1
|
Brandt N, Köper F, Hausmann J, Bräuer AU. Spotlight on plasticity-related genes: Current insights in health and disease. Pharmacol Ther 2024; 260:108687. [PMID: 38969308 DOI: 10.1016/j.pharmthera.2024.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
The development of the central nervous system is highly complex, involving numerous developmental processes that must take place with high spatial and temporal precision. This requires a series of complex and well-coordinated molecular processes that are tighly controlled and regulated by, for example, a variety of proteins and lipids. Deregulations in these processes, including genetic mutations, can lead to the most severe maldevelopments. The present review provides an overview of the protein family Plasticity-related genes (PRG1-5), including their role during neuronal differentiation, their molecular interactions, and their participation in various diseases. As these proteins can modulate the function of bioactive lipids, they are able to influence various cellular processes. Furthermore, they are dynamically regulated during development, thus playing an important role in the development and function of synapses. First studies, conducted not only in mouse experiments but also in humans, revealed that mutations or dysregulations of these proteins lead to changes in lipid metabolism, resulting in severe neurological deficits. In recent years, as more and more studies have shown their involvement in a broad range of diseases, the complexity and broad spectrum of known and as yet unknown interactions between PRGs, lipids, and proteins make them a promising and interesting group of potential novel therapeutic targets.
Collapse
Affiliation(s)
- Nicola Brandt
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Franziska Köper
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Jens Hausmann
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Anja U Bräuer
- Research Group Anatomy, Department of Human Medicine, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany; Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
2
|
Fuchs J, Bareesel S, Kroon C, Polyzou A, Eickholt BJ, Leondaritis G. Plasma membrane phospholipid phosphatase-related proteins as pleiotropic regulators of neuron growth and excitability. Front Mol Neurosci 2022; 15:984655. [PMID: 36187351 PMCID: PMC9520309 DOI: 10.3389/fnmol.2022.984655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal plasma membrane proteins are essential for integrating cell extrinsic and cell intrinsic signals to orchestrate neuronal differentiation, growth and plasticity in the developing and adult nervous system. Here, we shed light on the family of plasma membrane proteins phospholipid phosphatase-related proteins (PLPPRs) (alternative name, PRGs; plasticity-related genes) that fine-tune neuronal growth and synaptic transmission in the central nervous system. Several studies uncovered essential functions of PLPPRs in filopodia formation, axon guidance and branching during nervous system development and regeneration, as well as in the control of dendritic spine number and excitability. Loss of PLPPR expression in knockout mice increases susceptibility to seizures, and results in defects in sensory information processing, development of psychiatric disorders, stress-related behaviors and abnormal social interaction. However, the exact function of PLPPRs in the context of neurological diseases is largely unclear. Although initially described as active lysophosphatidic acid (LPA) ecto-phosphatases that regulate the levels of this extracellular bioactive lipid, PLPPRs lack catalytic activity against LPA. Nevertheless, they emerge as atypical LPA modulators, by regulating LPA mediated signaling processes. In this review, we summarize the effects of this protein family on cellular morphology, generation and maintenance of cellular protrusions as well as highlight their known neuronal functions and phenotypes of KO mice. We discuss the molecular mechanisms of PLPPRs including the deployment of phospholipids, actin-cytoskeleton and small GTPase signaling pathways, with a focus on identifying gaps in our knowledge to stimulate interest in this understudied protein family.
Collapse
Affiliation(s)
- Joachim Fuchs
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shannon Bareesel
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cristina Kroon
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Britta J. Eickholt
- Institute of Molecular Biology and Biochemistry, Charité – Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- *Correspondence: Britta J. Eickholt,
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- Institute of Biosciences, University Research Center Ioannina, University of Ioannina, Ioannina, Greece
- George Leondaritis,
| |
Collapse
|
3
|
Hook G, Reinheckel T, Ni J, Wu Z, Kindy M, Peters C, Hook V. Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders. Pharmacol Rev 2022; 74:600-629. [PMID: 35710131 PMCID: PMC9553114 DOI: 10.1124/pharmrev.121.000527] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cathepsin B (CTSB) is a powerful lysosomal protease. This review evaluated CTSB gene knockout (KO) outcomes for amelioration of brain dysfunctions in neurologic diseases and aging animal models. Deletion of the CTSB gene resulted in significant improvements in behavioral deficits, neuropathology, and/or biomarkers in traumatic brain injury, ischemia, inflammatory pain, opiate tolerance, epilepsy, aging, transgenic Alzheimer's disease (AD), and periodontitis AD models as shown in 12 studies. One study found beneficial effects for double CTSB and cathepsin S KO mice in a multiple sclerosis model. Transgenic AD models using amyloid precursor protein (APP) mimicking common sporadic AD in three studies showed that CTSB KO improved memory, neuropathology, and biomarkers; two studies used APP representing rare familial AD and found no CTSB KO effect, and two studies used highly engineered APP constructs and reported slight increases in a biomarker. In clinical studies, all reports found that CTSB enzyme was upregulated in diverse neurologic disorders, including AD in which elevated CTSB was positively correlated with cognitive dysfunction. In a wide range of neurologic animal models, CTSB was also upregulated and not downregulated. Further, human genetic mutation data provided precedence for CTSB upregulation causing disease. Thus, the consilience of data is that CTSB gene KO results in improved brain dysfunction and reduced pathology through blockade of CTSB enzyme upregulation that causes human neurologic disease phenotypes. The overall findings provide strong support for CTSB as a rational drug target and for CTSB inhibitors as therapeutic candidates for a wide range of neurologic disorders. SIGNIFICANCE STATEMENT: This review provides a comprehensive compilation of the extensive data on the effects of deleting the cathepsin B (CTSB) gene in neurological and aging mouse models of brain disorders. Mice lacking the CTSB gene display improved neurobehavioral deficits, reduced neuropathology, and amelioration of neuronal cell death and inflammatory biomarkers. The significance of the compelling CTSB evidence is that the data consilience validates CTSB as a drug target for discovery of CTSB inhibitors as potential therapeutics for treating numerous neurological diseases.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Thomas Reinheckel
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Junjun Ni
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Zhou Wu
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Mark Kindy
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Christoph Peters
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Vivian Hook
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| |
Collapse
|
4
|
Wang D, Liu Y, Zhao D, Jin M, Li L, Ni H. Plppr5 gene inactivation causes a more severe neurological phenotype and abnormal mitochondrial homeostasis in a mouse model of juvenile seizure. Epilepsy Res 2022; 183:106944. [DOI: 10.1016/j.eplepsyres.2022.106944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
|
5
|
The Protective Role of E-64d in Hippocampal Excitotoxic Neuronal Injury Induced by Glutamate in HT22 Hippocampal Neuronal Cells. Neural Plast 2021; 2021:7174287. [PMID: 34721570 PMCID: PMC8550833 DOI: 10.1155/2021/7174287] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/14/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Epilepsy is the most common childhood neurologic disorder. Status epilepticus (SE), which refers to continuous epileptic seizures, occurs more frequently in children than in adults, and approximately 40–50% of all cases occur in children under 2 years of age. Conventional antiepileptic drugs currently used in clinical practice have a number of adverse side effects. Drug-resistant epilepsy (DRE) can progressively develop in children with persistent SE, necessitating the development of novel therapeutic drugs. During SE, the persistent activation of neurons leads to decreased glutamate clearance with corresponding glutamate accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Our previous study demonstrated that after developmental seizures in rats, E-64d exerts a neuroprotective effect on the seizure-induced brain damage by modulating lipid metabolism enzymes, especially ApoE and ApoJ/clusterin. In this study, we investigated the impact and mechanisms of E-64d administration on neuronal excitotoxicity. To test our hypothesis that E-64d confers neuroprotective effects by regulating autophagy and mitochondrial pathway activity, we simulated neuronal excitotoxicity in vitro using an immortalized hippocampal neuron cell line (HT22). We found that E-64d improved cell viability while reducing oxidative stress and neuronal apoptosis. In addition, E-64d treatment regulated mitochondrial pathway activity and inhibited chaperone-mediated autophagy in HT22 cells. Our findings indicate that E-64d may alleviate glutamate-induced damage via regulation of mitochondrial fission and apoptosis, as well as inhibition of chaperone-mediated autophagy. Thus, E-64d may be a promising therapeutic treatment for hippocampal injury associated with SE.
Collapse
|
6
|
Wang D, Jin MF, Li L, Liu Y, Sun Y, Ni H. PRG5 Knockout Precipitates Late-Onset Hypersusceptibility to Pilocarpine-Induced Juvenile Seizures by Exacerbating Hippocampal Zinc Signaling-Mediated Mitochondrial Damage. Front Neurosci 2021; 15:715555. [PMID: 34512249 PMCID: PMC8430038 DOI: 10.3389/fnins.2021.715555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction Epileptogenesis is understood as the plastic process that produces a persistent reorganization of the brain’s neural network after a precipitating injury (recurrent neonatal seizures, for instance) with a latent period, finally leading to neuronal hyperexcitability. Plasticity-related genes (PRGs), also known as lipid phosphate phosphatase-related proteins (PLPPRs), are regulators of mitochondrial membrane integrity and energy metabolism. This study was undertaken to determine whether PRG5 gene knockout contributes to the delayed hypersensitivity induced by developmental seizures and the aberrant sprouting of hippocampal mossy fibers, and to determine whether it is achieved through the mitochondrial pathway. Here, we developed a “twist” seizure model by coupling pilocarpine-induced juvenile seizures with later exposure to penicillin to test the long-term effects of PRG5 knockout on seizure latency through comparison with wild-type (WT) mice. Hippocampal mossy fiber sprouting (MFS) was detected by Timm staining. In order to clarify the mechanism of the adverse reactions triggered by PRG5 knockout, hippocampal HT22 neuronal cultures were exposed to glutamate, with or without PRG5 interference. Mitochondrial function, oxidative stress indicators and zinc ion content were detected. Results PRG5 gene knockout significantly reduced the seizure latency, and aggravated the lowered seizure threshold induced by developmental seizures. Besides, knockout of the PRG5 gene reduced the MFS scores to a certain extent. Furthermore, PRG5 gene silencing significantly increases the zinc ion content in hippocampal neurons, impairs neuronal activity and mitochondrial function, and exacerbates glutamate-induced oxidative stress damage. Conclusion In summary, PRG5 KO is associated with significantly greater hypersusceptibility to juvenile seizures in PRG5(–/–) mice compared with WT mice. These effects may be related to the hippocampal zinc signaling. The effects do not appear to be related to changes in MFS because KO mice with juvenile seizures had the shortest seizure latencies but exhibited less MFS than WT mice with juvenile seizures.
Collapse
Affiliation(s)
- Dandan Wang
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China.,Department of Pediatrics, First Affiliated Hospital of University of Science and Technology of China, Hefei, China
| | - Mei-Fang Jin
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Lili Li
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yueying Liu
- Department of Pediatrics, North Branch, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yuxiao Sun
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Sun Y, Ma L, Jin M, Zheng Y, Wang D, Ni H. Effects of Melatonin on Neurobehavior and Cognition in a Cerebral Palsy Model of plppr5-/- Mice. Front Endocrinol (Lausanne) 2021; 12:598788. [PMID: 33692754 PMCID: PMC7937640 DOI: 10.3389/fendo.2021.598788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral palsy (CP), a group of clinical syndromes caused by non-progressive brain damage in the developing fetus or infant, is one of the most common causes of lifelong physical disability in children in most countries. At present, many researchers believe that perinatal cerebral hypoxic ischemic injury or inflammatory injury are the main causes of cerebral palsy. Previous studies including our works confirmed that melatonin has a protective effect against convulsive brain damage during development and that it affects the expression of various molecules involved in processes such as metabolism, plasticity and signaling in the brain. Integral membrane protein plppr5 is a new member of the plasticity-related protein family, which is specifically expressed in brain and spinal cord, and induces filopodia formation as well as neurite growth. It is highly expressed in the brain, especially in areas of high plasticity, such as the hippocampus. The signals are slightly lower in the cortex, the cerebellum, and in striatum. Noteworthy, during development plppr5 mRNA is expressed in the spinal cord, i.e., in neuron rich regions such as in medial motor nuclei, suggesting that plppr5 plays an important role in the regulation of neurons. However, the existing literature only states that plppr5 is involved in the occurrence and stability of dendritic spines, and research on its possible involvement in neonatal ischemic hypoxic encephalopathy has not been previously reported. We used plppr5 knockout (plppr5-/-) mice and their wild-type littermates to establish a model of hypoxicischemic brain injury (HI) to further explore the effects of melatonin on brain injury and the role of plppr5 in this treatment in an HI model, which mainly focuses on cognition, exercise, learning, and memory. All the tests were performed at 3-4 weeks after HI. As for melatonin treatment, which was performed 5 min after HI injury and followed by every 24h. In these experiments, we found that there was a significant interaction between genotype and treatment in novel object recognition tests, surface righting reflex tests and forelimb suspension reflex tests, which represent learning and memory, motor function and coordination, and the forelimb grip of the mice, respectively. However, a significant main effect of genotype and treatment on performance in all behavioral tests were observed. Specifically, wild-type mice with HI injury performed better than plppr5-/- mice, regardless of treatment with melatonin or vehicle. Moreover, treatment with melatonin could improve behavior in the tests for wild-type mice with HI injury, but not for plppr5-/- mice. This study showed that plppr5 knockout aggravated HI damage and partially weakened the neuroprotection of melatonin in some aspects (such as novel object recognition test and partial nerve reflexes), which deserves further study.
Collapse
|
8
|
von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H. Regulation of Alzheimer's disease-associated proteins during epileptogenesis. Neuroscience 2019; 424:102-120. [PMID: 31705965 DOI: 10.1016/j.neuroscience.2019.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Clinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christina Zellinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Julia Gedon
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
9
|
Liang Y, Zhou Z, Wang H, Cheng X, Zhong S, Zhao C. Association of apolipoprotein E genotypes with epilepsy risk: A systematic review and meta-analysis. Epilepsy Behav 2019; 98:27-35. [PMID: 31299529 DOI: 10.1016/j.yebeh.2019.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 01/16/2023]
Abstract
OBJECTIVE The objective of this study was to identify the association between certain genotypes or alleles of the APOE (Apolipoprotein E) gene and the epilepsy risk. METHODS All studies on human APOE genotypes associated with epilepsy were included. Separate meta-analyses were conducted between the patients with epilepsy and the control group from the following three aspects: ε4 carriers or ε2 carriers vs ε3/ε3 (the ε2/ε4 genotype was excluded), ε4 carriers vs ε2 carriers, and five genotypes vs ε3/ε3. The subgroup analysis was conducted on the ethnicity, the control group was healthy or not, and type of epilepsy. RESULTS Nine studies with 2210 individuals were included. Compared with ε3/ε3 genotype, ε4 carriers increased the epilepsy risk (odds ratios [ORs]: 1.27; 95% confidence intervals [CI]: 1.01 to 1.59; P = 0.042), while ε2 carriers had no association with epilepsy risk (OR: 0.88; 95% CI: 0.66 to 1.18; P = 0.184). The risk of epilepsy was 1.45 times greater in ε4 carriers compared with ε2 carriers (OR: 1.45; 95% CI: 1.02 to 2.04; P = 0.037). When the number of APOE ε4 allele increased, the ORs increased progressively (no ε4 alleles, OR: 0.88, 95% CI: 0.66 to 1.18; one ε4 allele, OR: 1.25, 95% CI: 0.99 to 1.57; two ε4 alleles, OR: 1.84, 95% CI: 0.83 to 4.10). Apolipoprotein E ε4 carriers had a higher epilepsy risk in the population without primary diseases (OR: 1.43; 95% CI: 1.09 to 1.88), and a higher risk in Asian populations (OR: 1.67; 95% CI: 1.12 to 2.49). CONCLUSIONS Apolipoprotein E ε4 allele genotype was associated with an increased epilepsy risk, which was more prominent in the Asian and the population without primary diseases. These findings may be used to guide the directions of prevention and treatment on epilepsy. Larger clinical studies are needed.
Collapse
Affiliation(s)
- Yifan Liang
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Zhike Zhou
- Department of Geriatrics, The First Hospital of China Medical University, Shenyang, China
| | - Huibin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi Cheng
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Shanshan Zhong
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China
| | - Chuansheng Zhao
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
10
|
The arginine methyltransferase PRMT5 and PRMT1 distinctly regulate the degradation of anti-apoptotic protein CFLAR L in human lung cancer cells. J Exp Clin Cancer Res 2019; 38:64. [PMID: 30736843 PMCID: PMC6368745 DOI: 10.1186/s13046-019-1064-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/27/2019] [Indexed: 02/05/2023] Open
Abstract
Background CFLARL, also known as c-FLIPL, is a critical anti-apoptotic protein that inhibits activation of caspase 8 in mammalian cells. Previous studies have shown that arginine 122 of CFLARL can be mono-methylated. However, the precise role of arginine methyltransferase of CFLARL remains unknown. PRMT5 and PRMT1, which are important members of the PRMT family, catalyze the transfer of methyl groups to the arginine of substrate proteins. PRMT5 can monomethylate or symmetrically dimethylate arginine residues, while PRMT1 can monomethylate or asymmetrically dimethylate arginine residues. Methods Lung cancer cells were cultured following the standard protocol and the cell lysates were prepared to detect the given proteins by Western Blot analysis, and the protein interaction was assayed by co-immunoprecipitation (Co-IP) or GST pull-down assay. CFLARL ubiquitination level was evaluated by proteasomal inhibitor treatment combined with HA-Ub transfection and WB assay. PRMT1 and PRMT5 genes were knocked down by siRNA technique. Results We show that PRMT5 up-regulated the protein levels of CFLARL by decreasing the ubiquitination and increasing its protein level. Additionally, PRMT1 down-regulated the protein level of CFLARL by increasing the ubiquitination and degradation. The overexpression of PRMT5 can inhibit the interaction between CFLARL and ITCH, which has been identified as an E3 ubiquitin ligase of CFLARL, while overexpressed PRMT1 enhances the interaction between CFLARL and ITCH. Furthermore, we verified that dead mutations of PRMT5 or PRMT1 have the same effects on CFLARL as the wild-type ones have, suggesting it is the physical interaction between CFLAR and PRMT1/5 that regulates CFLARL degradation other than its enzymatic activity. Finally, we showed that PRMT5 and PRMT1 could suppress or facilitate apoptosis induced by doxorubicin or pemetrexed by affecting CFLARL in NSCLC cells. Conclusions PRMT5 and PRMT1 mediate the distinct effects on CFLARL degradation by regulating the binding of E3 ligase ITCH in NSCLC cells. This study identifies a cell death mechanism that is fine-tuned by PRMT1/5 that modulate CFLARL degradation in human NSCLC cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1064-8) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Li LL, Jin MF, Ni H. Zinc/CaMK II Associated-Mitophagy Signaling Contributed to Hippocampal Mossy Fiber Sprouting and Cognitive Deficits Following Neonatal Seizures and Its Regulation by Chronic Leptin Treatment. Front Neurol 2018; 9:802. [PMID: 30319532 PMCID: PMC6168633 DOI: 10.3389/fneur.2018.00802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
The role of leptin in the pathogenesis of epilepsy is getting more and more attention in clinical and basic research. Although there are data indicating neuroprotective effects of elevated serum/brain leptin levels following acute seizures, no study to date has dealt with the impact of chronic leptin treatment on long-term brain injury following developmental seizures. The aim of this study was to evaluate whether chronic leptin treatment may have neuroprotective effects on cognitive and hippocampal mossy fiber sprouting following flurothyl-induced recurrent neonatal seizures and whether these effects are mediated by the zinc/CaMKII-associated mitophagy signaling pathway. Forty Sprague-Dawley rats (postnatal day 6, P6) were randomly assigned into two groups: neonatal seizure group and control group. At P13, they were further divided into control group, seizure group (RS), control + leptin (leptin, i.p., 2 mg/kg/day for 10 days), seizure+leptin group (RS+Leptin, 2mg/kg/day, i.p., for 10 consecutive days). Morris water maze test was performed during P27-P32. Subsequently, Timm staining and Western blotting were used to detect the mossy fiber sprouting and protein levels in hippocampus. Flurothyl-induced seizures (RS group) significantly down-regulated mitophagy markers PINK, Drp1, PHB, and memory marker CaMK II alpha while up-regulating zinc transporters ZnT3, ZnT4, ZIP7, and autophagy execution molecular cathepsin-E, which were paralleled with hippocampal aberrant mossy fiber sprouting and cognitive dysfunction. However, these changes were restored by chronic leptin treatment (RS+Leptin group). The results showed that leptin had neuroprotective effect on hippocampal pathological damage and cognitive deficits induced by neonatal seizures and suggested that Zinc/CaMK II associated-mitophagy signaling pathway in hippocampus may be a new target of leptin's neuroprotection, with potential value of translational medicine.
Collapse
Affiliation(s)
- Li-Li Li
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Leptin-regulated autophagy plays a role in long-term neurobehavioral injury after neonatal seizures and the regulation of zinc/cPLA2 and CaMK II signaling in cerebral cortex. Epilepsy Res 2018; 146:103-111. [PMID: 30092488 DOI: 10.1016/j.eplepsyres.2018.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/20/2018] [Accepted: 07/27/2018] [Indexed: 01/03/2023]
Abstract
Metabolic disorders play an important role in the pathogenesis of many neurological diseases. Recent evidence suggests that leptin levels in peripheral blood and brain are lower in patients with epilepsy. Leptin is an energy-regulating hormone that plays a neuroprotective role in neurodegenerative diseases and brain trauma. However, little is known about the effects and molecular mechanisms of leptin treatment on long-term neurobehavioral impairment caused by developmental seizures. The present study evaluated whether chronic leptin treatment protected against neurobehavioral impairments induced by recurrent seizures in newborns treated with flurothyl. We also examined the effect of leptin on the expression of zinc/cPLA2-related autophagy signaling molecules and CaMKII in the cerebral cortex. Twenty Sprague-Dawley rats (6 days after birth, P6) were randomly divided into two groups, a neonatal seizure group and control group. Rats were subdivided on P13 into control, control + leptin (leptin, 2 mg/kg/day, continuous 10 days), seizure (RS), and seizure + leptin group (RS + leptin, 2 mg/kg/day for 10 consecutive days). Neurological behavioral parameters (negative geotaxis reaction reflex, righting reflex, cliff avoidance reflex, forelimb suspension reflex and open field test) were observed from P23 to P30. mRNA and protein levels in the cerebral cortex were detected using real-time RT-PCR and Western blotting, respectively. Flurothyl-induced seizures (RS group) produced long-term abnormal neurobehavior, which was improved with leptin treatment. Chronic leptin treatment restored several expression parameters affected by neonatal seizures, including seizure-induced up-regulated zinc transporter ZnT1/ZIP7, lipid membrane injury-related cPLA2, autophagy marker beclin-1/bcl2, LC3II/LC3I, and its execution molecule cathepsin-E, and down-regulated memory marker CaMK II alpha. Our results suggest that the early use of leptin after neonatal recurrent seizures may exert neuroprotective effects and antagonize the long-term neurobehavioral impairment caused by seizures. Autophagy-mediated Zn/cPLA2 and CaMK II signaling in the cerebral cortex may be involved in the neuroprotective effect of leptin. Our results provide new clues for anti-epileptogenetic treatment.
Collapse
|
13
|
Jin MF, Ni H, Li LL. Leptin Maintained Zinc Homeostasis Against Glutamate-Induced Excitotoxicity by Preventing Mitophagy-Mediated Mitochondrial Activation in HT22 Hippocampal Neuronal Cells. Front Neurol 2018; 9:322. [PMID: 29867731 PMCID: PMC5954240 DOI: 10.3389/fneur.2018.00322] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Developmental seizure-induced long-term neuronal hyperexcitation is partially mediated by regenerative mossy fiber sprouting in hippocampus. Yet, there are no effective drugs available to block this pathological process. Recently, leptin has been shown to prevent the sprouting of hippocampal mossy fibers and abnormalities in the neurobehavioral parameters. However, their underlying molecular mechanisms are largely unknown. The purpose of this study was to determine the effect of glutamate on the parameters of zinc homeostasis, mitochondrial functions, and mitophagy regulating factors, as well as to investigate the protective effects of leptin against cytotoxicity of glutamate in murine HT22 hippocampal neuronal cells. Cells were assigned to one of the four groups as follows: control group, leptin alone group, glutamate injury group, and leptin pretreatment group. Our results demonstrated that glutamate induced a decrease in superoxide dismutase, GSH (glutathione), and mitochondrial membrane potential and an increase in GSSG (oxidized glutathione), mitochondrial reactive oxygen species, and supplementation of leptin blocked the toxic effect of glutamate on cell survival. The glutamate-induced cytotoxicity was associated with an increase in mitophagy and intracellular zinc ion levels. Furthermore, glutamate activated the mitophagy markers PINK1, Parkin, and the ratio of LC3-II/LC3-I, as well as increased the expression of zinc transporter 3 (ZnT3). Leptin corrected these glutamate-caused alterations. Finally, the mitophagy inhibitor, CsA, significantly reduced intracellular zinc ion content and ZnT3 expression. These results suggest that mitophagy-mediated zinc dyshomeostasis and mitochondrial activation contributed to glutamate-induced HT22 neuronal cell injury and that leptin treatment could counteract these detrimental effects, thus highlighting mitophagy-mediated zinc homeostasis via mitochondrial activation as a potential strategy to counteract neuroexcitotoxicity.
Collapse
Affiliation(s)
- Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Hong Ni
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Fan Z, Bittermann-Rummel P, Yakubov E, Chen D, Broggini T, Sehm T, Hatipoglu Majernik G, Hock SW, Schwarz M, Engelhorn T, Doerfler A, Buchfelder M, Eyupoglu IY, Savaskan NE. PRG3 induces Ras-dependent oncogenic cooperation in gliomas. Oncotarget 2018; 7:26692-708. [PMID: 27058420 PMCID: PMC5042008 DOI: 10.18632/oncotarget.8592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/10/2016] [Indexed: 11/25/2022] Open
Abstract
Malignant gliomas are one of the most devastating cancers in humans. One characteristic hallmark of malignant gliomas is their cellular heterogeneity with frequent genetic lesions and disturbed gene expression levels conferring selective growth advantage. Here, we report on the neuronal-associated growth promoting gene PRG3 executing oncogenic cooperation in gliomas. We have identified perturbed PRG3 levels in human malignant brain tumors displaying either elevated or down-regulated PRG3 levels compared to non-transformed specimens. Further, imbalanced PRG3 levels in gliomas foster Ras-driven oncogenic amplification with increased proliferation and cell migration although angiogenesis was unaffected. Hence, PRG3 interacts with RasGEF1 (RasGRF1/CDC25), undergoes Ras-induced challenges, whereas deletion of the C-terminal domain of PRG3 (PRG3ΔCT) inhibits Ras. Moreover PRG3 silencing makes gliomas resistant to Ras inhibition. In vivo disequilibrated PRG3 gliomas show aggravated proliferation, invasion, and deteriorate clinical outcome. Thus, our data show that the interference with PRG3 homeostasis amplifies oncogenic properties and foster the malignancy potential in gliomas.
Collapse
Affiliation(s)
- Zheng Fan
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Bittermann-Rummel
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eduard Yakubov
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Neurosurgery, Klinikum Nürnberg, Paracelsus Medical University, Nürnberg, Germany
| | - Daishi Chen
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Broggini
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tina Sehm
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gökce Hatipoglu Majernik
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefan W Hock
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marc Schwarz
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Buchfelder
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ilker Y Eyupoglu
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolai E Savaskan
- Translational Neurooncology Laboratory, Department of Neurosurgery, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), Erlangen, Germany.,BiMECON ENT., Berlin-Brandenburg, Germany
| |
Collapse
|
15
|
Ni H, Chen SH, Li LL, Jin MF. Leptin treatment prevents long-term abnormalities in cognition, seizure threshold, hippocampal mossy fiber sprouting and ZnT3/CB-D28k expression in a rat developmental "twist" seizure model. Epilepsy Res 2017; 139:164-170. [PMID: 29287786 DOI: 10.1016/j.eplepsyres.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
The mechanism of linking neonatal seizures with long-term brain damage is unclear, and there is no effective drug to block this long-term pathological process. Recently, the fat-derived hormone leptin has been appreciated for its neuroprotective function in neurodegenerative processes, although less is known about the effects of leptin on neonatal seizure-induced brain damage. Here, we developed a "twist" seizure model by coupling pilocarpine-induced neonatal status epilepticus (SE) with later exposure to penicillin to test whether leptin treatment immediately after neonatal SE would exert neuroprotective effects on cognition, seizure threshold and hippocampal mossy fiber sprouting, as well if leptin had any influence on the expression of zinc transporter 3 (ZnT3) and calcium homeostasis-related CB-D28k in the hippocampus. Fifty Sprague-Dawley rats (postnatal day 6, P6) were randomly assigned to four groups: control (n = 10), control with intraperitoneal (i.p.) injection of leptin (Leptin, n = 10), pilocarpine-induced neonatal SE (RS), and RS i.p. leptin injection (RS+Leptin). At P6, all the rats in the RS group and RS+Leptin group were injected with lithium chloride i.p. (5 mEq/kg). Pilocarpine (320 mg/kg, i.p.) was administered 30 min after scopolamine methyl chloride (1 mg/kg) injection at P7 to block the peripheral effect of pilocarpine. From P8 to P14, the animals in the Leptin group and RS+Leptin group were given leptin (4 mg/kg, i.p.). The Morris water maze test was performed during P28-P33. Following routine seizure threshold detection and Timm staining procedures, Western blot analysis was performed for each group. Pilocarpine-induced neonatal SE severely impaired learning and memory abilities, reduced seizure threshold, and induced aberrant hippocampal CA3 mossy fiber sprouting. In parallel, there was a significantly down-regulated protein level of CB-D28k and an up-regulated protein level of ZnT3 in the hippocampus of the RS group. Furthermore, leptin treatment soon after neonatal SE for seven consecutive days counteracted these hyperexcitability-related alterations. These novel findings established that leptin has a neuroprotective role in the model of cholinergic neonatal SE and highlights ZnT3/CB-D28k associated-Zn (2+)/Ca (2+) signaling as a promising therapeutic target.
Collapse
Affiliation(s)
- Hong Ni
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No. 303, Jingde Road, 215003, Suzhou, PR China.
| | - Su-Hong Chen
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No. 303, Jingde Road, 215003, Suzhou, PR China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No. 303, Jingde Road, 215003, Suzhou, PR China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatric Research, Children's Hospital of Soochow University, No. 303, Jingde Road, 215003, Suzhou, PR China
| |
Collapse
|
16
|
Li ZH, Li LL, Jin MF, Chen XQ, Sun Q, Ni H. Dysregulation of zinc/lipid metabolism‑associated genes in the rat hippocampus and cerebral cortex in early adulthood following recurrent neonatal seizures. Mol Med Rep 2017; 16:4701-4709. [PMID: 28791347 PMCID: PMC5647039 DOI: 10.3892/mmr.2017.7160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/06/2017] [Indexed: 01/10/2023] Open
Abstract
Although it has been established that recurrent or prolonged clinical seizures during infancy may cause lifelong brain damage, the underlying molecular mechanism is still not well elucidated. The present study, to the best of our knowledge, is the first to investigate the expression of twenty zinc (Zn)/lipid metabolism-associated genes in the hippocampus and cerebral cortex of rats following recurrent neonatal seizures. In the current study, 6-day-old Sprague-Dawley rats were randomly divided into control (CONT) and recurrent neonatal seizure (RS) groups. On postnatal day 35 (P35), mossy fiber sprouting and gene expression were assessed by Timm staining and reverse transcription-quantitative polymerase chain reaction, respectively. Of the twenty genes investigated, seven were significantly downregulated, while four were significantly upregulated in the RS group compared with CONT rats, which was observed in the hippocampus but not in the cerebral cortex. Meanwhile, aberrant mossy fiber sprouting was observed in the supragranular region of the dentate gyrus and Cornu Ammonis 3 subfield of the hippocampus in the RS group. In addition, linear correlation analysis identified significant associations between the expression of certain genes in the hippocampus, which accounted for 40% of the total fifty-five gene pairs among the eleven regulated genes. However, only eight gene pairs in the cerebral cortex exhibited significant positive associations, which accounted for 14.5% of the total. The results of the present study indicated the importance of hippocampal Zn/lipid metabolism-associated genes in recurrent neonatal seizure-induced aberrant mossy fiber sprouting, which may aid the identification of novel potential targets during epileptogenesis.
Collapse
Affiliation(s)
- Zhen-Hong Li
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Li-Li Li
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Mei-Fang Jin
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Xu-Qin Chen
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Qi Sun
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Hong Ni
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| |
Collapse
|
17
|
Ni H, Zhang LEL, Ren SY, Sun BL. Long-term expression of zinc transporters in hippocampus following penicillin-induced developmental seizures and its regulation by E-64d. Exp Ther Med 2016; 12:208-214. [PMID: 27347040 PMCID: PMC4906967 DOI: 10.3892/etm.2016.3276] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/19/2016] [Indexed: 11/06/2022] Open
Abstract
Autophagy has been shown to be involved in the pathophysiology of developmental seizure-induced brain damage. The present study aimed to examine whether E-64d, an autophagy inhibitor, was able to facilitate developmental seizure-induced hippocampal mossy fiber sprouting, in particular sprouting-associated zinc transporter signals. Recurrent seizures were induced by penicillin every other day in Sprague-Dawley rats from postnatal day 21 (P21). Rats were randomly assigned into the control group (CONT), recurrent seizure group (RS) and the seizure plus E-64d group (E64D). The expression levels of beclin-1 and B-cell lymphoma 2 were analyzed at 1.5, 3, 6 and 24 h after the last seizures using western blot analysis. At P51, mossy fiber sprouting and the mRNA expression levels of zinc transporter 2 (ZnT-2), ZnT-4, ZnT-5, ZnT-6, ZnT-7, divalent cation transporter 1, Zrt-Irt-like protein 6 (ZIP-6), ZIP-7, cathepsin D and cathepsin L in the rat hippocampus were assessed using Timm staining and reverse transcription-quantitative polymerase chain reaction analysis, respectively. Reduced hippocampal mossy fiber sprouting were detected in the E-64d-treated rats compared with the non-treated control. In parallel with these observations, there was a marked reduction in the mRNA expression levels of ZnT-4 at P51 in the E-64d-treated rat hippocampus compared with the non-treated seizure group. Linear correlation analysis showed significant inter-relationship among ZIP-7, ZnT-4, ZnT-5, ZnT-7, cathepsin D and cathepsin L. These results indicate that the ZnT-4/ZIP-7/cathepsin signaling pathway serves a crucial function in the neuroprotective effects of E-64d. Thus, E-64d may offer a novel strategy for the development of therapeutic interventions for developmental seizure-induced brain damage.
Collapse
Affiliation(s)
- Hong Ni
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - LE-Ling Zhang
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Shou-Yun Ren
- Neurology Laboratory, Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, Jiangsu 215003, P.R. China
| | - Bao-Liang Sun
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Department of Neurology, Affiliated Hospital of Taishan Medical College, Taian, Shandong 271000, P.R. China
| |
Collapse
|
18
|
Ni H, Zhao DJ, Tian T. Ketogenic diet change cPLA2/clusterin and autophagy related gene expression and correlate with cognitive deficits and hippocampal MFs sprouting following neonatal seizures. Epilepsy Res 2015; 120:13-8. [PMID: 26709877 DOI: 10.1016/j.eplepsyres.2015.11.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 11/07/2015] [Accepted: 11/27/2015] [Indexed: 11/30/2022]
Abstract
Because the ketogenic diet (KD) was affecting expression of energy metabolism- related genes in hippocampus and because lipid membrane peroxidation and its associated autophagy stress were also found to be involved in energy depletion, we hypothesized that KD might exert its neuroprotective action via lipid membrane peroxidation and autophagic signaling. Here, we tested this hypothesis by examining the long-term expression of lipid membrane peroxidation-related cPLA2 and clusterin, its downstream autophagy marker Beclin-1, LC3 and p62, as well as its execution molecule Cathepsin-E following neonatal seizures and chronic KD treatment. On postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizures group and control group. On P28, they were further randomly divided into the seizure group without ketogenic diet (RS+ND), seizure plus ketogenic diet (RS+KD), the control group without ketogenic diet (NS+ND), and the control plus ketogenic diet (NS+KD). Morris water maze test was performed during P37-P43. Then mossy fiber sprouting and the protein levels were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced RS+ND rats show a long-term lower amount of cPLA2 and LC3II/I, and higher amount of clusterin, Beclin-1, p62 and Cathepsin-E which are in parallel with hippocampal mossy fiber sprouting and cognitive deficits. Furthermore, chronic KD treatment (RS+KD) is effective in restoring these molecular, neuropathological and cognitive changes. The results imply that a lipid membrane peroxidation and autophagy-associated pathway is involved in the aberrant hippocampal mossy fiber sprouting and cognitive deficits following neonatal seizures, which might be a potential target of KD for the treatment of neonatal seizure-induced brain damage.
Collapse
Affiliation(s)
- Hong Ni
- Neurology Laboratory, Pediatric Institute, Children's Hospital of Soochow University, Suzhou 215003, China.
| | - Dong-Jing Zhao
- Neurology Laboratory, Pediatric Institute, Children's Hospital of Soochow University, Suzhou 215003, China
| | - Tian Tian
- Neurology Laboratory, Pediatric Institute, Children's Hospital of Soochow University, Suzhou 215003, China; Department of Forensic Medcine, Medical School of Soochow University, Suzhou 205003, China
| |
Collapse
|
19
|
Tian T, Ni H, Sun BL. Neurobehavioral Deficits in a Rat Model of Recurrent Neonatal Seizures Are Prevented by a Ketogenic Diet and Correlate with Hippocampal Zinc/Lipid Transporter Signals. Biol Trace Elem Res 2015; 167:251-8. [PMID: 25778834 DOI: 10.1007/s12011-015-0285-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
Abstract
The ketogenic diet (KD) has been shown to be effective as an antiepileptic therapy in adults, but it has not been extensively tested for its efficacy in neonatal seizure-induced brain damage. We have previously shown altered expression of zinc/lipid metabolism-related genes in hippocampus following penicillin-induced developmental model of epilepsy. In this study, we further investigated the effect of KD on the neurobehavioral and cognitive deficits, as well as if KD has any influence in the activity of zinc/lipid transporters such as zinc transporter 3 (ZnT-3), MT-3, ApoE, ApoJ (clusterin), and ACAT-1 activities in neonatal rats submitted to flurothyl-induced recurrent seizures. Postnatal day 9 (P9), 48 Sprague-Dawley rats were randomly assigned to two groups: flurothyl-induced recurrent seizure group (EXP) and control group (CONT). On P28, they were further randomly divided into the seizure group without ketogenic diet (EXP1), seizure plus ketogenic diet (EXP2), the control group without ketogenic diet (CONT1), and the control plus ketogenic diet (CONT2). Neurological behavioral parameters of brain damage (plane righting reflex, cliff avoidance reflex, and open field test) were observed from P35 to P49. Morris water maze test was performed during P51-P57. Then hippocampal mossy fiber sprouting and the protein levels of ZnT3, MT3, ApoE, CLU, and ACAT-1 were detected by Timm staining and Western blot analysis, respectively. Flurothyl-induced neurobehavioral toxicology and aberrant mossy fiber sprouting were blocked by KD. In parallel with these behavioral changes, rats treated with KD (EXP2) showed a significant down-regulated expression of ZnT-3, MT-3, ApoE, clusterin, and ACAT-1 in hippocampus when compared with the non-KD-treated EXP1 group. Our findings provide support for zinc/lipid transporter signals being potential targets for the treatment of neonatal seizure-induced brain damage by KD.
Collapse
Affiliation(s)
- Tian Tian
- Neurology Laboratory, Children's Hospital of Soochow University, No.303, Jingde Road, Suzhou, 215003, People's Republic of China
| | | | | |
Collapse
|
20
|
Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a New Drug Target for Traumatic Brain Injury Therapeutics: Evidence for E64d as a Promising Lead Drug Candidate. Front Neurol 2015; 6:178. [PMID: 26388830 PMCID: PMC4557097 DOI: 10.3389/fneur.2015.00178] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/31/2015] [Indexed: 12/22/2022] Open
Abstract
There is currently no therapeutic drug treatment for traumatic brain injury (TBI) despite decades of experimental clinical trials. This may be because the mechanistic pathways for improving TBI outcomes have yet to be identified and exploited. As such, there remains a need to seek out new molecular targets and their drug candidates to find new treatments for TBI. This review presents supporting evidence for cathepsin B, a cysteine protease, as a potentially important drug target for TBI. Cathepsin B expression is greatly up-regulated in TBI animal models, as well as in trauma patients. Importantly, knockout of the cathepsin B gene in TBI mice results in substantial improvements of TBI-caused deficits in behavior, pathology, and biomarkers, as well as improvements in related injury models. During the process of TBI-induced injury, cathepsin B likely escapes the lysosome, its normal subcellular location, into the cytoplasm or extracellular matrix (ECM) where the unleashed proteolytic power causes destruction via necrotic, apoptotic, autophagic, and activated glia-induced cell death, together with ECM breakdown and inflammation. Significantly, chemical inhibitors of cathepsin B are effective for improving deficits in TBI and related injuries including ischemia, cerebral bleeding, cerebral aneurysm, edema, pain, infection, rheumatoid arthritis, epilepsy, Huntington's disease, multiple sclerosis, and Alzheimer's disease. The inhibitor E64d is unique among cathepsin B inhibitors in being the only compound to have demonstrated oral efficacy in a TBI model and prior safe use in man and as such it is an excellent tool compound for preclinical testing and clinical compound development. These data support the conclusion that drug development of cathepsin B inhibitors for TBI treatment should be accelerated.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, Inc. , San Diego, CA , USA
| | | | - Kenneth Grabstein
- Department of Chemical Engineering, University of Washington , Seattle, WA , USA
| | - Mark Kindy
- Department of Neurosciences, Medical University of South Carolina , Charleston, SC , USA ; Ralph H. Johnson Veterans Administration Medical Center , Charleston, SC , USA
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA ; Department of Neurosciences, Department of Pharmacology, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
21
|
NI HONG, SUN QI, TIAN TIAN, FENG XING, SUN BAOLIANG. Long-term expression of metabolism-associated genes in the rat hippocampus following recurrent neonatal seizures and its regulation by melatonin. Mol Med Rep 2015; 12:2727-34. [DOI: 10.3892/mmr.2015.3691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/23/2015] [Indexed: 11/06/2022] Open
|
22
|
Prophylactic treatment with melatonin before recurrent neonatal seizures: Effects on long-term neurobehavioral changes and the underlying expression of metabolism-related genes in rat hippocampus and cerebral cortex. Pharmacol Biochem Behav 2015; 133:25-30. [PMID: 25818576 DOI: 10.1016/j.pbb.2015.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/22/2022]
Abstract
Although it has been suggested that the protective effect of melatonin against seizure-induced neurotoxicity involves inhibition of neuronal lipid peroxidation, current data concerning the exact molecular mechanism are still limited. This study was undertaken to investigate the changes in neurobehavioral, cognitive and lipid metabolism-related gene expressions in both hippocampus and cerebral cortex of rats subjected to recurrent neonatal seizures, and the effects of melatonin treatment before seizure (55mg/kg, 1mg/ml). 6-day-old (P6) SD rats were randomly divided into four groups of control (CONT, the same below), melatonin treated control (Mel), recurrent neonatal seizure (RS) and melatonin and RS combination treatment (Mel+RS). Neurological behavioral parameters of brain damage (plane righting reflex, negative geotaxis reaction reflex, Cliff avoidance reflex, forelimb suspension reflex) were observed on P31. Morris water maze test was performed during P29-P35. Then the protein levels of ACAT1, Cathepsin-E and Ca(2+)/calmodulin-dependent protein kinase II (CAMK II) in hippocampus and cerebral cortex were detected by western blot method. As expected, RS group showed a significant delay or reduce of the four reflexes, as well as bad performance in the Morris water maze test. Flurothyl-induced neurobehavioral toxicology was blocked by pre-treatment with melatonin. In parallel with these behavioral changes, gene expression by western blot method demonstrated that rats pretreated with melatonin (Mel+RS) showed a significant down-regulated expression of ACAT-1, Cathepsin-E and up-regulated CAMK II in hippocampus and cerebral cortex when compared with RS group. Our findings provide support for ACAT-1/Cathepsin-E as well as CaMK II being potential targets for the treatment of neonatal seizure-induced brain damage by melatonin.
Collapse
|