficient cell lines of Parp1-/-, base excision repair (BER) deficient cell lines of Polβ-/-, homologous recombination (HR) mutants of Brca1-/- and Brca2-/- and translesion DNA synthesis (TLS) mutants of Rev3-/- and Rad18-/- were more sensitive to RSV. The sensitivities of cells were associated with enhanced DNA damage comparing the accumulation of γ-H2AX foci and number of CAs of isogenic DNA-repair deficient DT40 cell lines with WT cells. These results clearly demonstrated that RSV-induced DNA damage in DT40 cells, and multiple repair pathways including BER, SSBR, HR and TLS, play critical roles in response to RSV- induced genotoxicity.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xiaoqing Hu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyuan Chen
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Liu
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug Targeting and Drug Delivery Systems of Education Ministry, West China School of Pharmacy, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Rodrigues S, Antunes SC, Correia AT, Nunes B. Rainbow trout (Oncorhynchus mykiss) pro-oxidant and genotoxic responses following acute and chronic exposure to the antibiotic oxytetracycline. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:104-117. [PMID: 27913897 DOI: 10.1007/s10646-016-1746-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Oxytetracycline (OTC), an antibacterial agent, is extensively used in aquaculture practices all over the world, but also in human and veterinary medicines. Because of its intensive use, low rates of absorption by treated animals, inadequate disposal, and low efficiency of removal in wastewater treatment plants, the potential harmful effects on aquatic organisms are of great concern. This work aimed to assess the effects of this antibiotic in rainbow trout, following both acute and chronic exposures. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers, in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and erythrocytic nuclear abnormalities (ENAs). The obtained results showed a mild pattern of antioxidant response, with modifications in CAT and GPx activities in gills, and lipid peroxidation in liver. These results suggest that despite the occurrence of oxidative effects, a full scenario of oxidative stress is not likely. However, exposure to OTC resulted in the establishment of genotoxic alterations with the induction of DNA strand breaks in blood cells (increase of GDI), and of chromosome breakage and/or segregational abnormalities (increase of ENAs). Considering that the oxidative response was not totally devisable, other mechanisms may be involved in the genotoxic effects reported.
Collapse
Affiliation(s)
- Sara Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123, Porto, Portugal.
| | - Sara C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123, Porto, Portugal
| | - Alberto T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123, Porto, Portugal
- Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150, Porto, Portugal
| | - Bruno Nunes
- Departamento de Biologia, Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
17
|
Ooka M, Kobayashi K, Abe T, Akiyama K, Hada M, Takeda S, Hirota K. Determination of genotoxic potential by comparison of structurally related azo dyes using DNA repair-deficient DT40 mutant panels. CHEMOSPHERE 2016; 164:106-112. [PMID: 27580264 DOI: 10.1016/j.chemosphere.2016.08.092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 07/15/2016] [Accepted: 08/20/2016] [Indexed: 06/06/2023]
Abstract
Azo dyes, including Sudan I, Orange II and Orange G, are industrial dyes that are assumed to have genotoxic potential. However, neither the type of DNA damage induced nor the structural features responsible for toxicity have been determined. We used a panel of DNA-repair-pathway-deficient mutants generated from chicken DT40 cells to evaluate the ability of these azo dyes to induce DNA damage and to identify the type of DNA damage induced. We compared the structurally related azo dyes Sudan I, Orange II and Orange G to identify the structural features responsible for genotoxicity. Compared with wild type cells, the double-strand break repair defective RAD54-/-/KU70-/- cells were significantly more sensitive to Sudan I, but not to Orange II or Orange G. The quantum-chemical calculations revealed that Sudan I, but not Orange II or Orange G, has a complete planar aromatic ring structure. These suggest that the planar feature of Sudan I is critical to the inducing of double-strand breaks. In summary, we used a DNA-repair mutant panel in combination with quantum-chemical calculations to provide a clue to the chemical structure responsible for genotoxicity.
Collapse
Affiliation(s)
- Masato Ooka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Koji Kobayashi
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Takuya Abe
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Kazuhiko Akiyama
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan.
| |
Collapse
|
18
|
Guan J, Zhang C, Wang Y, Guo Y, Huang P, Zhao L. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid–liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry. Anal Bioanal Chem 2016; 408:8099-8109. [DOI: 10.1007/s00216-016-9913-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/19/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
|
19
|
A sensitive multi-residue method for the determination of 35 micropollutants including pharmaceuticals, iodinated contrast media and pesticides in water. Anal Bioanal Chem 2016; 408:6189-200. [DOI: 10.1007/s00216-016-9731-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023]
|
20
|
Cano-Nicolau J, Vaillant C, Pellegrini E, Charlier TD, Kah O, Coumailleau P. Estrogenic Effects of Several BPA Analogs in the Developing Zebrafish Brain. Front Neurosci 2016; 10:112. [PMID: 27047331 PMCID: PMC4805609 DOI: 10.3389/fnins.2016.00112] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/07/2016] [Indexed: 11/26/2022] Open
Abstract
Important set of studies have demonstrated the endocrine disrupting activity of Bisphenol A (BPA). The present work aimed at defining estrogenic-like activity of several BPA structural analogs, including BPS, BPF, BPAF, and BPAP, on 4- or 7-day post-fertilization (dpf) zebrafish larva as an in vivo model. We measured the induction level of the estrogen-sensitive marker cyp19a1b gene (Aromatase B), expressed in the brain, using three different in situ/in vivo strategies: (1) Quantification of cyp19a1b transcripts using RT-qPCR in wild type 7-dpf larva brains exposed to bisphenols; (2) Detection and distribution of cyp19a1b transcripts using in situ hybridization on 7-dpf brain sections (hypothalamus); and (3) Quantification of the cyp19a1b promoter activity in live cyp19a1b-GFP transgenic zebrafish (EASZY assay) at 4-dpf larval stage. These three different experimental approaches demonstrated that BPS, BPF, or BPAF exposure, similarly to BPA, significantly activates the expression of the estrogenic marker in the brain of developing zebrafish. In vitro experiments using both reporter gene assay in a glial cell context and competitive ligand binding assays strongly suggested that up-regulation of cyp19a1b is largely mediated by the zebrafish estrogen nuclear receptor alpha (zfERα). Importantly, and in contrast to other tested bisphenol A analogs, the bisphenol AP (BPAP) did not show estrogenic activity in our model.
Collapse
Affiliation(s)
- Joel Cano-Nicolau
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Colette Vaillant
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Elisabeth Pellegrini
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Thierry D Charlier
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Olivier Kah
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| | - Pascal Coumailleau
- Research Institute in Health, Environment and Occupation, Institut National de la Santé et de la Recherche Médicale U1085, SFR Biosite, Université de Rennes 1 Rennes, France
| |
Collapse
|
21
|
Rodrigues S, Antunes SC, Correia AT, Nunes B. Acute and chronic effects of erythromycin exposure on oxidative stress and genotoxicity parameters of Oncorhynchus mykiss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 545-546:591-600. [PMID: 26760278 DOI: 10.1016/j.scitotenv.2015.10.138] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/11/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Erythromycin (ERY) is a macrolide antibiotic used in human and veterinary medicine, and has been detected in various aquatic compartments. Recent studies have indicated that this compound can exert biological activity on non-target organisms environmentally exposed. The present study aimed to assess the toxic effects of ERY in Oncorhynchus mykiss after acute and chronic exposures. The here adopted strategy involved exposure to three levels of ERY, the first being similar to concentrations reported to occur in the wild, thus ecologically relevant. Catalase (CAT), total glutathione peroxidase (GPx), glutathione reductase (GRed) activities and lipid peroxidation (TBARS levels) were quantified as oxidative stress biomarkers in gills and liver. Genotoxic endpoints, reflecting different types of genetic damage in blood cells, were also determined, by performing analysis of genetic damage (determination of the genetic damage index, GDI, measured by comet assay) and of erythrocytic nuclear abnormalities (ENAs). The results suggest the occurrence of a mild, but significant, oxidative stress scenario in gills. For acutely exposed organisms, significant alterations were observed in CAT and GRed activities, and also in TBARS levels, which however are modifications with uncertain biological interpretation, despite indicating involvement of an oxidative effect and response. After chronic exposure, a significant decrease of CAT activity, increase of GPx activity and TBARS levels in gills was noticed. In liver, significant decrease in TBARS levels were observed in both exposures. Comet and ENAs assays indicated significant increases on genotoxic damage of O. mykiss, after erythromycin exposures. This set of data (acute and chronic) suggests that erythromycin has the potential to induce DNA strand breaks in blood cells, and demonstrate the induction of chromosome breakage and/or segregational abnormalities. Overall results indicate that both DNA damaging effects induced by erythromycin may be related to the oxidative damage observed, shown to occur at environmentally relevant concentrations of erythromycin.
Collapse
Affiliation(s)
- S Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - S C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150, Porto, Portugal
| | - B Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
22
|
Ooka M, Takazawa H, Takeda S, Hirota K. Cytotoxic and genotoxic profiles of benzo[a]pyrene and N-nitrosodimethylamine demonstrated using DNA repair deficient DT40 cells with metabolic activation. CHEMOSPHERE 2016; 144:1901-1907. [PMID: 26547024 DOI: 10.1016/j.chemosphere.2015.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Benzo[a]pyrene and N-nitrosodimethylamine are major genotoxic compounds present in cigarette smoke, food and oil. To examine the type(s) of DNA damage induced by these compounds, we used a panel of DNA-repair-pathway-deficient mutants generated from chicken DT40 cells and achieved metabolic activation of the test compounds by including rat liver S9 mix. Consistent with expections, benzo[a]pyrene and N-nitrosodimethylamine require metabolicactivation to become genotoxic. The REV3(-/-) mutant cell line exhibited the highest sensitivity, in terms of increased cytotoxicity, to the both compounds after metabolic activation consistent with the known ability of these two compounds to induce DNA adducts. Strikingly, we found that the RAD54(-/-)/KU70(-/-) cell line, a mutant defective in the repair of double-strand breaks, is sensitive to benzo[a]pyrene, suggesting that this compound also induces strand breaks in these cells. In this study we combined a previously employed method, metabolic activation by S9 mix, with the use of a DNA-repair mutant panel, thereby broadening the range of compounds that can be screened for potential genotoxicity.
Collapse
Affiliation(s)
- Masato Ooka
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Hironori Takazawa
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, Minamiosawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan.
| |
Collapse
|
23
|
Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples. Anal Bioanal Chem 2016; 408:1701-13. [DOI: 10.1007/s00216-015-9284-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/08/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
|
24
|
Lacaze E, Pédelucq J, Fortier M, Brousseau P, Auffret M, Budzinski H, Fournier M. Genotoxic and immunotoxic potential effects of selected psychotropic drugs and antibiotics on blue mussel (Mytilus edulis) hemocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:177-186. [PMID: 25829077 DOI: 10.1016/j.envpol.2015.03.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 06/04/2023]
Abstract
The potential toxicity of pharmaceuticals towards aquatic invertebrates is still poorly understood and sometimes controversial. This study aims to document the in vitro genotoxicity and immunotoxicity of psychotropic drugs and antibiotics on Mytilus edulis. Mussel hemocytes were exposed to fluoxetine, paroxetine, venlafaxine, carbamazepine, sulfamethoxazole, trimethoprim and erythromycin, at concentrations ranging from μg/L to mg/L. Paroxetine at 1.5 μg/L led to DNA damage while the same concentration of venlafaxine caused immunomodulation. Fluoxetine exposure resulted in genotoxicity, immunotoxicity and cytotoxicity. In the case of antibiotics, trimethoprim was genotoxic at 200 μg/L and immunotoxic at 20 mg/L whereas erythromycin elicited same detrimental effects at higher concentrations. DNA metabolism seems to be a highly sensitive target for psychotropic drugs and antibiotics. Furthermore, these compounds affect the immune system of bivalves, with varying intensity. This attests the relevance of these endpoints to assess the toxic mode of action of pharmaceuticals in the aquatic environment.
Collapse
Affiliation(s)
- Emilie Lacaze
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada.
| | - Julie Pédelucq
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada; EPOC-LPTC, UMR 5805, Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France.
| | - Marlène Fortier
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada
| | - Pauline Brousseau
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada
| | - Michel Auffret
- LEMAR UMR CNRS 6539, Institut Universitaire Européen de la Mer, Technopôle Brest-Iroise, 29 280 Plouzane, France
| | - Hélène Budzinski
- EPOC-LPTC, UMR 5805, Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France.
| | - Michel Fournier
- INRS, Institut Armand-Frappier, 531 des Prairies Blvd., Laval, H7V 1B7 QC, Canada.
| |
Collapse
|
25
|
Ribas JLC, da Silva CA, de Andrade L, Galvan GL, Cestari MM, Trindade ES, Zampronio AR, de Assis HCS. Effects of anti-inflammatory drugs in primary kidney cell culture of a freshwater fish. FISH & SHELLFISH IMMUNOLOGY 2014; 40:296-303. [PMID: 25038277 DOI: 10.1016/j.fsi.2014.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
The non-steroidal anti-inflammatory drugs are emerging contaminants in aquatic ecosystems. This study aimed to evaluate toxic effects of some representative drugs of this pharmaceutical group on primary culture of monocytic lineage of Hoplias malabaricus anterior kidney. The effects of diclofenac, acetaminophen and ibuprofen in cell viability, lipopolysaccharide (LPS)-induced NO production and genotoxicity were evaluated. Cytometry analysis CD11b(+) cells showed 71.5% of stem cells, 19.5% of macrophages and 9% of monocytes. Cell viability was lower in the ficoll compared to percoll separation. LPS-induced NO production by these cells was blocked after treatment with dexamethasone and NG-Methyl-L-Arginine (L-NMMA). Exposure of the cells to diclofenac (0.2-200 ng/mL), acetaminophen (0.025-250 ng/mL) ibuprofen (10-1000 ng/mL) reduced basal NO production and inhibited LPS-induced NO production at all concentrations after 24 h of exposure. Genotoxicity occurred at the highest concentration of diclofenac and at the intermediary concentration of acetaminophen. Genotoxicity was also observed by ibuprofen. In summary, the pharmaceuticals influenced NO production and caused DNA damage in monocytic cells suggesting that these drugs can induce immunosuppression and genotoxicity in fish.
Collapse
Affiliation(s)
- João Luiz Coelho Ribas
- Department of Pharmacology, Federal University of Parana, 81531-980 Curitiba-Paraná, Brazil
| | - Cesar A da Silva
- Ecology and Conservation Post-graduate Program, Federal University of Paraná, 81531-980 Curitiba-Paraná, Brazil
| | - Lucas de Andrade
- Department of Cellular Biology, Federal University of Paraná, 81531-980 Curitiba-Paraná, Brazil
| | | | | | - Edvaldo S Trindade
- Department of Cellular Biology, Federal University of Paraná, 81531-980 Curitiba-Paraná, Brazil
| | - Aleksander R Zampronio
- Department of Pharmacology, Federal University of Parana, 81531-980 Curitiba-Paraná, Brazil
| | - Helena C Silva de Assis
- Department of Pharmacology, Federal University of Parana, 81531-980 Curitiba-Paraná, Brazil.
| |
Collapse
|
26
|
Kawabata K, Sugihara K, Sanoh S, Kitamura S, Ohta S. Photodegradation of pharmaceuticals in the aquatic environment by sunlight and UV-A, -B and -C irradiation. J Toxicol Sci 2013; 38:215-23. [PMID: 23535400 DOI: 10.2131/jts.38.215] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In order to investigate the effect of sunlight on the persistence and ecotoxicity of pharmaceuticals contaminating the aquatic environment, we exposed nine pharmaceuticals (acetaminophen (AA), amiodarone (AM), dapsone (DP), dexamethasone (DX), indomethacin (IM), naproxen (NP), phenytoin (PH), raloxifene (RL), and sulindac (SL)) in aqueous media to sunlight and to ultraviolet (UV) irradiation at 254, 302 or 365 nm (UV-C, UV-B or UV-A, respectively). Degradation of the pharmaceuticals was monitored by means of high-performance liquid chromatography (HPLC). Sunlight completely degraded AM, DP and DX within 6 hr, and partly degraded the other pharmaceuticals, except AA and PH, which were not degraded. Similar results were obtained with UV-B, while UV-A was less effective (both UV-A and -B are components of sunlight). All the pharmaceuticals were photodegraded by UV-C, which is used for sterilization in sewage treatment plants. Thus, the photodegradation rates of pharmaceuticals are dependent on both chemical structure and the wavelength of UV exposure. Toxicity assay using the luminescent bacteria test (ISO11348) indicated that UV irradiation reduced the toxicity of some pharmaceuticals to aquatic organisms by decreasing their amount (photodegradation) and increased the toxicity of others by generating toxic photoproduct(s). These results indicate the importance of investigating not only parent compounds, but also photoproducts in the risk assessment of pharmaceuticals in aquatic environments.
Collapse
Affiliation(s)
- Kohei Kawabata
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | |
Collapse
|
27
|
Lee S, Liu X, Takeda S, Choi K. Genotoxic potentials and related mechanisms of bisphenol A and other bisphenol compounds: a comparison study employing chicken DT40 cells. CHEMOSPHERE 2013; 93:434-440. [PMID: 23791112 DOI: 10.1016/j.chemosphere.2013.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 04/30/2013] [Accepted: 05/05/2013] [Indexed: 06/02/2023]
Abstract
Bisphenol A (BPA) has been found in plastic food containers, paper currencies and toys. BPA has been reported for various adverse health concerns including reproduction, development and carcinogenesis. These potential health implications have led to increasing use of alternative bisphenols such as bisphenol F and bisphenol S among many. However, little is known about the toxicity of alternative bisphenols and most of the toxicological information is limited to endocrine disrupting potentials. In this study, we evaluated cytotoxicity and the genotoxic potentials of several bisphenol compounds, and identified the mechanism of genotoxicity using a panel of mutant chicken DT40 cell lines deficient in DNA repair pathways. Several bisphenols including bisphenol AP, bisphenol M, or bisphenol P exerted genotoxic potentials that are greater than that of BPA. Generally RAD54(-/-) mutant cells were the most sensitive to all bisphenols except for bisphenol F, suggesting the induction of DNA double-strand breaks that could be rescued by homologous recombination. Genotoxic potential of bisphenols was confirmed by chromosomal aberration assay and γ-H2AX foci forming assay between wild-type and RAD54(-/-) mutant. Among the tested bisphenols, BPP at 12.5μM showed the greatest genotoxic potency, inducing chromosomal aberration and γ-H2AX foci in RAD54(-/-) mutant by 2.6 and 4.8 folds greater than those in wild-type, respectively. Our results clearly show several alternative bisphenols can cause genotoxicity that could be rescued by homologous recombination pathway, and some bisphenols induced even greater genotoxic potentials than that of BPA.
Collapse
Affiliation(s)
- Sangwoo Lee
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | |
Collapse
|
28
|
Mohiuddin, Keka IS, Evans TJ, Hirota K, Shimizu H, Kono K, Takeda S, Hirano S. A novel genotoxicity assay of carbon nanotubes using functional macrophage receptor with collagenous structure (MARCO)-expressing chicken B lymphocytes. Arch Toxicol 2013; 88:145-60. [PMID: 23963510 DOI: 10.1007/s00204-013-1084-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/20/2013] [Indexed: 01/09/2023]
Abstract
Although carbon nanotubes (CNTs) are promising nanomaterials, their potential carcinogenicity is a major concern. We previously established a genetic method of analyzing genotoxicity of chemical compounds, where we evaluated their cytotoxic effect on the DT40 lymphoid cell line comparing DNA-repair-deficient isogenic clones with parental wild-type cells. However, application of our DT40 system for the cytotoxic and genotoxic evaluation of nanomaterials seemed to be difficult, because DT40 cells only poorly internalized nanoparticles. To solve this problem, we have constructed a chimeric gene encoding a trans-membrane receptor consisting of the 5' region of the transferrin receptor (TR) gene (to facilitate internalization of nanoparticles) and the 3' region of the macrophage receptor with collagenous structure (MARCO) gene (which is a receptor for environmental particles). We expressed the resulting MARCO-TR chimeric receptor on DNA-repair-proficient wild-type cells and mutants deficient in base excision repair (FEN1 (-/-)) and translesion DNA synthesis (REV3 (-/-)). We demonstrated that the chimera mediates uptake of particles such as fluorescence-tagged polystyrene particles and multi-walled carbon nanotubes (MWCNTs), with very poor uptake of those particles by DT40 cells not expressing the chimera. MWCNTs were cytotoxic and this effect was greater in FEN1 (-/-)and REV3 (-/-) cells than in wild-type cells. Furthermore, MWCNTs induced greater oxidative damage (measured as 8-OH-dG formation) and a larger number of mitotic chromosomal aberrations in repair-deficient cells compared to repair-proficient cells. Taken together, our novel assay system using the chimeric receptor-expressing DT40 cells provides a sensitive method to screen for genotoxicity of CNTs and possibly other nanomaterials.
Collapse
Affiliation(s)
- Mohiuddin
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gros M, Rodríguez-Mozaz S, Barceló D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A 2013; 1292:173-88. [DOI: 10.1016/j.chroma.2012.12.072] [Citation(s) in RCA: 262] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/29/2012] [Accepted: 12/30/2012] [Indexed: 02/06/2023]
|
30
|
The automated micronucleus assay for early assessment of genotoxicity in drug discovery. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 751:1-11. [DOI: 10.1016/j.mrgentox.2012.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/24/2012] [Accepted: 10/14/2012] [Indexed: 01/22/2023]
|
31
|
Lin D, Zhou Q, Xu Y, Chen C, Li Y. Physiological and molecular responses of the earthworm (Eisenia fetida) to soil chlortetracycline contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2012; 171:46-51. [PMID: 22868346 DOI: 10.1016/j.envpol.2012.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 06/11/2012] [Accepted: 07/07/2012] [Indexed: 06/01/2023]
Abstract
This study aims to evaluate toxic effects of exposure to chlortetracycline (CTC) in soil on reproductive endpoints (juvenile counts and cocoon counts), biochemical responses, and genotoxic potentials of the earthworm Eisenia fetida. Results showed that juvenile counts and cocoon counts of the tested earthworms were reduced after exposure to CTC. The effective concentrations (EC(50) values) for juvenile and cocoon counts were 96.1 and 120.3 mg/kg, respectively. Treatment of earthworms with CTC significantly changed the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). An increase in malondialdehyde (MDA) indicated that CTC could cause cellular lipid peroxidation in the tested earthworms. The percentage of DNA in the tail of single-cell gel electrophoresis of coelomocytes as an indication of DNA damage increased after treatment with different doses of CTC, and a dose-dependent DNA damage of coelomocytes was found. In conclusion, CTC induces physiological responses and genotoxicity on earthworms.
Collapse
Affiliation(s)
- Dasong Lin
- Key Laboratory of Original Agro-environmental Quality, Ministry of Agriculture/Tianjin Key Laboratory of Agro-environment and Agro-product Safety, Institute of Agro-environmental Protection, Ministry of Agriculture, Tianjin 300191, China
| | | | | | | | | |
Collapse
|
32
|
Darzynkiewicz Z, Zhao H, Halicka HD, Rybak P, Dobrucki J, Wlodkowic D. DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis. Crit Rev Clin Lab Sci 2012; 49:199-217. [PMID: 23137030 DOI: 10.3109/10408363.2012.738808] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reviewed are the phosphorylation events reporting activation of protein kinases and the key substrates critical for the DNA damage signaling (DDS). These DDS events are detected immunocytochemically using phospho-specific Abs; flow cytometry or image-assisted cytometry provide the means to quantitatively assess them on a cell by cell basis. The multiparameter analysis of the data is used to correlate these events with each other and relate to the cell cycle phase, DNA replication and induction of apoptosis. Expression of γH2AX as a possible marker of induction of DNA double strand breaks is the most widely studied event of DDS. Reviewed are applications of this multiparameter approach to investigate constitutive DDS reporting DNA damage by endogenous oxidants byproducts of oxidative phosphorylation. Also reviewed are its applications to detect and explore mechanisms of DDS induced by variety of exogenous agents targeting DNA such as exogenous oxidants, ionizing radiation, radiomimetic drugs, UV light, DNA topoisomerase I and II inhibitors, DNA crosslinking drugs and variety of environmental genotoxins. Analysis of DDS induced by these agents provides often a wealth of information about mechanism of induction and the type of DNA damage (lesion) and is reviewed in the context of cell cycle phase specificity, DNA replication, and induction of apoptosis or cell senescence. Critically assessed is interpretation of the data as to whether the observed DDS events report induction of a particular type of DNA lesion.
Collapse
Affiliation(s)
- Zbigniew Darzynkiewicz
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|