1
|
Han S, Lu M, Zhang Y, Lin Y, Liu Q, Xu L, Ren Z. Modification Effects of Homologous Recombination Repair Gene Polymorphisms on the Associations Between Urinary Metals and Breast Cancer Risk. Biol Trace Elem Res 2025; 203:694-706. [PMID: 38720017 DOI: 10.1007/s12011-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/28/2024] [Indexed: 01/22/2025]
Abstract
Metals are recognized as important factors related to breast cancer (BC) risk. Homologous recombination repair (HRR) genes might modify the toxicity of metals by influencing the distribution and metabolism of metal compounds. This study aims to investigate the modification effects of single nucleotide polymorphisms (SNPs) in HRR genes on the associations between urinary metals and BC risk. A total of 685 BC cases and 741 controls were recruited from October 2009 to December 2012. Twenty-one metals were analyzed in urine samples using inductively coupled plasma mass spectrometry (ICP-MS), and three SNPs (LIG3 rs1052536, RFC1 rs6829064, and RAD54L rs17102086) were genotyped. We identified significant interactions between four metals and two SNPs on the risk of BC. For LIG3 rs1052536 C/T variant, participants with CT/TT genotypes exposed to higher cobalt (Co) levels had higher BC risk compared to those with CC genotype (Pinteraction = 0.048). For RAD54L rs17102086 T/C variant, participants with TT genotype who were exposed to higher levels of zinc (Zn), Co, arsenic (As), and strontium (Sr) had more pronounced BC risk than the CC/TC genotypes (all Pinteraction < 0.05). This study showed compelling evidence for the interaction between genetic variants within the HRR system and urinary metals on BC risk. Our findings highlight the need to consider genetic makeup when evaluating the carcinogenic or protective potential of metals.
Collapse
Affiliation(s)
- Shushu Han
- The School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Minjie Lu
- The School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Yixin Zhang
- The School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China
| | - Ying Lin
- The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiang Liu
- The Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lin Xu
- The School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China.
| | - Zefang Ren
- The School of Public Health, Sun Yat-sen University, 74 Zhongshan 2nd Rd, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Calabrese EJ, Pressman P, Hayes AW, Dhawan G, Kapoor R, Agathokleous E, Calabrese V. Lithium and hormesis: Enhancement of adaptive responses and biological performance via hormetic mechanisms. J Trace Elem Med Biol 2023; 78:127156. [PMID: 36958112 DOI: 10.1016/j.jtemb.2023.127156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Biomedical and consumer interest in the health-promoting properties of pure single entities of known or unknown chemical constituents and mixtures has never been greater. Since its "rediscovery" in the 1950s, lithium is an example of such a constituent that represents an array of scientific and public health challenges and medical potentials that may now be understood best when seen through the lens of the dose-response paradigm known as hormesis. The present paper represents the first review of the capacity of lithium to induce hormetic dose responses in a broad range of biological models, organ systems, and endpoints. Of significance is that the numerous hormetic findings occur with extensive concentration/dose response evaluations with the optimal dosing being similar across multiple organ systems. The particular focus of these hormetic dose-response findings was targeted to research with a broad spectrum of stem cell types and neuroprotective effects. These findings suggest that lithium may have critically valuable systemic effects with respect to those therapeutically treated with lithium as well as for exposures that may be achieved via dietary intervention.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Peter Pressman
- Saba University School of Medicine, Caribbean, the Netherlands
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management College of Public Health, University of South Florida, Tampa, FL, USA
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center; Hartford, CT, USA
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences; School of Medicine University of Catania, Via Santa Sofia 97, Catania 95123, Italy
| |
Collapse
|
3
|
Yang C, Zhu B, Zhan M, Hua ZC. Lithium in Cancer Therapy: Friend or Foe? Cancers (Basel) 2023; 15:cancers15041095. [PMID: 36831437 PMCID: PMC9954674 DOI: 10.3390/cancers15041095] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Lithium, a trace element important for fetal health and development, is considered a metal drug with a well-established clinical regime, economical production process, and a mature storage system. Several studies have shown that lithium affects tumor development by regulating inositol monophosphate (IMPase) and glycogen synthase kinase-3 (GSK-3). Lithium can also promote proliferation and programmed cell death (PCD) in tumor cells through a number of new targets, such as the nuclear receptor NR4A1 and Hedgehog-Gli. Lithium may increase cancer treatment efficacy while reducing side effects, suggesting that it can be used as an adjunctive therapy. In this review, we summarize the effects of lithium on tumor progression and discuss the underlying mechanisms. Additionally, we discuss lithium's limitations in antitumor clinical applications, including its narrow therapeutic window and potential pro-cancer effects on the tumor immune system.
Collapse
Affiliation(s)
- Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (B.Z.); (Z.-C.H.)
| | - Mingjie Zhan
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, China
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Correspondence: (B.Z.); (Z.-C.H.)
| |
Collapse
|
4
|
Altememy D, Mohammadi Arvejeh P, Amini Chermahini F, Alizadeh A, Mazarei M, Khosravian P. A comparative study of combination treatments in metastatic 4t1 cells: everolimus and 5- fluorouracil versus lithium chloride and 5-fluorouracil. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e85358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Combination therapy has been one of the most pioneering and strategic approaches implemented for malignancy treatment, which can intentionally influence multiple signaling pathways involved in cancer growth and progression. In the present study, the effects of 5-fluorouracil (5FU) in combination with everolimus (EVE) or lithium chloride (LiCl) were evaluated in 4T1 metastatic breast cancer cells and compared to control and each other.
Methods and results: The resazurin assay, CompuSyn, flow cytometry, and real-time PCR were used to investigate cell proliferation, drug synergism, apoptosis, and gene expression. In comparison to the ternary combination of the drugs, the findings showed that cytotoxicity (p-value < 0.0001) and apoptosis (p-value < 0.0001) of two-by-two combinations increased dramatically as a consequence of the extreme synergy between 5FU and EVE or LiCl. Moreover, the hypoxiainducible transcription factor 1-alpha (HIF-1α) and the vascular endothelial growth factor (VEGF) downregulated considerably compared to control (p-value < 0.0001) by combination therapies of EVE-5FU and 5FU-LiCl; however, only VEGF displayed significant downregulation in comparison to single therapies.
Conclusion: The findings showed that the combination of 5FU-LiCl increased cell cytotoxicity and apoptosis significantly more than EVE-5FU but suggests a clinical potential for both to treat metastatic breast cancer encouraging validation of these results in pre-clinical models.
Collapse
|
5
|
Peng H, Wu X, Ge F, Huo Z, Wen Y, Li C, Lin J, Liang H, Zhong R, Liu J, Wang R, He J, Liang W. Genetically predicted bipolar disorder is causally associated with an increased risk of breast cancer: a two-sample Mendelian randomization analysis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:401. [PMID: 33842622 PMCID: PMC8033315 DOI: 10.21037/atm-20-5372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Epidemiologic findings suggested that bipolar disorder (BD) may be associated with an increased risk of breast cancer. However, there are few studies that comprehensively evaluating their correlation and the causal effect remains unknown. With a two-sample Mendelian randomization (MR) approach, we were able to investigate the causal relationship between genetically predicted BD and breast cancer risk. Methods Utilizing 14 BD-related single nucleotide polymorphisms (SNPs) as instrumental variables (IVs) identified by the latest genome-wide association studies (GWASs), we investigated the correlation between genetically predicted BD and breast cancer risk using summary statistics from the Breast Cancer Association Consortium, with a total of 122,977 cases and 105,974 controls. Study-specific estimates were summarized using inverse variance weighted (IVW) method. To further evaluate the pleiotropy, the weighted median and the MR-Egger regression method were implemented. Subgroup analyses according to different immunohistochemical types of breast cancer were also conducted. Results MR analyses demonstrated that genetically predicted BD was causally associated with an increased risk of breast cancer (OR =1.059; 95% CI: 1.008-1.112, P=0.0229). When results were examined by immunohistochemical type, no causal effects between genetically predicted BD and estrogen receptor (ER)-positive breast cancer (OR =1.049, 95% CI: 0.999-1.102 P=0.0556) and ER-negative breast cancer (OR =1.032, 95% CI: 0.953-1.116 P=0.4407) were observed. Additionally, the results demonstrated the absence of the horizontal pleiotropy. Conclusions Our findings provided evidence for a causal relationship between genetically predicted BD and an increased risk of breast cancer overall. Further studies are warranted to investigate the underlying mechanism.
Collapse
Affiliation(s)
- Haoxin Peng
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Xiangrong Wu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Fan Ge
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,First Clinical School, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Huo
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Yaokai Wen
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Caichen Li
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinsheng Lin
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Hengrui Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Zhong
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Runchen Wang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Jianxing He
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Oncology and Surgery, China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
6
|
Iglay K, Santorelli ML, Hirshfield KM, Williams JM, Rhoads GG, Lin Y, Demissie K. Impact of Preexisting Mental Illness on All-Cause and Breast Cancer-Specific Mortality in Elderly Patients With Breast Cancer. J Clin Oncol 2017; 35:4012-4018. [PMID: 28934000 DOI: 10.1200/jco.2017.73.4947] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Limited data are available on the survival of patients with breast cancer with preexisting mental illness, and elderly women are of special interest because they experience the highest incidence of breast cancer. Therefore, we compared all-cause and breast cancer-specific mortality for elderly patients with breast cancer with and without mental illness. Methods A retrospective cohort study was conducted by using SEER-Medicare data, including 19,028 women ≥ 68 years of age who were diagnosed with stage I to IIIa breast cancer in the United States from 2005 to 2007. Patients were classified as having severe mental illness if an International Classification of Diseases, Ninth Edition, Clinical Modification code for bipolar disorder, schizophrenia, or other psychotic disorder was recorded on at least one inpatient or two outpatient claims during the 3 years before breast cancer diagnosis. Patients were followed for up to 5 years after breast cancer diagnosis to assess survival outcomes, which were then compared with those of patients without mental illness. Results Nearly 3% of patients had preexisting severe mental illness. We observed a two-fold increase in the all-cause mortality hazard between patients with severe mental illness compared with those without mental illness after adjusting for age, income, race, ethnicity, geographic location, and marital status (adjusted hazard ratio, 2.19; 95% CI, 1.84 to 2.60). A 20% increase in breast cancer-specific mortality hazard was observed, but the association was not significant (adjusted hazard ratio, 1.20; 95% CI, 0.82 to 1.74). Patients with severe mental illness were more likely to be diagnosed with advanced breast cancer and aggressive tumor characteristics. They also had increased tobacco use and more comorbidities. Conclusion Patients with severe mental illness may need assistance with coordinating medical services.
Collapse
Affiliation(s)
- Kristy Iglay
- Kristy Iglay, Melissa L. Santorelli, George G. Rhoads, Yong Lin and Kitaw Demissie, Rutgers School of Public Health; Kim M. Hirshfield, Yong Lin, and Kitaw Demissie, Rutgers Cancer Institute of New Jersey; and Kim M. Hirshfield and Jill M. Williams, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Melissa L Santorelli
- Kristy Iglay, Melissa L. Santorelli, George G. Rhoads, Yong Lin and Kitaw Demissie, Rutgers School of Public Health; Kim M. Hirshfield, Yong Lin, and Kitaw Demissie, Rutgers Cancer Institute of New Jersey; and Kim M. Hirshfield and Jill M. Williams, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Kim M Hirshfield
- Kristy Iglay, Melissa L. Santorelli, George G. Rhoads, Yong Lin and Kitaw Demissie, Rutgers School of Public Health; Kim M. Hirshfield, Yong Lin, and Kitaw Demissie, Rutgers Cancer Institute of New Jersey; and Kim M. Hirshfield and Jill M. Williams, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Jill M Williams
- Kristy Iglay, Melissa L. Santorelli, George G. Rhoads, Yong Lin and Kitaw Demissie, Rutgers School of Public Health; Kim M. Hirshfield, Yong Lin, and Kitaw Demissie, Rutgers Cancer Institute of New Jersey; and Kim M. Hirshfield and Jill M. Williams, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - George G Rhoads
- Kristy Iglay, Melissa L. Santorelli, George G. Rhoads, Yong Lin and Kitaw Demissie, Rutgers School of Public Health; Kim M. Hirshfield, Yong Lin, and Kitaw Demissie, Rutgers Cancer Institute of New Jersey; and Kim M. Hirshfield and Jill M. Williams, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Yong Lin
- Kristy Iglay, Melissa L. Santorelli, George G. Rhoads, Yong Lin and Kitaw Demissie, Rutgers School of Public Health; Kim M. Hirshfield, Yong Lin, and Kitaw Demissie, Rutgers Cancer Institute of New Jersey; and Kim M. Hirshfield and Jill M. Williams, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Kitaw Demissie
- Kristy Iglay, Melissa L. Santorelli, George G. Rhoads, Yong Lin and Kitaw Demissie, Rutgers School of Public Health; Kim M. Hirshfield, Yong Lin, and Kitaw Demissie, Rutgers Cancer Institute of New Jersey; and Kim M. Hirshfield and Jill M. Williams, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| |
Collapse
|
7
|
Haro Durand LA, Vargas GE, Vera-Mesones R, Baldi A, Zago MP, Fanovich MA, Boccaccini AR, Gorustovich A. In Vitro Human Umbilical Vein Endothelial Cells Response to Ionic Dissolution Products from Lithium-Containing 45S5 Bioactive Glass. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E740. [PMID: 28773103 PMCID: PMC5551783 DOI: 10.3390/ma10070740] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022]
Abstract
Since lithium (Li⁺) plays roles in angiogenesis, the localized and controlled release of Li⁺ ions from bioactive glasses (BGs) represents a promising alternative therapy for the regeneration and repair of tissues with a high degree of vascularization. Here, microparticles from a base 45S5 BG composition containing (wt %) 45% SiO₂, 24.5% Na₂O, 24.5% CaO, and 6% P₂O₅, in which Na₂O was partially substituted by 5% Li₂O (45S5.5Li), were obtained. The results demonstrate that human umbilical vein endothelial cells (HUVECs) have greater migratory and proliferative response and ability to form tubules in vitro after stimulation with the ionic dissolution products (IDPs) of the 45S5.5Li BG. The results also show the activation of the canonical Wnt/β-catenin pathway and the increase in expression of proangiogenic cytokines insulin like growth factor 1 (IGF1) and transforming growth factor beta (TGFβ). We conclude that the IDPs of 45S5.5Li BG would act as useful inorganic agents to improve tissue repair and regeneration, ultimately stimulating HUVECs behavior in the absence of exogenous growth factors.
Collapse
Affiliation(s)
- Luis A Haro Durand
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - Gabriela E Vargas
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Rosa Vera-Mesones
- Department of Developmental Biology, National University of Salta, A4408FVY Salta, Argentina.
| | - Alberto Baldi
- Department of Pathology and Molecular Pharmacology, IByME-CONICET, C1428ADN Buenos Aires, Argentina.
| | - María P Zago
- Institute of Experimental Pathology, IPE-CONICET, A4408FVY Salta, Argentina.
| | - María A Fanovich
- Research Institute for Materials Science and Technology, INTEMA-CONICET, B7608FDQ Mar del Plata, Argentina.
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Alejandro Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD Salta, Argentina.
| |
Collapse
|
8
|
LiCl Treatment Induces Programmed Cell Death of Schwannoma Cells through AKT- and MTOR-Mediated Necroptosis. Neurochem Res 2017; 42:2363-2371. [DOI: 10.1007/s11064-017-2256-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/21/2022]
|
9
|
Yang S, Liu W, Li M, Wen J, Zhu M, Xu S. Insulin-Like Growth Factor-1 Modulates Polycomb Cbx8 Expression and Inhibits Colon Cancer Cell Apoptosis. Cell Biochem Biophys 2016; 71:1503-7. [PMID: 25398592 DOI: 10.1007/s12013-014-0373-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Colon cancer is one of the leading causes of death in human beings. The pathogenesis of colon cancer is unclear. Recent reports indicate that Chromobox protein homolog 8 (Cbx8) and insulin-like growth factor-1 (IGF1) are associated with the pathogenesis of cancer. This study aims to investigate the role of Cbx8 and IGF1 in facilitating colon cancer cell proliferation. In this study, human colon cancer cell line, HCT116 cells, was cultured using an in vitro study model. The expression of Cbx8 and IGF1R (IGF1 receptor) in HCT116 cells was observed with approaches of real-time RT-PCR, Western blotting, gene silencing, and gene overexpression. The results showed that HCT116 cells express both Cbx8 and IGF1R. Exposure of HCT116 cells to IGF1 increased the expression of Cbx8. Knockdown of Cbx8 induced HCT116 cell apoptosis. Overexpression of Cbx8 induced HCT116 cell proliferation. We conclude that IGF1 can promote the colon cancer cell line, HCT116 cell, proliferation via promoting Cbx8 expression.
Collapse
Affiliation(s)
- Shaobo Yang
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wenhui Liu
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Mingyang Li
- Department of Digestive Endoscopy, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Junbao Wen
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Min Zhu
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shiping Xu
- Department of Gastroenterology, Nan Lou Division, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Inhibition of glycogen synthase kinase-3β suppresses inflammatory responses in rheumatoid arthritis fibroblast-like synoviocytes and collagen-induced arthritis. Joint Bone Spine 2013; 81:240-6. [PMID: 24176738 DOI: 10.1016/j.jbspin.2013.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/12/2013] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Glycogen synthase kinase (GSK)-3β, a serine/threonine protein kinase, has been implicated as a regulator of the inflammatory response. This study was performed to evaluate the effect of selective GSK-3β inhibitors in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) and collagen-induced arthritis (CIA). METHOD FLS from RA patients were treated with selective GSK-3β inhibitors, including lithium chloride, 6-bromoindirubin-3'-oxime (BIO), or 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8). The effects of GSK-3β inhibition on pro-inflammatory mediators were determined by real-time PCR and ELISA. The levels of NF-κB, phosphorylated JNK, c-jun, ATF-2 and p-38 proteins were evaluated by western blot analysis. The in vivo effects of GSK-3β inhibitors were examined in mice with CIA. RESULTS Treatment of RA FLS with GSK-3β inhibitors induced dose-dependent reductions in gene expression and the production of pro-inflammatory mediators. The levels of NF-κB, phosphorylated JNK, c-jun, ATF-2 and p-38 were decreased following treatment with GSK-3β inhibitors. GSK-3β inhibitors treatment attenuated clinical and histological severities of CIA in mice. Infiltration of T-cells, macrophages, and tartrate-resistant acid phosphatase positive cells was decreased in joint sections of CIA mice by GSK-3β inhibitors treatment. Serum levels of IL-1β, IL-6, TNF-α and IFN-γ in CIA mice were also significantly decreased in dose-dependent manners by treatment with GSK-3β inhibitors. CONCLUSION Treatment with GSK-3β inhibitors suppressed inflammatory responses in RA FLS and CIA mice. These findings suggest that the inhibition of GSK-3β can be used as an effective therapeutic agent for RA.
Collapse
|
11
|
Squassina A, Costa M, Congiu D, Manchia M, Angius A, Deiana V, Ardau R, Chillotti C, Severino G, Calza S, Del Zompo M. Insulin-like growth factor 1 (IGF-1) expression is up-regulated in lymphoblastoid cell lines of lithium responsive bipolar disorder patients. Pharmacol Res 2013; 73:1-7. [PMID: 23619527 DOI: 10.1016/j.phrs.2013.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 01/30/2023]
Abstract
Bipolar disorder (BD) is a debilitating psychiatric disease characterized by alternating episodes of mania and depression. Among mood stabilizers, lithium is the mainstay for the treatment of BD, with approximately one-third of patients showing remission from episode recurrence. While there is evidence suggesting genetic load for lithium response in BD, its molecular underpinnings are still not completely understood. To identify genes potentially involved in (or correlated with) lithium response, we carried out a genome-wide expression analysis on lymphoblastoid cell lines (LCLs) from 10 BD patients responders (R) and 10 non-responders (NR) to lithium. We compared expression levels of the two groups and tested whether in vitro lithium treatment had different effects in LCLs of R compared to NR. At basal, 2060 genes were differentially expressed between R and NR while no genes were differentially regulated by lithium in the two groups. After pathway analysis based on the 2060 genes, 9 genes were selected for validation with qRT-PCR. Eight genes were validated in the same sample of LCLs while only insulin-like growth factor 1 (IGF-1) was significantly over-expressed in R compared to NR in the same sample as well as in an independent sample comprised of 6 R and 6 NR (sample 1, fold change=1.94; p=0.005; sample 2, fold change=2.21; p=0.005). IGF-1 was also significantly over-expressed in R but not in NR when compared to a sample of non-psychiatric controls. Our findings suggest that IGF-1 may be involved in lithium response, supporting further investigation on its potential as a biomarker.
Collapse
Affiliation(s)
- Alessio Squassina
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari 09042, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Suganthi M, Sangeetha G, Gayathri G, Ravi Sankar B. Biphasic dose-dependent effect of lithium chloride on survival of human hormone-dependent breast cancer cells (MCF-7). Biol Trace Elem Res 2012; 150:477-86. [PMID: 23054864 DOI: 10.1007/s12011-012-9510-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 09/19/2012] [Indexed: 12/31/2022]
Abstract
Lithium, the first element of Group I in the periodic system, is used to treat bipolar psychiatric disorders. Lithium chloride (LiCl) is a selective inhibitor of glycogen synthase kinase-3β (GSK-3β), a serine/threonine kinase that regulates many cellular processes, in addition to its role in the regulation of glycogen synthase. GSK-3β is emerged as a promising drug target for various neurological diseases, type-2 diabetes, cancer, and inflammation. Several works have demonstrated that lithium can either inhibit or stimulate growth of normal and cancer cells. Hence, the present study is focused to analyze the underlying mechanisms that dictate the biphasic oncogenic properties of LiCl. In the current study, we have investigated the dose-dependent effects of LiCl on human breast cancer cells (MCF-7) by assessing the consequences on cytotoxicity and protein expressions of signaling molecules crucial for the maintenance of cell survival. The results showed breast cancer cells respond in a diverse manner to LiCl, i.e., at lower concentrations (1, 5, and 10 mM), LiCl induces cell survival by inhibiting apoptosis through regulation of GSK-3β, caspase-2, Bax, and cleaved caspase-7 and by activating anti-apoptotic proteins (Akt, β-catenin, Bcl-2, and cyclin D1). In contrast, at high concentrations (50 and 100 mM), it induces apoptosis by reversing these effects. Moreover, LiCl also alters the sodium and potassium levels thereby altering the membrane potential of MCF-7 cells. Thus it is inferred that LiCl exerts a dose-dependent biphasic effect on breast cancer cells (MCF-7) by altering the apoptotic/anti-apoptotic balance.
Collapse
Affiliation(s)
- Muralidharan Suganthi
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India
| | | | | | | |
Collapse
|