1
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Ge K, Du X, Liu H, Meng R, Wu C, Zhang Z, Liang X, Yang J, Zhang H. The cytotoxicity of microcystin-LR: ultrastructural and functional damage of cells. Arch Toxicol 2024; 98:663-687. [PMID: 38252150 DOI: 10.1007/s00204-023-03676-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Microcystin-LR (MC-LR) is a toxin produced by cyanobacteria, which is widely distributed in eutrophic water bodies and has multi-organ toxicity. Previous cytotoxicity studies have mostly elucidated the effects of MC-LR on intracellular-related factors, proteins, and DNA at the molecular level. However, there have been few studies on the adverse effects of MC-LR on cell ultrastructure and function. Therefore, research on the cytotoxicity of MC-LR in recent years was collected and summarized. It was found that MC-LR can induce a series of cytotoxic effects, including decreased cell viability, induced autophagy, apoptosis and necrosis, altered cell cycle, altered cell morphology, abnormal cell migration and invasion as well as leading to genetic damage. The above cytotoxic effects were related to the damage of various ultrastructure and functions such as cell membranes and mitochondria. Furthermore, MC-LR can disrupt cell ultrastructure and function by inducing oxidative stress and inhibiting protein phosphatase activity. In addition, the combined toxic effects of MC-LR and other environmental pollutants were investigated. This review explored the toxic targets of MC-LR at the subcellular level, which will provide new ideas for the prevention and treatment of multi-organ toxicity caused by MC-LR.
Collapse
Affiliation(s)
- Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Haohao Liu
- Department of Public Health, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Chowdhury RR, Rose S, Ezan F, Sovadinová I, Babica P, Langouët S. Hepatotoxicity of cyanotoxin microcystin-LR in human: Insights into mechanisms of action in the 3D culture model Hepoid-HepaRG. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123047. [PMID: 38036087 DOI: 10.1016/j.envpol.2023.123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin produced by harmful cyanobacterial blooms (CyanoHABs). MC-LR targets highly differentiated hepatocytes expressing organic anion transporting polypeptides OATP1B1 and OATP1B3 that are responsible for hepatocellular uptake of the toxin. The present study utilized an advanced 3D in vitro human liver model Hepoid-HepaRG based on the cultivation of collagen-matrix embedded multicellular spheroids composed of highly differentiated and polarized hepatocyte-like cells. 14-d-old Hepoid-HepaRG cultures showed increased expression of OATP1B1/1B3 and sensitivity to MC-LR cytotoxicity at concentrations >10 nM (48 h exposure, EC20 = 26 nM). MC-LR induced neither caspase 3/7 activity nor expression of the endoplasmic reticulum stress marker gene BiP/GRP78, but increased release of pro-inflammatory cytokine IL-8, indicating a necrotic type of cell death. Subcytotoxic (10 nM) and cytotoxic (≥100 nM) MC-LR concentrations disrupted hepatocyte functions, such as xenobiotic metabolism phase-I enzyme activities (cytochrome P450 1A/1B) and albumin secretion, along with reduced expression of CYP1A2 and ALB genes. MC-LR also decreased expression of HNF4A gene, a critical regulator of hepatocyte differentiation and function. Genes encoding hepatobiliary membrane transporters (OATP1B1, BSEP, NTCP), hepatocyte gap junctional gene connexin 32 and the epithelial cell marker E-cadherin were also downregulated. Simultaneous upregulation of connexin 43 gene, primarily expressed by liver progenitor and non-parenchymal cells, indicated a disruption of tissue homeostasis. This was associated with a shift in the expression ratio of E-cadherin to N-cadherin towards the mesenchymal cell marker, a process linked to epithelial-mesenchymal transition (EMT) and hepatocarcinogenesis. The effects observed in the human liver cell in vitro model revealed mechanisms that can potentially contribute to the MC-LR-induced promotion and progression of hepatocellular carcinoma (HCC). Hepoid-HepaRG cultures provide a robust, accessible and versatile in vitro model, capable of sensitively detecting hepatotoxic effects at toxicologically relevant concentrations, allowing for assessing hepatotoxicity mechanisms, human health hazards and impacts of environmental hepatotoxins, such as MC-LR.
Collapse
Affiliation(s)
- Riju R Chowdhury
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Rose
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Frédéric Ezan
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France
| | - Iva Sovadinová
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Babica
- Masaryk University, Faculty of Science, RECETOX, Kotlářská 2, 61137, Brno, Czech Republic
| | - Sophie Langouët
- University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, environnement et travail), UMR_S 1085, 35000, Rennes, France.
| |
Collapse
|
4
|
Du X, Fu Y, Tian Z, Liu H, Xin H, Fu X, Wang F, Zhang H, Zeng X. Microcystin-LR accelerates follicular atresia in mice via JNK-mediated adherent junction damage of ovarian granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114592. [PMID: 36731181 DOI: 10.1016/j.ecoenv.2023.114592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/25/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Microcystin-LR (MC-LR), one of aquatic environmental contaminants with reproductive toxicity produced by cyanobacterial blooms, but its toxic effects and mechanisms on the ovary are not fully understood. Here, proteomic techniques and molecular biology experiments were performed to study the potential mechanism of MC-LR-caused ovarian toxicity. Results showed that protein expression profile of ovarian granulosa cells (KK-1) was changed by 17 μg/mL MC-LR exposure. Comparing with the control group, 118 upregulated proteins as well as 97 downregulated proteins were identified in MC-LR group. Function of differentially expressed proteins was found to be enriched in pathways related to adherent junction, such as cadherin binding, cell-cell junction, cell adhesion and focal adherens. Furthermore, in vitro experiments, MC-LR significantly downregulated the expression levels of proteins associated with adherent junction (β-catenin, N-cadherin, and α-catenin) as well as caused cytoskeletal disruption in KK-1 cells (P < 0.05), indicating that the adherent junction was damaged. Results of in vivo experiments have shown that after 14 days of acute MC-LR exposure (40 μg/kg), damaged adherent junction and an increased number of atretic follicles were observed in mouse ovaries. Moreover, MC-LR activated JNK, an upstream regulator of adherent junction proteins, in KK-1 cells and mouse ovarian tissues. In contrast, JNK inhibition alleviated MC-LR-induced adherent junction damage in vivo and in vitro, as well as the number of atretic follicles. Taken together, findings from the present study indicated that JNK is involved in MC-LR-induced granulosa cell adherent junction damage, which accelerated follicular atresia. Our study clarified a novel mechanism of MC-LR-caused ovarian toxicity, providing a theoretical foundation for protecting female reproductive health from environmental pollutants.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hongxia Xin
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Fufang Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
5
|
He J, Shu Y, Dai Y, Gao Y, Liu S, Wang W, Jiang H, Zhang H, Hong P, Wu H. Microcystin-leucine arginine exposure induced intestinal lipid accumulation and MC-LR efflux disorder in Lithobates catesbeianus tadpoles. Toxicology 2022; 465:153058. [PMID: 34863901 DOI: 10.1016/j.tox.2021.153058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/05/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
Few studies exist on the toxic effects of chronic exposure to microcystins (MCs) on amphibian intestines, and the toxicity mechanisms are unclear. Here, we evaluated the impact of subchronic exposure (30 days) to environmentally realistic microcystin-leucine arginine (MC-LR) concentrations (0 μg/L, 0.5 μg/L and 2 μg/L) on tadpole (Lithobates catesbeianus) intestines by analyzing the histopathological and subcellular microstructural damage, the antioxidative and oxidative enzyme activities, and the transcriptome levels. Histopathological results showed severe damage accompanied by inflammation to the intestinal tissues as the MC-LR exposure concentration increased from 0.5 μg/L to 2 μg/L. RNA-sequencing analysis identified 634 and 1,147 differentially expressed genes (DEGs) after exposure to 0.5 μg/L and 2 μg/L MC-LR, respectively, compared with those of the control group (0 μg/L). Biosynthesis of unsaturated fatty acids and the peroxisome proliferator-activated receptor (PPAR) signaling pathway were upregulated in the intestinal tissues of the exposed groups, with many lipid droplets being observed on transmission electron microscopy, implying that MC-LR may induce lipid accumulation in frog intestines. Moreover, 2 μg/L of MC-LR exposure inhibited the xenobiotic and toxicant biodegradation related to detoxification, implying that the tadpoles' intestinal detoxification ability was weakened after exposure to 2 μg/L MC-LR, which may aggravate intestinal toxicity. Lipid accumulation and toxin efflux disorder may be caused by MC-LR-induced endoplasmic reticular stress. This study presents new evidence that MC-LR harms amphibians by impairing intestinal lipid metabolism and toxin efflux, providing a theoretical basis for evaluating the health risks of MC-LR to amphibians.
Collapse
Affiliation(s)
- Jun He
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yilin Shu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yue Dai
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Yuxin Gao
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Shuyi Liu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Wenchao Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Huiling Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Huijuan Zhang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| | - Pei Hong
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Hailong Wu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, Anhui Province, China.
| |
Collapse
|
6
|
Raška J, Čtveráčková L, Dydowiczová A, Sovadinová I, Bláha L, Babica P. Cylindrospermopsin induces cellular stress and activation of ERK1/2 and p38 MAPK pathways in adult human liver stem cells. CHEMOSPHERE 2019; 227:43-52. [PMID: 30981969 DOI: 10.1016/j.chemosphere.2019.03.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Cyanobacterial toxin cylindrospermopsin (CYN) is an emerging freshwater contaminant, whose expanding environmental occurrence might result into increased human health risks. CYN is potent hepatotoxin, with cytotoxicity and genotoxicity documented in primary hepatocytes or hepatoma cell lines. However, there is only limited information about CYN effects on adult human liver stem cells (LSCs), which play an important role in liver tissue development, regeneration and repair. In our study with human liver cell line HL1-hT1 which expresses characteristics of LSCs, CYN was found to be cytotoxic and increasing cell death after 24-48 h exposure to concentrations >1 μM. Subcytotoxic 1 μM concentration did not induce cell death or membrane damage, but inhibited cellular processes related to energy production, leading to a growth stagnation after >72 h. Interestingly, these effects were not associated with increased DNA damage, reactive oxygen species production, or endoplasmic reticulum stress. However, CYN induced a sustained (24-48 h) activation of mitogen-activated protein kinases ERK1/2 and p38, and increased expression of stress-related transcription factor ATF3. Thus, LSCs were not primarily affected by CYN-induced genotoxicity and oxidative stress, but via activation of signaling and transcriptional pathways critical for regulation of cell proliferation, stress responses, cell survival and inflammation. Alterations of LSCs during CYN-induced liver injury, including the role of nongenotoxic mechanisms, should be therefore considered in mechanistic assessments of chronic CYN hepatotoxicity and hepatocarcinogenicity.
Collapse
Affiliation(s)
- Jan Raška
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Čtveráčková
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aneta Dydowiczová
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Luděk Bláha
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
7
|
Wen C, Yang S, Zheng S, Feng X, Chen J, Yang F. Analysis of long non-coding RNA profiled following MC-LR-induced hepatotoxicity using high-throughput sequencing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1165-1172. [PMID: 30430930 DOI: 10.1080/15287394.2018.1532717] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The occurrence of microcystin-LR(MC-LR) variant a known hepatotoxin constitutes a global public health concern. However, the molecular mechanisms underlying MC-LR-induced hepatotoxicity remain to be determined. The aim of this study was to investigate whether long noncoding RNAs (lncRNA) were involved in MC-LR-mediated hepatotoxicity using human normal liver cell line HL7702 to profile lncRNAs after 24 hr treatment with MC-LR. With the use of high-throughput sequencing techniques, data showed that the expression levels of 37, 33, 34, 35 lncRNA were significantly altered following exposure to 1, 2.5, 5, or 10 μM MC-LR, respectively. In particular, the expression levels of LINC00847, MIR22HG and LNC_00027 were markedly increased in all treatment groups. It is of interest that LNC_00027 was identified as a novel lncRNA. Quantitative real-time PCR (qPCR) was employed to determine the differentially expressed lncRNA levels. Analysis using Gene Ontology (GO) enrichment identified the functions of target genes involved in systems development, metabolism, and protein binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that MC-LR exposure upregulated some important signaling pathways including pathway in cancer, PI3K-AKT signaling and MAPK pathway. In summary, data indicate that the MC-LR-induced alterations in lncRNA may be associated with hepatotoxicity and that upregulation of LINC00847, MIR22HG and LNC_00027 may play important roles in the observed MC-mediated liver damage.
Collapse
Affiliation(s)
- Cong Wen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Shu Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Shuilin Zheng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Xiangling Feng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Jihua Chen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
| | - Fei Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , Hunan , China
- b Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health , Southeast University , Nanjing , China
- c Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety , Central South University , Changsha , China
| |
Collapse
|
8
|
Basu A, Dydowiczová A, Čtveráčková L, Jaša L, Trosko JE, Bláha L, Babica P. Assessment of Hepatotoxic Potential of Cyanobacterial Toxins Using 3D In Vitro Model of Adult Human Liver Stem Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10078-10088. [PMID: 30059226 DOI: 10.1021/acs.est.8b02291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cyanotoxins microcystin-LR (MC-LR) and cylindrospermopsin (CYN) represent hazardous waterborne contaminants and potent human hepatotoxins. However, in vitro monolayer cultures of hepatic cell lines were found to recapitulate, poorly, major hepatocyte-specific functions and inadequately predict hepatotoxic effects of MC-LR and CYN. We utilized 3-dimensional (3D), scaffold-free spheroid cultures of human telomerase-immortalized adult liver stem cells HL1-hT1 to evaluate hepatotoxic potential of MC-LR and CYN. In monolayer cultures of HL1-hT1 cells, MC-LR did not induce cytotoxic effects (EC50 > 10 micromol/L), while CYN inhibited cell growth and viability (48h-96h EC50 ≈ 5.5-0.6 micromol/L). Growth and viability of small growing spheroids were inhibited by both cyanotoxins (≥0.1 micromol/L) and were associated with blebbing and disintegration at the spheroid surface. Hepatospheroid damage and viability reduction were observed also in large mature spheroids, with viability 96h-EC50 values being 0.04 micromol/L for MC-LR and 0.1 micromol/L for CYN, and No Observed Effect Concentrations <0.01 micromol/L. Spheroid cultures of adult human liver stem cells HL1-hT1 exhibit sensitivity comparable to cultures of primary hepatocytes and provide a simple, practical, and cost-effective tool, which can be effectively used in environmental and toxicological research, including assessment of hepatotoxic potential and effect-based monitoring of various samples contaminated with toxic cyanobacteria.
Collapse
Affiliation(s)
- Amrita Basu
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Aneta Dydowiczová
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Lucie Čtveráčková
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Libor Jaša
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - James E Trosko
- Department of Pediatrics and Human Development & Institute for Integrative Toxicology , Michigan State University , 1129 Farm Lane , East Lansing , 48824 Michigan , United States
| | - Luděk Bláha
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science , Masaryk University , Kamenice 753/5 , Brno 625 00 , Czech Republic
| |
Collapse
|
9
|
Rodrigues Pires Júnior O, de Oliveira NB, Bosque RJ, Nice Ferreira MF, Morais Aurélio da Silva V, Martins Magalhães AC, Correia de Santana CJ, de Souza Castro M. Histopathological Evaluation of the Exposure by Cyanobacteria Cultive Containing [d-Leu¹]Microcystin-LR on Lithobates catesbeianus Tadpoles. Toxins (Basel) 2018; 10:toxins10080318. [PMID: 30082615 PMCID: PMC6116141 DOI: 10.3390/toxins10080318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/21/2018] [Accepted: 07/24/2018] [Indexed: 01/28/2023] Open
Abstract
This study evaluated the effects of [d-Leu1]Microcystin-LR variant by the exposure of Lithobates catesbeianus tadpole to unialgal culture Microcystis aeruginosa NPLJ-4 strain. The Tadpole was placed in aquariums and exposed to Microcystis aeruginosa culture or disrupted cells. For 16 days, 5 individuals were removed every 2 days, and tissue samples of liver, skeletal muscle, and intestinal tract were collected for histopathology and bioaccumulation analyses. After exposure, those surviving tadpoles were placed in clean water for 15 days to evaluate their recovery. A control without algae and toxins was maintained in the same conditions and exhibited normal histology and no tissue damage. In exposed tadpoles, samples were characterized by serious damages that similarly affected the different organs, such as loss of adhesion between cells, nucleus fragmentation, necrosis, and hemorrhage. Samples showed signs of recovery but severe damages were still observed. Neither HPLC-PDA nor mass spectrometry analysis showed any evidence of free Microcystins bioaccumulation.
Collapse
Affiliation(s)
- Osmindo Rodrigues Pires Júnior
- Toxinology Laboratory, Depto. Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil.
| | - Natiela Beatriz de Oliveira
- Toxinology Laboratory, Depto. Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil.
| | - Renan J Bosque
- Depto. Genetics and Morphology, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil.
| | | | | | - Ana Carolina Martins Magalhães
- Toxinology Laboratory, Depto. Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil.
| | - Carlos José Correia de Santana
- Toxinology Laboratory, Depto. Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil.
| | - Mariana de Souza Castro
- Toxinology Laboratory, Depto. Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia 70910-900, Brazil.
| |
Collapse
|
10
|
Tumor-promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol Appl Pharmacol 2018. [PMID: 29534881 DOI: 10.1016/j.taap.2018.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
HL1-hT1 cell line represents adult human liver stem cells (LSCs) immortalized with human telomerase reverse transcriptase. In this study, HL1-hT1 cells were found to express mesenchymal markers (vimentin, CD73, CD90/THY-1 and CD105) and an early hepatic endoderm marker FOXA2, while not expressing hepatic progenitor (HNF4A, LGR5, α-fetoprotein) or differentiated hepatocyte markers (albumin, transthyretin, connexin 32). In response to microcystin-LR (MC-LR), a time- and concentration-dependent formation of MC-positive protein bands in HL1-hT1 cells was observed. Cellular accumulation of MC-LR occurred most likely via mechanisms independent on organic anion transporting polypeptides (OATPs) or multidrug resistance (MDR) proteins, as indicated (a) by a gene expression analysis of 11 human OATP genes and 4 major MDR genes (MDR1/P-glycoprotein, MRP1, MRP2 and BCRP); (b) by non-significant effects of OATP or MDR1 inhibitors on MC-LR uptake. Accumulation of MC-positive protein bands in HL1-hT1 cells was associated neither with alterations of cell viability and growth, dysregulations of ERK1/2 and p38 kinases, reactive oxygen species formation, induction of double-stranded DNA breaks nor modulations of stress-inducible genes (ATF3, HSP5). It suggests that LSCs might have a selective, MDR1-independent, survival advantage and higher tolerance towards MC-induced cytotoxic, genotoxic or cancer-related events than differentiated adult hepatocytes, fetal hepatocyte or malignant liver cell lines. HL1-hT1 cells provide a valuable in vitro tool for studying effects of toxicants and pharmaceuticals on LSCs, whose important role in the development of chronic toxicities and liver diseases is being increasingly recognized.
Collapse
|
11
|
Park MK, Lee CH. Effects of cerulein on keratin 8 phosphorylation and perinuclear reorganization in pancreatic cancer cells: Involvement of downregulation of protein phosphatase 2A and alpha4. ENVIRONMENTAL TOXICOLOGY 2016; 31:2090-2098. [PMID: 26303380 DOI: 10.1002/tox.22186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/31/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Toxicants can perturb cellular homeostasis by modifying phosphorylation-based signaling. In the present study, we examined the effects of cerulein, an inducer of acute pancreatitis, on keratin 8 (K8) phosphorylation. We found that cerulein dose-dependently induced K8 phosphorylation and perinuclear reorganization in PANC-1 cells, thus leading to migration and invasion. The extracellular signal-regulated kinases (ERK) inhibitor U0126 suppressed cerulein-induced phosphorylation of serine 431 and reorganization of K8. Cerulein reduced the expressions of protein phosphatase 2A (PP2A) via ubiqutination and alpha4. PP2A's involvement in K8 phosphorylation of PANC-1 cells was also confirmed by the observation that PP2A gene silencing resulted in K8 phosphorylation and migration of PANC-1 cells. Overall, these results suggest that cerulein induced phosphorylation and reorganization through ERK activation by downregulating PP2A and alpha4, leading to increased migration and invasion of PANC-1 cells. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 2090-2098, 2016.
Collapse
Affiliation(s)
- Mi Kyung Park
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul, 100-715, Republic of Korea
| | - Chang Hoon Lee
- BK21PLUS R-FIND Team, College of Pharmacy, Dongguk University, Seoul, 100-715, Republic of Korea
| |
Collapse
|
12
|
Ma J, Feng Y, Liu Y, Li X. PUMA and survivin are involved in the apoptosis of HepG2 cells induced by microcystin-LR via mitochondria-mediated pathway. CHEMOSPHERE 2016; 157:241-249. [PMID: 27235693 DOI: 10.1016/j.chemosphere.2016.05.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/04/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
The present study aimed to determine the cytotoxicity of microcystin-LR (MC-LR) on the human hepatocellular carcinoma (HepG2) cells in order to elucidate the mechanism of apoptosis induced by MC-LR. Morphological evaluation results showed that MC-LR induced time- and concentration-dependent apoptosis in HepG2 cells. The biochemical assays revealed that MC-LR-exposure caused overproduction of reactive oxygen species (ROS), cyclooxygenase-2 activity alteration, cytochrome c release, and remarkable activation of caspase-3 and caspase-9 in HepG2 cells, indicating that MC-LR-induced apoptosis is mediated by mitochondrial pathway. Moreover, we also found that p53 and Bax might play an important role in MC-LR-induced apoptosis in HepG2 cells in which PUMA and survivin were involved. However, further studies are necessary to elucidate the possible functions of PUMA and survivin in MC-LR-induced apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Junguo Ma
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yiyi Feng
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoyu Li
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
13
|
Li Y, Li J, Huang H, Yang M, Zhuang D, Cheng X, Zhang H, Fu X. Microcystin-LR induces mitochondria-mediated apoptosis in human bronchial epithelial cells. Exp Ther Med 2016; 12:633-640. [PMID: 27446254 PMCID: PMC4950845 DOI: 10.3892/etm.2016.3423] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 04/11/2016] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to investigate the toxicity of microcystin-LR (MC-LR) and to explore the mechanism of MC-LR-induced apoptosis in human bronchial epithelial (HBE) cells. HBE cells were treated with MC-LR (1, 10, 20, 30 and 40 µg/ml) alone or with MC-LR (0, 2.5, 5 and 10 µg/ml) and Z-VAD-FMK (0, 10, 20, 40, 60, 80, 100, 120 and 140 µM), which is a caspase inhibitor, for 24 and 48 h. Cell viability was assessed via an MTT assay and the half maximal effective concentration of MC-LR was determined. The optimal concentration of Z-VAD-FMK was established as 50 µm, which was then used in the subsequent experiments. MC-LR significantly inhibited cell viability and induced apoptosis of HBE cells in a dose-dependent manner, as detected by an Annexin V/propidium iodide assay. MC-LR induced cell apoptosis, excess reactive oxygen species production and mitochondrial membrane potential collapse, upregulated Bax expression and downregulated B-cell lymphoma-2 expression in HBE cells. Moreover, western blot analysis demonstrated that MC-LR increased the activity levels of caspase-3 and caspase-9 and induced cytochrome c release into the cytoplasm, suggesting that MC-LR-induced apoptosis is associated with the mitochondrial pathway. Furthermore, pretreatment with Z-VAD-FMK reduced MC-LR-induced apoptosis by blocking caspase activation in HBE cells. Therefore, the results of the present study suggested that MC-LR is capable of significantly inhibiting the viability of HBE cells by inducing apoptosis in a mitochondria-dependent manner. The present study provides a foundation for further understanding the mechanism underlying the toxicity of MC-LR in the respiratory system.
Collapse
Affiliation(s)
- Yang Li
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jinhui Li
- Henan Science and Technology Exchange Center with Foreign Countries, Zhengzhou University, Zhengzhou, Henan 450003, P.R. China
| | - Hui Huang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Mingfeng Yang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Donggang Zhuang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoli Fu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
14
|
Li X, Ma J, Li Y. Molecular Cloning and Expression Determination ofp38 MAPKfrom the Liver and Kidney of Silver Carp. J Biochem Mol Toxicol 2016; 30:224-31. [DOI: 10.1002/jbt.21781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/30/2015] [Accepted: 12/11/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoyu Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Junguo Ma
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Yuanyuan Li
- College of Life Science; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
15
|
Zeng J, Tu WW, Lazar L, Chen DN, Zhao JS, Xu J. Hyperphosphorylation of microfilament-associated proteins is involved in microcystin-LR-induced toxicity in HL7702 cells. ENVIRONMENTAL TOXICOLOGY 2015; 30:981-988. [PMID: 24677693 DOI: 10.1002/tox.21974] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Microcystin-LR (MC-LR) has been regarded as a hepatotoxin, which can cause cytoskeletal reorganization, especially of the actin filaments. However, the underlying mechanisms remain unclear. In this study, whether MC-LR could induce microfilaments disruption was verified in the normal human liver cell line HL7702; and then the transcription, translation, and phosphorylation levels of major microfilament-associated proteins were measured; finally, the underlying mechanisms was investigated. After treatment with MC-LR, the actin filaments lost their characteristic filamentous organization in the cells, demonstrating increased actin depolymerization. The mRNA and protein levels of ezrin, vasodilator-stimulated phosphoprotein (VASP), actin-related protein2/3, and cofilin remained unchanged. However, the phosphorylation levels of ezrin and VASP were increased, when treated with 10 μM MC-LR. Moreover, P38 and ERK1/2 were involved in MC-LR-induced hyperphosphorylation of microfilament-associated proteins. In summary, this study demonstrates that MC-LR can cause disruption of actin filaments in HL7702 cells due to MC-LR-induced mitogen-activated protein kinase pathway activation and hyperphosphorylation of different types of microfilament-associated proteins.
Collapse
Affiliation(s)
- Jing Zeng
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Wei-Wei Tu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Lissy Lazar
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Dong-Ni Chen
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jin-Shun Zhao
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jin Xu
- Department of Preventive Medicine, School of Medicine, Ningbo University, Ningbo, 315211, China
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
16
|
Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon 2015; 101:92-100. [DOI: 10.1016/j.toxicon.2015.05.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/31/2022]
|
17
|
Shen Y, Chen W, Zhao B, Hao H, Li Z, Lu C, Shen Y. CS1 is a novel topoisomerase IIα inhibitor with favorable drug resistance profiles. Biochem Biophys Res Commun 2014; 453:302-8. [DOI: 10.1016/j.bbrc.2014.09.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/11/2014] [Indexed: 01/26/2023]
|
18
|
Surface-enhanced fluorescence immunosensor using Au nano-crosses for the detection of microcystin-LR. Biosens Bioelectron 2014; 62:255-60. [PMID: 25016333 DOI: 10.1016/j.bios.2014.06.064] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/27/2014] [Accepted: 06/30/2014] [Indexed: 01/12/2023]
Abstract
A surface-enhanced fluorescence (SEF) immunosensor for the detection of microcystin-LR was developed using Au nano-crosses as fluorescence enhancement nanoparticles and cy5 as a fluorescence label molecule. The SEF effects of cy5 in the proximity of Au nanorods and gold nano-crosses was investigated by using Au nanorods or nano-crosses coated negative-charged glass surfaces. Fluorescence measurements indicated that SEF was influenced by the size, shape and distribution of the Au nanoparticles, with an appropriate spacer layer between the Au nanoparticles and the cy5. The enhancement factor was from 2.3- to 35-fold. Under optimal conditions, the SEF immunosensor exhibited a good linear response at microcystin-LR concentrations of 0.02-16 ng mL(-1) (R(2)=0.9981). The limit of detection was 0.007 ng mL(-1) with little adsorption of microcystin-RR, microcystin-LW, and microcystin-LF. High microcystin-LR recoveries were obtained from naturally contaminated fish samples. The SEF immunosensor allows the reliable detection of microcystin-LR in seafood, and has potential in simple, sensitive detection applications.
Collapse
|