1
|
Chin WS, Hung WL, Say YH, Chien LC, Chen YC, Lo YP, Liao KW. The influence of exposure to inorganic arsenic and other arsenic species on early renal impairment among young adults in Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125090. [PMID: 39393761 DOI: 10.1016/j.envpol.2024.125090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Chronic kidney disease (CKD) poses a significant global public health challenge, with environmental toxins potentially contributing to its prevalence. In Taiwan, where arsenic (As) contamination is endemic in certain areas, assessing its impact on renal health is crucial due to the country's high rates of unexplained CKD. This cross-sectional study assessed associations between urinary As species and early renal impairment biomarkers-the microalbumin-to-creatinine ratio (ACR) and β2-microglobulin (B2MG)-in 248 young Taiwanese adults (aged 20-29 years). We measured urinary As species (including arsenite [As3+], arsenate [As5+], monomethylarsonic acid [MMA], and dimethylarsinic acid [DMA]) and early renal impairment biomarkers (urinary microalbumin and B2MG levels). Median concentrations of urinary As3+, As5+, MMA, DMA, inorganic As (iAs), and the sum of inorganic and methylated As species (iSumAs) were 1.43, 1.02, 3.79, 31.53, 2.82, and 39.22 μg/g creatinine (Cre.), respectively. We also evaluated the first methylation ratio (FMR) and the second methylation ratio (SMR). After adjusting for potential confounding factors, a multivariate linear regression showed significant associations between B2MG and urinary As5+ (β = 0.299, 95% confidence interval [CI]: 0.113-0.485) and iAs (β = 0.281, 95% CI: 0.061-0.502) concentrations. A generalized additive model revealed non-linear relationships among As5+, iAs, and B2MG concentrations. Moreover, there were elevated risks associated with the highest tertile of B2MG concentrations compared to the highest tertile of urinary As5+ (odds ratio [OR] = 2.366, 95% CI: 1.196-4.682), MMA (OR = 1.917, 95% CI: 1.002-3.666), DMA (OR = 1.952, 95% CI: 1.015-3.753), and iSumAs (OR = 2.302, 95% CI: 1.182-4.483). These results indicated that exposure to As was associated with early renal impairment, particularly evidenced by increased urinary B2MG concentrations.
Collapse
Affiliation(s)
- Wei-Shan Chin
- School of Nursing, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Lun Hung
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yee-How Say
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Malaysia
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Family Medicine Wan Fang Hospital, Taipei Medical University Taipei, Taiwan
| | - Yun-Peng Lo
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Kai-Wei Liao
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Research Center of Food Safety Inspection and Function Development, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Ganie SY, Javaid D, Hajam YA, Reshi MS. Arsenic toxicity: sources, pathophysiology and mechanism. Toxicol Res (Camb) 2024; 13:tfad111. [PMID: 38178998 PMCID: PMC10762673 DOI: 10.1093/toxres/tfad111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024] Open
Abstract
Background Arsenic is a naturally occurring element that poses a significant threat to human health due to its widespread presence in the environment, affecting millions worldwide. Sources of arsenic exposure are diverse, stemming from mining activities, manufacturing processes, and natural geological formations. Arsenic manifests in both organic and inorganic forms, with trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) being the most common inorganic forms. The trivalent state, in particular, holds toxicological significance due to its potent interactions with sulfur-containing proteins. Objective The primary objective of this review is to consolidate current knowledge on arsenic toxicity, addressing its sources, chemical forms, and the diverse pathways through which it affects human health. It also focuses on the impact of arsenic toxicity on various organs and systems, as well as potential molecular and cellular mechanisms involved in arsenic-induced pathogenesis. Methods A systematic literature review was conducted, encompassing studies from diverse fields such as environmental science, toxicology, and epidemiology. Key databases like PubMed, Scopus, Google Scholar, and Science Direct were searched using predetermined criteria to select relevant articles, with a focus on recent research and comprehensive reviews to unravel the toxicological manifestations of arsenic, employing various animal models to discern the underlying mechanisms of arsenic toxicity. Results The review outlines the multifaceted aspects of arsenic toxicity, including its association with chronic diseases such as cancer, cardiovascular disorders, and neurotoxicity. The emphasis is placed on elucidating the role of oxidative stress, genotoxicity, and epigenetic modifications in arsenic-induced cellular damage. Additionally, the impact of arsenic on vulnerable populations and potential interventions are discussed. Conclusions Arsenic toxicity represents a complex and pervasive public health issue with far-reaching implications. Understanding the diverse pathways through which arsenic exerts its toxic effects is crucial to developing effective mitigation strategies and interventions. Further research is needed to fill gaps in our understanding of arsenic toxicity and to inform public health policies aimed at minimising exposure.Arsenic toxicity is a crucial public health problem influencing millions of people around the world. The possible sources of arsenic toxicity includes mining, manufacturing processes and natural geological sources. Arsenic exists in organic as well as in inorganic forms. Trivalent meta-arsenite (As3+) and pentavalent arsenate (As5+) are two most common inorganic forms of arsenic. Trivalent oxidation state is toxicologically more potent due to its potential to interact with sulfur containing proteins. Humans are exposed to arsenic in many ways such as environment and consumption of arsenic containing foods. Drinking of arsenic-contaminated groundwater is an unavoidable source of poisoning, especially in India, Bangladesh, China, and some Central and South American countries. Plenty of research has been carried out on toxicological manifestation of arsenic in different animal models to identify the actual mechanism of aresenic toxicity. Therefore, we have made an effort to summarize the toxicology of arsenic, its pathophysiological impacts on various organs and its molecular mechanism of action.
Collapse
Affiliation(s)
- Shahid Yousuf Ganie
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Darakhshan Javaid
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| | - Younis Ahmad Hajam
- Department of Life Sciences and Allied Health Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab 144030, India
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Laboratory, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir 185234, India
| |
Collapse
|
3
|
Rahaman MS, Mise N, Ikegami A, Zong C, Ichihara G, Ichihara S. The mechanism of low-level arsenic exposure-induced hypertension: Inhibition of the activity of the angiotensin-converting enzyme 2. CHEMOSPHERE 2023; 318:137911. [PMID: 36669534 DOI: 10.1016/j.chemosphere.2023.137911] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
It is now well-established that arsenic exposure induces hypertension in humans. Although arsenic-induced hypertension is reported in many epidemiological studies, the underlying molecular mechanism of arsenic-induced hypertension is not fully characterized. In the human body, blood pressure is primarily regulated by a well-known physiological system known as the renin-angiotensin system (RAS). Hence, we explored the potential molecular mechanisms of arsenic-induced hypertension by investigating the regulatory roles of the RAS. Adult C57BL/6JJcl male mice were divided into four groups according to the concentration of arsenic in drinking water (0, 8, 80, and 800 ppb) provided for 8 weeks. Arsenic significantly raised blood pressure in arsenic-exposed mice compared to the control group, and significantly raised plasma MDA and Ang II and reduced Ang (1-7) levels. RT-PCR results showed that arsenic significantly downregulated ACE2 and MasR in mice aortas. In vitro studies of endothelial HUVEC cells treated with arsenic showed increased level of MDA and Ang II and lower levels of Ang (1-7), compared with the control. Arsenic significantly downregulated ACE2 and MasR expression, as well as those of Sp1 and SIRT1; transcriptional activators of ACE2, in HUVECs. Arsenic also upregulated markers of endothelial dysfunction (MCP-1, ICAM-1) and inflammatory cytokines (IL-6, TNF-α) in HUVECs. Our findings suggest that arsenic-induced hypertension is mediated, at least in part, by oxidative stress-mediated inhibition of ACE2 as well as by suppressing the vasoprotective axes of RAS, in addition to the activation of the classical axis.
Collapse
Affiliation(s)
- Md Shiblur Rahaman
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan; Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| |
Collapse
|
4
|
Karachaliou C, Sgourou A, Kakkos S, Kalavrouziotis I. Arsenic exposure promotes the emergence of cardiovascular diseases. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:467-486. [PMID: 34253004 DOI: 10.1515/reveh-2021-0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
A large number of studies conducted in the past decade 2010-2020 refer to the impact of arsenic (As) exposure on cardiovascular risk factors. The arsenic effect on humans is complex and mainly depends on the varying individual susceptibilities, its numerous toxic expressions and the variation in arsenic metabolism between individuals. In this review we present relevant data from studies which document the association of arsenic exposure with various biomarkers, the effect of several genome polymorphisms on arsenic methylation and the underling molecular mechanisms influencing the cardiovascular pathology. The corresponding results provide strong evidence that high and moderate-high As intake induce oxidative stress, inflammation and vessel endothelial dysfunction that are associated with increased risk for cardiovascular diseases (CVDs) and in particular hypertension, myocardial infarction, carotid intima-media thickness and stroke, ventricular arrhythmias and peripheral arterial disease. In addition, As exposure during pregnancy implies risks for blood pressure abnormalities among infants and increased mortality rates from acute myocardial infarction during early adulthood. Low water As concentrations are associated with increased systolic, diastolic and pulse pressure, coronary heart disease and incident stroke. For very low As concentrations the relevant studies are few. They predict a risk for myocardial infarction, stroke and ischemic stroke and incident CVD, but they are not in agreement regarding the risk magnitude.
Collapse
Affiliation(s)
- Christiana Karachaliou
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| | - Argyro Sgourou
- School of Science and Technology, Biology Lab, Hellenic Open University, Patras, Greece
| | - Stavros Kakkos
- Department of Vascular Surgery, Medical School of Patras, University of Patras, Patras, Greece
| | - Ioannis Kalavrouziotis
- School of Science and Technology, Lab. of Sustainable Waste Technology Management, Hellenic Open University, Patras, Greece
| |
Collapse
|
5
|
Khan MI, Ahmad MF, Ahmad I, Ashfaq F, Wahab S, Alsayegh AA, Kumar S, Hakeem KR. Arsenic Exposure through Dietary Intake and Associated Health Hazards in the Middle East. Nutrients 2022; 14:2136. [PMID: 35631276 PMCID: PMC9146532 DOI: 10.3390/nu14102136] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Dietary arsenic (As) contamination is a major public health issue. In the Middle East, the food supply relies primarily on the import of food commodities. Among different age groups the main source of As exposure is grains and grain-based food products, particularly rice and rice-based dietary products. Rice and rice products are a rich source of core macronutrients and act as a chief energy source across the world. The rate of rice consumption ranges from 250 to 650 g per day per person in South East Asian countries. The source of carbohydrates through rice is one of the leading causes of human As exposure. The Gulf population consumes primarily rice and ready-to-eat cereals as a large proportion of their meals. Exposure to arsenic leads to an increased risk of non-communicable diseases such as dysbiosis, obesity, metabolic syndrome, diabetes, chronic kidney disease, chronic heart disease, cancer, and maternal and fetal complications. The impact of arsenic-containing food items and their exposure on health outcomes are different among different age groups. In the Middle East countries, neurological deficit disorder (NDD) and autism spectrum disorder (ASD) cases are alarming issues. Arsenic exposure might be a causative factor that should be assessed by screening the population and regulatory bodies rechecking the limits of As among all age groups. Our goals for this review are to outline the source and distribution of arsenic in various foods and water and summarize the health complications linked with arsenic toxicity along with identified modifiers that add heterogeneity in biological responses and suggest improvements for multi-disciplinary interventions to minimize the global influence of arsenic. The development and validation of diverse analytical techniques to evaluate the toxic levels of different As contaminants in our food products is the need of the hour. Furthermore, standard parameters and guidelines for As-containing foods should be developed and implemented.
Collapse
Affiliation(s)
- Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Arras, Qassim University, Buraydah 58883, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia; (F.A.); (A.A.A.)
| | - Sachil Kumar
- Department of Forensic Chemistry, College of Forensic Sciences, Naif Arab University for Security Sciences (NAUSS), Riyadh 14812, Saudi Arabia;
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Princess Dr. Najla Bint Saud Al- Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
6
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Bahrami A, Sathyapalan T, Moallem SA, Sahebkar A. Counteracting arsenic toxicity: Curcumin to the rescue? JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123160. [PMID: 32574880 DOI: 10.1016/j.jhazmat.2020.123160] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Arsenicosis leads to various irreversible damages in several organs and is considered to be a carcinogen. The effects of chronic arsenic poisoning are a result of an imbalance between pro- and antioxidant homeostasis, oxidative stress, as well as DNA and protein damage. Curcumin, the polyphenolic pigment extracted from the rhizome of Curcuma longa, is well-known for its pleiotropic medicinal effects. Curcumin has been shown to have ameliorative effects in arsenic-induced genotoxicity, nephrotoxicity, hepatotoxicity, angiogenesis, skin diseases, reproductive toxicity, neurotoxicity, and immunotoxicity. This review aims to summarize the scientific evidence on arsenic toxicity in various organs and the ameliorative effects of curcumin on the arsenic toxicity.
Collapse
Affiliation(s)
- Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, HU3 2JZ, UK
| | - Seyed Adel Moallem
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Xu X, Xu H, Qimuge A, Liu S, Wang H, Hu M, Song L. MAPK/AP-1 pathway activation mediates AT1R upregulation and vascular endothelial cells dysfunction under PM2.5 exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:188-194. [PMID: 30529618 DOI: 10.1016/j.ecoenv.2018.11.124] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/19/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Acute and chronic exposure to particulate matter (PM) 2.5 is associated with adverse health effect upon the cardiovascular (CV) system. However, the molecular mechanism by which PM2.5 evokes CV injuries has not been fully clarified. In our recent report, we demonstrate that exposure to PM2.5 leads to elevation of circulating angiotensin II (ANGII) levels and local expressions of angiotensinogen (AGT, the precursor of ANGII), angiotensin-converting enzyme (ACE) and ANGII type 1 receptor (AT1R) in the vascular endothelial cells, which subsequently instigates the oxidative stress and proinflammatory response in the vascular endothelium. In the present study, we disclosed that PM2.5 exposure induced the activation of the transcriptional factor AP-1 and its components, c-Jun and ATF2, in the human vascular endothelial cells. Although the DNA-binding sites for AP-1 were identified within the promoter regions of AGT, ACE and AT1R genes, RT-PCR and immunoblot assays indicated that AP-1 transactivation was only involved in AT1R upregulation, but did not affect the induction of AGT and ACE expression under the same conditions. Furthermore, ERKs and p38K functioned as the upstream protein kinases involving in AP-1 transactivation and AT1R upregulation under PM2.5 stimulation. In addition, the oxidative stress and proinflammatory responses in the PM2.5-treated vascular endothelial cells were significantly reduced when MAPKs and AP-1 activation were inhibited. Therefore, we conclude that PM2.5 exposure induces MAPK/AP-1 cascade activation, which contributes to AT1R upregulation and vascular endothelial dysfunction. Identifying novel therapeutic targets to alleviate AP-1 transactivation and restore AT1R expression may be helpful for the management of PM2.5-induced CV burden.
Collapse
Affiliation(s)
- Xiuduan Xu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Huan Xu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China
| | - Aodeng Qimuge
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing 100850, PR China; Department of New Drug Screening Center, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Shasha Liu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing 100850, PR China; Department of Pathology, School of Basic Medical Sciences, Lanzhou University, Tianshui South Road, Lanzhou 730000, PR China
| | - Hongli Wang
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing 100850, PR China; Laboratory of Cellular and Molecular Immunology, School of Medicine, Henan University, 357 Ximen Road, Kaifeng 475004, PR China
| | - Meiru Hu
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing 100850, PR China
| | - Lun Song
- Department of Neuroimmunology, Beijing Institute of Brain Sciences, 27 Taiping Road, Beijing 100850, PR China; Anhui Medical University, 81 Meishan Road, Hefei 230032, PR China; Guangxi Medical University, 22 Shuangyong Road, Nanning 530021, PR China.
| |
Collapse
|
9
|
Akther J, Nabi AHMN, Ebihara A. Heavy metals as environmental risk factors for cardiovascular diseases: from the perspective of the renin angiotensin aldosterone system and oxidative stress. REVIEWS IN AGRICULTURAL SCIENCE 2019; 7:68-83. [DOI: 10.7831/ras.7.0_68] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Jobaida Akther
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. H. M. Nurun Nabi
- Laboratory of Population Genetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
10
|
de Araújo Ramos AT, Diamante MAS, de Almeida Lamas C, Dolder H, de Souza Predes F. Morphological and morphometrical changes on adult Wistar rat testis caused by chronic sodium arsenite exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27905-27912. [PMID: 28988284 DOI: 10.1007/s11356-017-0200-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
Arsenic is a contaminant that occurs naturally in the environment, and it is related to several diseases, such as cancer and severe metabolic diseases. Sodium arsenite effects on testes rats are not fully understood regarding morphology and stereology; thus, it becomes necessary to evaluate possible changes in these parameters under low concentrations and simulating occupational exposure. Therefore, the aim of this study was to analyze the morphometrical and stereological changes on rat testis treated with sodium arsenite. The treatment was accomplished using 5 mg/kg of sodium arsenite by gastric gavage in Wistar rats, which experiment lasted 8 weeks. Organs were weighed and gonadosomatic index (GSI) was calculated. Using the software Image Pro Plus, seminiferous tubule diameter was measured, and the volume densities of testicular parenchymal components were obtained. It was counted 200 hundred spermatozoa and classified as normal or abnormal. The parameters means of control (N = 5) and treated (N = 7) groups were compared by U Mann-Whitney's test, and the results were considered significant for P < 0.05. We observed a decrease in seminiferous tubule diameter, as well as testis weight. These finds may be related with disorders of testosterone metabolism due to activation of immunological responses of macrophage, which inhibit the steroidogenesis. Thus, we conclude that sodium arsenic does not impair the animal's general health, but its exposure induces biochemical and tissue changes.
Collapse
Affiliation(s)
| | | | - Celina de Almeida Lamas
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Heidi Dolder
- Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Fabrícia de Souza Predes
- State University of Paraná Campus Paranaguá, Comendador Correa Junior Street, 177, Center, Paranaguá, Paraná, Brazil.
| |
Collapse
|
11
|
Xu X, Liu S, Aodengqimuge, Wang H, Hu M, Xing C, Song L. Arsenite Induces Vascular Endothelial Cell Dysfunction by Activating IRE1α/XBP1s/HIF1α-Dependent ANGII Signaling. Toxicol Sci 2017; 160:315-328. [DOI: 10.1093/toxsci/kfx184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
12
|
Ma Y, Ma Z, Yin S, Yan X, Wang J. Arsenic and fluoride induce apoptosis, inflammation and oxidative stress in cultured human umbilical vein endothelial cells. CHEMOSPHERE 2017; 167:454-461. [PMID: 27750169 DOI: 10.1016/j.chemosphere.2016.10.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 06/06/2023]
Abstract
Excessive amount of inorganic arsenic (iAs) and fluoride (F) coexist in drinking water in many regions, which is associated with high risk of vascular diseases. However, the underlying mechanisms are not well studied. The present study was to evaluate the effects of iAs and F individual or combined exposure on endothelial activation and apoptosis in vitro. Primary human umbilical vein endothelial cells (HUVECs) were exposed to 5 μM As2O3 and/or 1 mM NaF. Changes in endothelial cell apoptosis, inflammation, oxidative stress and nitric oxide (NO) production were analyzed. The results showed that iAs and/or F induced significant increase in endothelial cell apoptosis and inflammation as indicated by the increase of mRNA and protein expression of vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and pentraxin 3. Furthermore, iAs and/or F exposure induced intracellular reactive oxygen species and malondialdehyde generation. Results showed iAs and/or F exposure increased the activity of NADPH oxidase (NOX) and up-regulated the mRNA expression of NOX subunits p22phox. The results indicated that activation of NOX was related to oxidative stress induced by iAs and/or F. Also, iAs and/or F reduced NO production in HUVECs. The up-regulation of inflammation genes expression and oxidative stress in iAs and F co-exposed ECs were less pronounced as compared to single F-exposed cells, which showed an antagonistic effect between iAs and F. In conclusion, endothelial activation and apoptosis induced by iAs and/or F are potential mechanisms in their vascular toxicity. Oxidative stress and impaired NO production are involved in their pro-inflammatory and pro-apoptotic effects.
Collapse
Affiliation(s)
- Yanqin Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zhenhua Ma
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shuqin Yin
- College of Life Science, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xiaoyan Yan
- Health Toxicology Department, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Jundong Wang
- Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
13
|
Khuman MW, Harikumar SK, Sadam A, Kesavan M, Susanth VS, Parida S, Singh KP, Sarkar SN. Candesartan ameliorates arsenic-induced hypertensive vascular remodeling by regularizing angiotensin II and TGF-beta signaling in rats. Toxicology 2016; 374:29-41. [PMID: 27889505 DOI: 10.1016/j.tox.2016.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/05/2023]
Abstract
Arsenic exposure can cause several cardiovascular diseases, including hypertension, atherosclerosis and microvascular disease. Earlier, we reported that arsenic-mediated enhancement of angiotensin II (AngII) signaling can impair vascular physiology. Here, we investigated whether the AT1 receptor (AT1R) blocker candesartan can ameliorate the arsenic-induced hypertensive vascular remodeling in rats and whether the amelioration could relate to attenuation in vascular AngII and TGF-β signaling. Rats were exposed to sodium arsenite (50ppm) through drinking water for 90 consecutive days. Candesartan (1mg/kg bw, orally) was administered once daily during the last 30days of arsenic exposure. Non-invasive blood pressure was recorded weekly in conscious rats, while AngII-induced change in mean arterial pressure in anaesthetized rats was measured by invasive method on the 91st day. On this day, blood was collected from other animals for measuring AngII level. Western blot of AT1, AT2 and TβRII receptors; ELISA of PTK, RasGAP, ERK-1/2, TGF-β and CTGF; immunohistochemistry of phosphorylated Smad3, Smad4 and collagen III, hydroxyproline/total collagen estimation, collagen deposition by Masson's trichrome staining and histomorphometry were carried out in thoracic aorta. Arsenic increased non-invasive systolic, diastolic and mean arterial pressure. Further, AngII caused concentration-dependent incremental change in mean arterial pressure in the arsenic-exposed rats. Arsenic upregulated AT1 and TβRII receptor proteins; elevated the levels of PTK, ERK-1/2, TGF-β and CTGF, decreased RasGAP level and augmented the immunoreactivities of Smad3, Smad4 and collagen III. Arsenic also increased hydroxyproline/total collagen level, proliferation of collagen fibres and thickness of aortic wall and collagenous adventitia. Candesartan normalized blood pressure, regularized receptor expressions, MAP kinase and TGF-β signaling, restored collagen deposition and regressed aortic thickness. Our results demonstrate that candesartan can ameliorate the arsenic-mediated systemic hypertension and vascular remodeling in rats by regularizing the signaling pathways of AngII and TGF-β.
Collapse
Affiliation(s)
- Maibam Wanta Khuman
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar - 243122, Bareilly, Uttar Pradesh, India
| | - Sankaran Kutty Harikumar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar - 243122, Bareilly, Uttar Pradesh, India
| | - Abdul Sadam
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar - 243122, Bareilly, Uttar Pradesh, India
| | - Manickam Kesavan
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar - 243122, Bareilly, Uttar Pradesh, India
| | - Vattaparambil Sukumaran Susanth
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar - 243122, Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar - 243122, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar - 243122, Bareilly, Uttar Pradesh, India
| | - Souvendra Nath Sarkar
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar - 243122, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
14
|
Evaluation of aortic elasticity parameters in arsenic exposed workers. J Hum Hypertens 2016; 30:709-713. [DOI: 10.1038/jhh.2015.128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/02/2015] [Accepted: 12/08/2015] [Indexed: 12/11/2022]
|
15
|
Fouad AA, Albuali WH, Al-Mulhim AS, Jresat I. Protective effect of telmisartan treatment against arsenic-induced testicular toxicity in rats. ACTA ACUST UNITED AC 2015; 70:175-81. [PMID: 26439596 DOI: 10.1515/znc-2015-5031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 09/10/2015] [Indexed: 12/22/2022]
Abstract
Oxidative/nitrosative stress, inflammation, and apoptosis play a crucial role in the pathogenesis of arsenic-induced testicular injury. Telmisartan, the angiotensin II-receptor antagonist, possesses antioxidant and anti-inflammatory activities. The protective effect of telmisartan against arsenic-induced testicular damage was investigated in rats. Testicular damage was induced by sodium arsenite (10 mg kg-1/day, p.o., for 2 consecutive days). Telmisartan (10 mg kg-1/day, i.p.) was given for 3 consecutive days, starting 1 day before sodium arsenite administration. Telmisartan significantly attenuated the arsenic-induced decrease in the levels of serum testosterone and testicular reduced glutathione, and significantly decreased the elevation of the levels of testicular malondialdehyde, nitric oxide, and arsenic levels, as well as myeloperoxidase activity resulting from sodium arsenite administration. Histopathological and immunohistochemical examination revealed that telmisartan markedly attenuated testicular tissue changes, and decreased the arsenic-induced expression of vascular endothelial growth factor, inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, nuclear factor-κB, and caspase-3. Telmisartan, via its antioxidant and/or anti-inflammatory effects, may represent a potential candidate to protect against the deleterious effects of arsenic on testicular tissue.
Collapse
|
16
|
Arsenic causes aortic dysfunction and systemic hypertension in rats: Augmentation of angiotensin II signaling. Chem Biol Interact 2015; 237:104-14. [PMID: 26079204 DOI: 10.1016/j.cbi.2015.06.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/28/2015] [Accepted: 06/08/2015] [Indexed: 02/07/2023]
Abstract
The groundwater pollutant arsenic can cause various cardiovascular disorders. Angiotensin II, a potent vasoconstrictor, plays an important role in vascular dysfunction by promoting changes in endothelial function, vascular reactivity, tissue remodeling and oxidative stress. We investigated whether modulation of angiotensin II signaling and redox homeostasis could be a mechanism contributing to arsenic-induced vascular disorder. Rats were exposed to arsenic at 25, 50 and 100ppm of sodium arsenite through drinking water consecutively for 90 days. Blood pressure was recorded weekly. On the 91st day, the rats were sacrificed for blood collection and isolation of thoracic aorta. Angiotensin converting enzyme and angiotensin II levels were assessed in plasma. Aortic reactivity to angiotensin II was assessed in organ-bath system. Western blot of AT1 receptors and G protein (Gαq/11), ELISA of signal transducers of MAP kinase pathway and reactive oxygen species (ROS) generation were assessed in aorta. Arsenic caused concentration-dependent increase in systolic, diastolic and mean arterial blood pressure from the 10th, 8th and 7th week onwards, respectively. Arsenic caused concentration-dependent enhancement of the angiotensin II-induced aortic contractile response. Arsenic also caused concentration-dependent increase in the plasma levels of angiotensin II and angiotensin converting enzyme and the expression of aortic AT1 receptor and Gαq/11 proteins. Arsenic increased aortic protein kinase C activity and the concentrations of protein tyrosine kinase, extracellular signal-regulated kinase-1/2 and vascular endothelial growth factor. Further, arsenic increased aortic mRNA expression of Nox2, Nox4 and p22phox, NADPH oxidase activity and ROS generation. The results suggest that arsenic-mediated enhancement of angiotensin II signaling could be an important mechanism in the arsenic-induced vascular disorder, where ROS could augment the angiotensin II signaling through activation of MAP kinase pathway.
Collapse
|
17
|
Abstract
Chronic kidney disease (CKD) is an important global health problem that affects 8-15% of the population according to epidemiological studies done in different countries. Essential to prevention is the knowledge of the environmental factors associated with this disease, and heavy metals such as lead and cadmium are clearly associated with kidney injury and CKD progression. Arsenic is one of the most abundant contaminants in water and soil, and many epidemiological studies have found an association between arsenic and type 2 diabetes mellitus, hypertension and cancer; however, there is a scarcity of epidemiological studies about its association with kidney disease, and the evidence linking urinary arsenic excretion with CKD, higher urinary excretion of low molecular proteins, albuminuria or other markers of renal in injury is still limited, and more studies are necessary to characterize the role of arsenic on renal injury and CKD progression. Global efforts to reduce arsenic exposure remain important and research is also needed to determine whether specific therapies are beneficial in susceptible populations.
Collapse
|
18
|
Waghe P, Sarath TS, Gupta P, Kutty HS, Kandasamy K, Mishra SK, Sarkar SN. Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats. Biol Trace Elem Res 2014; 162:234-41. [PMID: 25209654 DOI: 10.1007/s12011-014-0116-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/27/2014] [Indexed: 11/27/2022]
Abstract
We evaluated whether arsenic can alter vascular redox homeostasis and modulate antioxidant status, taking rat thoracic aorta as a model vascular tissue. In addition, we evaluated whether the altered vascular biochemical homeostasis could be associated with alterations in the physical indicators of toxicity development. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. Body weight, food intake, and water consumption were recorded weekly. On the 91st day, rats were sacrificed; vital organs and thoracic aorta were collected. Lipid peroxidation, reactive oxygen species generation, and antioxidants were assessed in the thoracic aorta. Arsenic increased aortic lipid peroxidation and hydrogen peroxide generation while decreased reduced glutathione content in a dose-dependent manner. The activities of the enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase were decreased. Further, arsenic at 100 ppm decreased feed intake, water consumption, and body weight from the 11th week onward. At this concentration, arsenic increased the relative weights of the liver and kidney. The results suggest that arsenic causes dose-dependent oxidative stress, reduction in antioxidative defense systems, and body weight loss with alteration in hepato-renal organosomatic indices. Overall, subchronic arsenic exposure through drinking water causes alteration in vascular redox homeostasis and at high concentration affects physical health.
Collapse
Affiliation(s)
- Prashantkumar Waghe
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India,
| | | | | | | | | | | | | |
Collapse
|
19
|
Hunt KM, Srivastava RK, Elmets CA, Athar M. The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett 2014; 354:211-9. [PMID: 25173797 PMCID: PMC4193806 DOI: 10.1016/j.canlet.2014.08.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Significant amounts of arsenic have been found in the groundwater of many countries including Argentina, Bangladesh, Chile, China, India, Mexico, and the United States with an estimated 200 million people at risk of toxic exposure. Although chronic arsenic poisoning damages many organ systems, it usually first presents in the skin with manifestations including hyperpigmentation, hyperkeratoses, Bowen's disease, squamous cell carcinoma, and basal cell carcinoma. Arsenic promotes oxidative stress by upregulating nicotinamide adenine dinucleotide phosphate oxidase, uncoupling nitric oxide synthase, and by depleting natural antioxidants such as nitric oxide and glutathione in addition to targeting other proteins responsible for the maintenance of redox homeostasis. It causes immune dysfunction and tissue inflammatory responses, which may involve activation of the unfolded protein response signaling pathway. In addition, the dysregulation of other molecular targets such as nuclear factor kappa B, Hippo signaling protein Yap, and the mineral dust-induced proto-oncogene may orchestrate the pathogenesis of arsenic-mediated health effects. The metalloid decreases expression of tumor suppressor molecules and increases expression of pro-inflammatory mitogen-activated protein kinase pathways leading to a tumor-promoting tissue microenvironment. Cooperation of upregulated signal transduction molecules with DNA damage may abrogate apoptosis, promote proliferation, and enhance cell survival. Genomic instability via direct DNA damage and weakening of several cellular DNA repair mechanisms could also be important cancer development mechanisms in arsenic-exposed populations. Thus, arsenic mediates its toxicity by generating oxidative stress, causing immune dysfunction, promoting genotoxicity, hampering DNA repair, and disrupting signal transduction, which may explain the complex disease manifestations seen in arsenicosis.
Collapse
Affiliation(s)
- Katherine M Hunt
- University of Alabama at Birmingham, University of Alabama School of Medicine, 1670 University Blvd., Birmingham, Alabama 35233, USA
| | - Ritesh K Srivastava
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA
| | - Craig A Elmets
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA
| | - Mohammad Athar
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA.
| |
Collapse
|
20
|
Hossain E, Ota A, Karnan S, Takahashi M, Mannan SB, Konishi H, Hosokawa Y. Lipopolysaccharide augments the uptake of oxidized LDL by up-regulating lectin-like oxidized LDL receptor-1 in macrophages. Mol Cell Biochem 2014; 400:29-40. [PMID: 25348362 DOI: 10.1007/s11010-014-2259-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/17/2014] [Indexed: 01/22/2023]
Abstract
There is a growing body of evidence supporting an intimate association of immune activation with the pathogenesis of cardiovascular diseases, including atherosclerosis. Uptake of oxidized low-density lipoprotein (oxLDL) through scavenging receptors promotes the formation of mature lipid-laden macrophages, which subsequently leads to exacerbation of regional inflammation and atherosclerotic plaque formation. In this study, we first examined changes in the mRNA level of the lectin-like oxLDL receptor-1 (LOX-1) in the mouse macrophage cell line RAW264.7 and the human PMA-induced macrophage cell line THP-1 after LPS stimulation. LPS significantly up-regulated LOX-1 mRNA in RAW264.7 cells; LOX-1 cell-surface protein expression was also increased. Flow cytometry and fluorescence microscopy analyses showed that cellular uptake of fluorescence (Dil)-labeled oxLDL was significantly augmented with LPS stimulation. The augmented uptake of Dil-oxLDL was almost completely abrogated by treatment with an anti-LOX-1 antibody. Of note, knockdown of Erk1/2 resulted in a significant reduction of LPS-induced LOX-1 up-regulation. Treatment with U0126, a specific inhibitor of MEK, significantly suppressed LPS-induced expression of LOX-1 at both the mRNA and protein levels. Furthermore, LOX-1 promoter activity was significantly augmented by LPS stimulation; this augmentation was prevented by U0126 treatment. Similar results were also observed in human PMA-induced THP-1 macrophages. Taken together, our results indicate that LPS up-regulates LOX-1, at least in part through activation of the Erk1/2 signaling pathway, followed by augmented cellular oxLDL uptake, thus highlighting a critical role of TLR4-mediated aberrant LOX-1 signaling in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|