1
|
de Almeida Araújo S, Faria BCD, Vasconcelos JC, da Cruz AF, de Souza VS, Wanderley DC, Simões-E-Silva AC. Renal toxicity caused by diethylene glycol: an overview. Int Urol Nephrol 2023; 55:2867-2875. [PMID: 37186212 DOI: 10.1007/s11255-023-03604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
Diethylene glycol (DEG) is nephrotoxic, potentially resulting in high morbidity and mortality. Its main nephrotoxic by-product is diglycolic acid (DGA). This narrative overview summarizes selected literature with a focus on clinical findings, pathophysiology, diagnosis including morphological features of renal biopsies, and management. The kidney injury in DEG poisoning is secondary to proximal tubular necrosis caused by DGA. Marked vacuolization and edema of epithelial cells obstruct the lumen, reducing urine flow and, consequently, resulting in anuria and uremia. The clinical alterations due to DEG poisoning are dose-dependent. Patients may present with gastrointestinal symptoms and anion gap metabolic acidosis, followed by renal failure, and, later, encephalopathy and neuropathy. Although this three-phase pattern has been described, signs and symptoms may be overlapping. Data about DEG intoxication is scarce. Sometimes the diagnosis is challenging. The management includes supportive care, gastric decontamination, correction of acid-base disorders, and hemodialysis. The understanding of the metabolic processes related to DEG poisoning may contribute to its management, preventing death, serious sequels, or irreversible lesions.
Collapse
Affiliation(s)
- Stanley de Almeida Araújo
- Instituto de Nefropatologia, Belo Horizonte, MG, Brasil
- Centro de Microscopia Eletrônica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Bárbara Caroline Dias Faria
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais Belo Horizonte, Avenida Alfredo Balena, 190, 2o andar, sala 281, Bairro Santa Efigênia, MG, CEP 30130-100, Brasil
| | - Júlia Cunha Vasconcelos
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais Belo Horizonte, Avenida Alfredo Balena, 190, 2o andar, sala 281, Bairro Santa Efigênia, MG, CEP 30130-100, Brasil
| | - Aniel Feitosa da Cruz
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais Belo Horizonte, Avenida Alfredo Balena, 190, 2o andar, sala 281, Bairro Santa Efigênia, MG, CEP 30130-100, Brasil
| | - Vitor Santos de Souza
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais Belo Horizonte, Avenida Alfredo Balena, 190, 2o andar, sala 281, Bairro Santa Efigênia, MG, CEP 30130-100, Brasil
| | - David Campos Wanderley
- Instituto de Nefropatologia, Belo Horizonte, MG, Brasil
- Centro de Microscopia Eletrônica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Ana Cristina Simões-E-Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais Belo Horizonte, Avenida Alfredo Balena, 190, 2o andar, sala 281, Bairro Santa Efigênia, MG, CEP 30130-100, Brasil.
| |
Collapse
|
2
|
Tobin JD, Robinson CN, Luttrell-Williams ES, Landry GM, McMartin KE. Lack of efflux of diglycolic acid from proximal tubule cells leads to its accumulation and to toxicity of diethylene glycol. Toxicol Lett 2023; 379:48-55. [PMID: 36958672 DOI: 10.1016/j.toxlet.2023.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Diethylene glycol (DEG) mass poisonings have resulted from ingestion of adulterated pharmaceuticals, leading to proximal tubular necrosis and acute kidney injury. Diglycolic acid (DGA), one of the primary metabolites, accumulates greatly in kidney tissue and its direct administration results in toxicity identical to that in DEG-treated rats. DGA is a dicarboxylic acid, similar in structure to Krebs cycle intermediates such as succinate. Previous studies have shown that DGA is taken into kidney cells via the succinate-related dicarboxylate transporters. These studies have assessed whether the DGA that is taken up by primary cultures of human proximal tubule (HPT) cells is effluxed. In addition, a possible mechanism for efflux, via organic anion transporters (OATs) that exchange external organic anions for dicarboxylates inside the cell, was assessed using transformed cell lines that actively express OAT activities. When HPT cells were cultured on membrane inserts, then loaded with DGA and treated with the OAT4/5 substrate estrone sulfate or the OAT1/3 substrate para-aminohippurate, no DGA efflux was seen. A repeat of this experiment utilizing RPTEC/TERT1 cells with overexpressed OAT1 and OAT3 had similar results. In these cells, but not in HPT cells, co-incubation with succinate increased the uptake of PAH, confirming the presence of OAT activity in the RPTEC/TERT1 cells. Thus, despite OATs stimulation in cells with OAT activity, there was little to no efflux of DGA from the cells. This study concluded that DGA is poorly transported out of cells and that stimulation of OAT transporters is not a viable target for reducing DGA accumulation in cells.
Collapse
Affiliation(s)
- Julie D Tobin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130
| | - Corie N Robinson
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130
| | - Elliot S Luttrell-Williams
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130
| | - Greg M Landry
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana 71130.
| |
Collapse
|
3
|
Reed KJ, Landry GM. Diglycolic acid inhibits succinate dehydrogenase activity, depletes mitochondrial membrane potential, and induces inflammation in an SH-SY5Y neuroblastoma model of neurotoxicity in vitro. Toxicol Appl Pharmacol 2023; 463:116414. [PMID: 36754214 DOI: 10.1016/j.taap.2023.116414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023]
Abstract
Diethylene glycol is a toxic industrial solvent resulting in a well-defined toxidrome. Diglycolic acid (DGA) has been identified as the metabolite responsible for the nephrotoxicity and hepatotoxicity. These studies assess the mechanism of DGA-induced neurotoxicity, specifically addressing the known ability of DGA to chelate calcium (Ca2+) in solution and inhibit mitochondrial complex II. SH-SY5Y cells were seeded into 96-well plates to assess intracellular Ca2+ chelation, complex II activity, mitochondrial membrane potential (ΔΨm), ATP production, and release of inflammatory cytokines TNF-α and IL-1β with 2-, 4-, 6-, 24-, and 48-h DGA exposure. Peak Ca2+ chelation occurred at 4 h in cells treated with 6.25-50 mM DGA; however, effects were transient. Complex II activity was significantly decreased at all DGA concentrations tested, with 12.5 mM DGA causing 80% inhibition and 25 and 50 mM DGA causing 97 and 100% inhibition, respectively. Subsequently, 12.5-50 mM DGA concentrations significantly decreased ΔΨm at all time points. 50 mM DGA significantly increased release of TNF-α and IL-1β after 24 and 48 h with significantly decreased ATP production observed at the same time points and concentration. These studies demonstrate that the DGA-induced mechanism of SH-SY5Y cell death involves complex II inhibition leading to mitochondrial depolarization, and subsequent ATP depletion with accompanying inflammatory cytokine release. These results indicate a direct mechanism of DGA-induced neurotoxicity in vitro, similarly observed in other DEG-affected target organs.
Collapse
Affiliation(s)
- Kristi J Reed
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States
| | - Greg M Landry
- Massachusetts College of Pharmacy and Health Sciences, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States.
| |
Collapse
|
4
|
Inman B, Maddry JK, Ng PC, Koyfman A, Long B. High risk and low prevalence diseases: Toxic alcohol ingestion. Am J Emerg Med 2023; 67:29-36. [PMID: 36796238 DOI: 10.1016/j.ajem.2023.01.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
INTRODUCTION Toxic alcohol ingestion is a rare but serious condition that carries with it a high rate of morbidity and mortality. OBJECTIVE This review highlights the pearls and pitfalls of toxic alcohol ingestion, including presentation, diagnosis, and management in the emergency department (ED) based on current evidence. DISCUSSION Toxic alcohols include ethylene glycol, methanol, isopropyl alcohol, propylene glycol, and diethylene glycol. These substances can be found in several settings including hospitals, hardware stores, and the household, and ingestion can be accidental or intentional. Toxic alcohol ingestion presents with various degrees of inebriation, acidemia, and end-organ damage depending on the substance. Timely diagnosis is critical to prevent irreversible organ damage or death and is based primarily on clinical history and consideration of this entity. Laboratory evidence of toxic alcohol ingestion includes worsening osmolar gap or anion-gap acidemia and end organ injury. Treatment depends on the ingestion and severity of illness but includes alcohol dehydrogenase blockade with fomepizole or ethanol and special considerations for the initiation of hemodialysis. CONCLUSIONS An understanding of toxic alcohol ingestion can assist emergency clinicians in diagnosing and managing this potentially deadly disease.
Collapse
Affiliation(s)
- Brannon Inman
- SAUSHEC, Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | - Joseph K Maddry
- SAUSHEC, Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | - Patrick C Ng
- SAUSHEC, Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA
| | - Alex Koyfman
- Department of Emergency Medicine, UT Southwestern, Dallas, TX, USA
| | - Brit Long
- SAUSHEC, Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, TX, USA.
| |
Collapse
|
5
|
Tobin JD, Robinson CN, Luttrell-Williams ES, Landry GM, Dwyer D, McMartin KE. Role of plasma membrane dicarboxylate transporters in the uptake and toxicity of diglycolic acid, a metabolite of diethylene glycol, in human proximal tubule cells. Toxicol Sci 2022; 190:1-12. [PMID: 36087010 DOI: 10.1093/toxsci/kfac091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Diethylene glycol (DEG) mass poisonings have resulted from ingestion of pharmaceuticals mistakenly adulterated with DEG, typically leading to proximal tubular necrosis and acute kidney injury. The metabolite, diglycolic acid (DGA) accumulates greatly in kidney tissue and its direct administration results in toxicity identical to that in DEG-treated rats. DGA is a dicarboxylic acid, similar in structure to metabolites like succinate. These studies have assessed the mechanism for cellular accumulation of DGA, specifically whether DGA is taken into primary cultures of human proximal tubule (HPT) cells via sodium dicarboxylate transporters (NaDC-1 or NaDC-3) like those responsible for succinate uptake. When HPT cells were cultured on membrane inserts, sodium dependent succinate uptake was observed from both apical and basolateral directions. Pretreatment with the NaDC-1 inhibitor N-(p-amylcinnamoyl)anthranilic acid (ACA) markedly reduced apical uptakes of both succinate and DGA. Basolateral uptake of both succinate and DGA were decreased similarly following combined treatment with ACA and the NaDC-3 inhibitor 2,3-dimethylsuccinate. When the cells were pre-treated with siRNA to knockdown NaDC-1 function, apical uptake of succinate and toxicity of apically applied DGA were reduced, while the reduction in basolateral succinate uptake and basolateral DGA toxicity was marginal with NaDC-3 knockdown. DGA reduced apical uptake of succinate, but not basolateral uptake. This study confirmed that primary HPT cells retain sodium dicarboxylate transport functionality and that DGA was taken up by these transporters. This study identified NaDC-1 as a likely and NaDC-3 as a possible molecular target to reduce uptake of this toxic metabolite by the kidney.
Collapse
Affiliation(s)
- Julie D Tobin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Corie N Robinson
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Elliot S Luttrell-Williams
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Greg M Landry
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Donard Dwyer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130.,Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center-Shreveport Shreveport, Louisiana, 71130
| |
Collapse
|
6
|
Histopathological evidence that diethylene glycol produces kidney and nervous system damage in rats. Neurotoxicology 2022; 91:200-210. [DOI: 10.1016/j.neuro.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/14/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
|
7
|
Ross JA, Borek HA, Holstege CP, King JD. Toxic Alcohol Poisoning. Emerg Med Clin North Am 2022; 40:327-341. [DOI: 10.1016/j.emc.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Jamison CN, Dayton RD, Latimer B, McKinney MP, Mitchell HG, McMartin KE. Diethylene glycol produces nephrotoxic and neurotoxic effects in female rats. Clin Toxicol (Phila) 2022; 60:324-331. [PMID: 34278906 PMCID: PMC9661884 DOI: 10.1080/15563650.2021.1953049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
CONTEXT Diethylene glycol (DEG) is an organic compound found in household products but also as a counterfeit solvent in medicines. DEG poisonings are characterized by acute kidney injury (AKI) and by neurological sequelae such as decreased reflexes or face and limb weakness. Previous studies in male rats have demonstrated that neurotoxic effects develop only with the establishment of AKI, but the dose sensitivity of females to DEG toxicity is unknown. OBJECTIVES Assessing whether subacute administration of DEG in female rats would delineate any sex-differences in neuropathy or in kidney injury. METHODS Female Wistar-Han rats were orally administered doses of 4 - 6 g/kg DEG every 12 h and monitored for 7 days. Urine was collected every 12 h and endpoint blood and cerebrospinal fluid (CSF) were collected for renal plasma parameters and total protein estimation, respectively. Motor function tests were conducted before and after treatment. Kidney and brain tissue were analyzed for metabolite content. RESULTS Of 12 animals treated with DEG, 3 developed AKI as confirmed by increased BUN and creatinine concentrations. Renal and brain DGA contents were increased in animals that developed AKI compared to animals without AKI. Total CSF protein content in animals with AKI was markedly elevated compared to control and to treated animals without AKI. Decreases in forelimb grip strength and in locomotor and rearing activity were observed in animals with AKI compared to control and to animals without AKI. DISCUSSION Repeated dosing with DEG in a female model produced nephrotoxic effects at a dose similar to that in males. The decrease in motor function and increase in CSF protein were only present in females that developed AKI. However, kidney and neurologic effects were assessed only at the end of the treatments, thus limiting determination of which effect occurs first. Limb function and coordination were measured globally and more sensitive tests such as nerve conduction studies might offer a detailed neurotoxicity assessment of the effects of DEG. CONCLUSIONS These studies show that DEG toxicity does not appear to be sex-specific and that, in males and females, neurological symptoms are present only when DGA accumulation and kidney injury also occur.
Collapse
Affiliation(s)
- Courtney N. Jamison
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Robert D. Dayton
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Mary P. McKinney
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Hannah G. Mitchell
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Kenneth E. McMartin
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
9
|
Reed KJ, Freeman DT, Landry GM. Diethylene glycol and its metabolites induce cell death in SH-SY5Y neuronal cells in vitro. Toxicol In Vitro 2021; 75:105196. [PMID: 34022404 DOI: 10.1016/j.tiv.2021.105196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 01/07/2023]
Abstract
Diethylene glycol (DEG) intoxication results in metabolic acidosis, renal and hepatic dysfunction, and late-stage neurotoxicity. Though the renal and hepatic toxicity of DEG and its metabolites 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA) have been well characterized, the resultant neurotoxicity has not. SH-SY5Y neuroblastoma cells were incubated with all 3 compounds at increasing concentrations for 24, 48, or 120 h. At all 3 time points, 50 mmol/L DGA and 100 mmol/L DEG showed significant Annexin V and propidium iodide (PI) staining with additional concentrations showing similar staining patterns at 24 h (100 mmol/L DGA) and 48 h (50 mmol/L DEG, 100 mmol/L DGA). Only the 200 mmol/L 2-HEAA concentration induced SH-SY5Y cell death. Interestingly at 24 and 48 h, 100 mmol/L DEG induced significant increases in apoptotic cell death markers, which progressed to necrosis at 120 h. Similar to DEG, 50 mmol/L DGA induced significant increases in SH-SY5Y cell apoptosis and necrosis markers at both 24 and 48 h. As expected, high DGA concentrations (100 mmol/L) at 120 h induced significant SH-SY5Y cell necrosis with no apoptosis detected. However, at 120 h lower DGA concentrations (20 mmol/L) significantly increased oligonucleosome formation alone and in combination with 2-HEAA or DEG. Taken together, these results indicate that DGA and DEG at threshold concentrations induce neurotoxicity in SH-SY5Y cells.
Collapse
Affiliation(s)
- Kristi J Reed
- MCPHS University, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States
| | - Dylan T Freeman
- MCPHS University, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States
| | - Greg M Landry
- MCPHS University, School of Pharmacy, Department of Pharmaceutical Sciences, Boston, MA 02115, United States.
| |
Collapse
|
10
|
Jamison CN, Dayton RD, Latimer B, McKinney MP, Mitchell HG, McMartin KE. Neurotoxic effects of nephrotoxic compound diethylene glycol. Clin Toxicol (Phila) 2021; 59:810-821. [PMID: 33475432 DOI: 10.1080/15563650.2021.1874403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONTEXT Diethylene glycol (DEG) is an organic compound found in household products but also as an adulterant in medicines by acting as a counterfeit solvent. DEG poisonings have been characterized predominately by acute kidney injury (AKI), but also by delayed neurological sequelae such as decreased reflexes or face and limb weakness. OBJECTIVES Characterizing the neurological symptoms of DEG poisoning in a subacute animal model would create a clearer picture of overall toxicity and possibly make mechanistic connections between kidney injury and neuropathy. METHODS Male Wistar-Han rats were orally administered doses of 4 - 6 g/kg DEG every 12 or 24 h and monitored for 7 days. Urine was collected every 12 h and endpoint blood and cerebrospinal fluid (CSF) were collected for a renal plasma panel and total protein estimation, respectively. Motor function tests were conducted before and after treatment. Kidney and brain tissue was harvested for metabolic analysis. RESULTS Of the 43 animals treated with DEG, 11 developed AKI as confirmed by increased BUN and creatinine levels. Renal and brain DGA accumulation was markedly increased in animals that developed AKI compared to animals without AKI. The total protein content in CSF in animals with kidney injury was markedly elevated compared to control and to treated animals without AKI. Significant decreases in forelimb grip strength and decreases in locomotor and rearing activity were observed in animals with AKI compared to control and to animals without AKI. DISCUSSION Repeated dosing with DEG in an animal model produced nephrotoxic effects like those in studies with acute DEG administration. The decrease in motor function and increase in CSF protein were only present in animals that developed AKI. CONCLUSIONS These studies show development of neurotoxicity in this DEG animal model and suggest that neurological symptoms are observed only when DGA accumulation and kidney injury also occur.
Collapse
Affiliation(s)
- Courtney N Jamison
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Robert D Dayton
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Mary P McKinney
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Hannah G Mitchell
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
11
|
Goulart COL, Bordoni LS, Nascentes CC, Costa LM. Analysis of Diglycolic Acid After Mass Poisoning by Diethylene Glycol. J Anal Toxicol 2020; 46:64-68. [PMID: 33270110 DOI: 10.1093/jat/bkaa187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
In December 2019, unusual cases of acute renal failure with neurological changes were observed in the State of Minas Gerais, Brazil. Criminal investigations indicated cases of intoxication after consumption of beers contaminated with diethylene glycol (DEG). The elimination of DEG by the body is fast, but its metabolite, diglycolic acid (DA), may persist for a long time. To assess the level of intoxicated victims who consumed the contaminated beers, qualitative and quantitative methods were developed to determine DA in biological matrices by gas chromatography coupled to a mass spectrometer (GC-MS) and gas chromatography coupled to a mass spectrometer with triple-quadrupole mass filter (GC-MS/MS), respectively. The validated qualitative method presents good selectivity and limit of detection of 1 µg/mL (whole blood, urine, vitreous humor and cerebrospinal fluid) and 5 µg/g (liver and kidney). A quantitative method for whole blood presented satisfactory performance to determine DA. Twelve victims presented positive results for DA in whole blood, with concentrations ranging from 2 to 108 µg/mL. The toxicology laboratory of the Institute of Forensic Medicine of Minas Gerais was the first governmental agency to identify DA in whole blood, vitreous humor, cerebrospinal fluid, kidney and urine in victims affected by this contaminant. The results of this study legally supported the prohibition to the continued consumption of the beer and avoided further intoxications. Our results showed, for real cases of human intoxication, that it can still be detected in alternative matrices, even when non-detectable in blood, demonstrating the importance of collecting different kinds of samples for a proper investigation.
Collapse
Affiliation(s)
- Cristiano O L Goulart
- Instituto Médico Legal André Roquette, R. Nícias Continentino, 1291, Gameleira, 30510-160, Belo Horizonte, Brasil.,LEAQUAA, Departamento de Química - ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, Brasil
| | - Leonardo S Bordoni
- Instituto Médico Legal André Roquette, R. Nícias Continentino, 1291, Gameleira, 30510-160, Belo Horizonte, Brasil.,Universidade Federal de Ouro Preto, R. Dois, Campus Morro do Cruzeiro, 35400-000, Ouro Preto, Brasil.,Faculdade de Medicina de Barbacena, Praça Presidente Antônio Carlos, 8, São Sebastião, 36202-336, Barbacena, Brasil
| | - Clésia C Nascentes
- LEAQUAA, Departamento de Química - ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, Brasil
| | - Letícia M Costa
- LEAQUAA, Departamento de Química - ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, Brasil
| |
Collapse
|
12
|
Eckstrum K, Striz A, Ferguson M, Zhao Y, Welch B, Solomotis N, Olejnik N, Sprando R. Utilization of a model hepatotoxic compound, diglycolic acid, to evaluate liver Organ-Chip performance and in vitro to in vivo concordance. Food Chem Toxicol 2020; 146:111850. [DOI: 10.1016/j.fct.2020.111850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 10/23/2022]
|
13
|
Abstract
Extracorporeal therapies have been used to remove toxins from the body for over 50 years and have a greater role than ever before in the treatment of poisonings. Improvements in technology have resulted in increased efficacy of removing drugs and other toxins with hemodialysis, and newer extracorporeal therapy modalities have expanded the role of extracorporeal supportive care of poisoned patients. However, despite these changes, for at least the past three decades the most frequently dialyzed poisons remain salicylates, toxic alcohols, and lithium; in addition, the extracorporeal treatment of choice for therapeutic removal of nearly all poisonings remains intermittent hemodialysis. For the clinician, consideration of extracorporeal therapy in the treatment of a poisoning depends upon the characteristics of toxins amenable to extracorporeal removal (e.g., molecular mass, volume of distribution, protein binding), choice of extracorporeal treatment modality for a given poisoning, and when the benefit of the procedure justifies additive risk. Given the relative rarity of poisonings treated with extracorporeal therapies, the level of evidence for extracorporeal treatment of poisoning is not robust; however, extracorporeal treatment of a number of individual toxins have been systematically reviewed within the current decade by the Extracorporeal Treatment in Poisoning workgroup, which has published treatment recommendations with an improved evidence base. Some of these recommendations are discussed, as well as management of a small number of relevant poisonings where extracorporeal therapy use may be considered.
Collapse
Affiliation(s)
- Joshua David King
- Division of Nephrology, University of Maryland, Baltimore, Maryland; .,Maryland Poison Center, Baltimore, Maryland
| | - Moritz H Kern
- Department of Medicine, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Bernard G Jaar
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland.,Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, Maryland.,Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; and.,Nephrology Center of Maryland, Baltimore, Maryland
| |
Collapse
|
14
|
Barnett LMA, Cummings BS. Nephrotoxicity and Renal Pathophysiology: A Contemporary Perspective. Toxicol Sci 2019; 164:379-390. [PMID: 29939355 DOI: 10.1093/toxsci/kfy159] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kidney consists of numerous cell types organized into the nephron, which is the basic functional unit of the kidney. Any stimuli that induce loss of these cells can induce kidney damage and renal failure. The cause of renal failure can be intrinsic or extrinsic. Extrinsic causes include cardiovascular disease, obesity, diabetes, sepsis, and lung and liver failure. Intrinsic causes include glomerular nephritis, polycystic kidney disease, renal fibrosis, tubular cell death, and stones. The kidney plays a prominent role in mediating the toxicity of numerous drugs, environmental pollutants and natural substances. Drugs known to be nephrotoxic include several cancer therapeutics, drugs of abuse, antibiotics, and radiocontrast agents. Environmental pollutants known to target the kidney include cadmium, mercury, arsenic, lead, trichloroethylene, bromate, brominated-flame retardants, diglycolic acid, and ethylene glycol. Natural nephrotoxicants include aristolochic acids and mycotoxins such as ochratoxin, fumonisin B1, and citrinin. There are several common characteristics between mechanisms of renal failure induced by nephrotoxicants and extrinsic causes. This common ground exists primarily due to similarities in the molecular mechanisms mediating renal cell death. This review summarizes the current state of the field of nephrotoxicity. It emphasizes integrating our understanding of nephrotoxicity with pathological-induced renal failure. Such approaches are needed to address major questions in the field, which include the diagnosis, prognosis and treatment of both acute and chronic renal failure, and the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
| | - Brian S Cummings
- Interdisciplinary Toxicology Program.,Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
15
|
Wu H, Gao H, Gao S, Lei Z, Dai L, Wang X, Han Y, Wang Z, Han L. A Chinese 4-herb formula, Yiqi-Huoxue granule, alleviates H 2O 2-induced apoptosis by upregulating uncoupling protein 2 in H9c2 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:171-181. [PMID: 30668396 DOI: 10.1016/j.phymed.2018.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/17/2018] [Accepted: 09/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Although the protective effects of Yiqi-Huoxue granule (YQHX), a Chinese 4-herb formula, on patients with ischemic heart diseases are related to the attenuation of oxidative stress injury, the mechanism(s) underlying these actions remains poorly understood. PURPOSE Our aim was to investigate the potential protective effects of YQHX treatment against oxidative stress induced by hydrogen peroxide (H2O2) in rat H9c2 cells. METHODS H9c2 cells were treated with YQHX for 16 h before exposed to 200 μM H2O2 for 6 h. The apoptosis induced by H2O2 was measured using hoechst 33,342 staining and Annexin-V FITC/PI assay. The expression of uncoupling protein 2 (UCP2), Bcl-2, Bax, and caspase-3 were observed using western blot. The effects of UCP2 knockdown on cell apoptosis and intracellular ROS production were also investigated. RESULTS H2O2 exposure led to significant activation of oxidative stress followed by increased apoptosis and ROS production, as well as decreased UCP2 expression in H9c2 cells. YQHX treatment at the concentration of 0.75 and 1.5 mg/ml remarkably reduced the expression of Bax and caspase-3, whereas increased the protein expression of Bcl-2 and UCP2. These changes were attenuated by transgenic knockdown of UCP2 with Lenti-shUCP2 vector. CONCLUSIONS Taken together, our study demonstrated that YQHX attenuates H2O2-induced apoptosis by upregulating UCP2 expression in H9c2 Cells, suggesting that YQHX is a promising therapeutic approach for the treatment of I/R injury-mediated apoptosis.
Collapse
Affiliation(s)
- Hong Wu
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, Henan 450002, China; Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002, China.
| | - Haixia Gao
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, Henan 450002, China
| | - Shuibo Gao
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, Henan 450002, China
| | - Zhen Lei
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, Henan 450002, China
| | - Liping Dai
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xinzhou Wang
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, Henan 450002, China
| | - Yongjun Han
- Laboratory of Cell Imaging, Henan University of Chinese Medicine, 6 Dongfeng Rd, Zhengzhou, Henan 450002, China
| | - Zhentao Wang
- Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Lihua Han
- Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| |
Collapse
|
16
|
Mossoba ME, Vohra S, Toomer H, Pugh-Bishop S, Keltner Z, Topping V, Black T, Olejnik N, Depina A, Belgrave K, Sprando J, Flynn TJ, Wiesenfeld PL, Sprando RL. Diglycolic acid induces HepG2/C3A liver cell toxicity in vitro. Toxicol In Vitro 2018; 52:87-93. [DOI: 10.1016/j.tiv.2018.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/10/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
|
17
|
Fowles J, Banton M, Klapacz J, Shen H. A toxicological review of the ethylene glycol series: Commonalities and differences in toxicity and modes of action. Toxicol Lett 2017; 278:66-83. [PMID: 28689762 DOI: 10.1016/j.toxlet.2017.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 05/23/2017] [Accepted: 06/21/2017] [Indexed: 11/27/2022]
Abstract
This review summarizes the hazards, exposure and risk that are associated with ethylene glycols (EGs) in their intended applications. Ethylene glycol (EG; CAS RN 107-21-1) and its related oligomers include mono-, di-, tri-, tetra-, and penta-EG. All of the EGs are quickly and extensively absorbed following ingestion and inhalation, but not by the dermal route. Metabolism involves oxidation to the mono- and dicarboxylic acids. Elimination is primarily through the urine as the parent compound or the monoacid, and, in the case of EG, also as exhaled carbon dioxide. All EGs exert acute toxicity in a similar manner, characterized by CNS depression and metabolic acidosis in humans and rodents; the larger molecules being proportionally less acutely toxic on a strict mg/kg basis. Species differences exist in the metabolism and distribution of toxic metabolites, particularly with the formation of glycolic acids and oxalates (OX) from EG and diethylene glycol (DEG); OX are not formed to a significant degree in higher ethylene glycols. Among rodents, rats are more sensitive than mice, and males more sensitive than females to the acute and repeated-dose toxicity of EG. The metabolic formation of glycolic acid (GA), diglycolic acid (DGA), and OX are associated with nephrotoxicity in humans and rodents following single and repeated exposures. However, physiological and metabolic differences in the rate of formation of GA, DGA and OX and their distribution result in EG and DEG causing embryotoxicity in rats, but not rabbits. This rodent-specific sensitivity indicates that EG and its higher oligomers are not anticipated to be embryotoxic in humans at environmentally relevant doses. None of the compounds present developmental toxicity concerns at doses that do not also cause significant maternal toxicity, nor do any of the EGs cause adverse effects on fertility. The EGs are neither genotoxic nor carcinogenic. A read-across matrix is presented, which considers the common and distinct toxicological properties of each compound. It is concluded that EGs pose no risk to human health as a result of their intended use patterns.
Collapse
Affiliation(s)
| | | | | | - Hua Shen
- Shell Oil Company, Houston, TX, USA
| |
Collapse
|
18
|
Mossoba ME, Vohra S, Toomer H, Pugh-Bishop S, Keltner Z, Topping V, Black T, Olejnik N, Depina A, Belgrave K, Sprando J, Njorge J, Flynn TJ, Wiesenfeld PL, Sprando RL. Comparison of diglycolic acid exposure to human proximal tubule cells in vitro and rat kidneys in vivo. Toxicol Rep 2017; 4:342-347. [PMID: 28959658 PMCID: PMC5615145 DOI: 10.1016/j.toxrep.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 01/13/2023] Open
Abstract
Diglycolic acid (DGA) is an indirect food additive. DGA was tested for renal cell toxicity in vitro using HK-2 cells. Evaluation of toxicity included cellular and mitochondrial effects. In vitro data are highly concordant with in vivo outcomes.
Diglycolic acid (DGA) is present in trace amounts in our food supply and is classified as an indirect food additive linked with the primary GRAS food additive carboxymethyl cellulose (CMC). Carboxymethyl starches are used as a filler/binder excipient in dietary supplement tablets and a thickening ingredient in many other processed foods. We sought to utilize the human proximal tubule HK-2 cell line as an in vitro cellular model system to evaluate its acute nephrotoxicity of DGA. We found that DGA was indeed toxic to HK-2 cells in all in vitro assays in our study, including a highly sensitive Luminex assay that measures levels of an in vitro biomarker of kidney-specific toxicity, Kidney Injury Molecule 1 (KIM-1). Interestingly, in vitro KIM-1 levels also correlated with in vivo KIM-1 levels in urine collected from rats treated with DGA by daily oral gavage. The use of in vitro and in vivo models towards understanding the effectiveness of an established in vitro system to predict in vivo outcomes would be particularly useful in rapidly screening compounds that are suspected to be unsafe to consumers. The merit of the HK-2 cell model in predicting human toxicity and accelerating the process of food toxicant screening would be especially important for regulatory purposes. Overall, our study not only revealed the value of HK-2 in vitro cell model for nephrotoxicity evaluation, but also uncovered some of the mechanistic aspects of the human proximal tubule injury that DGA may cause.
Collapse
Affiliation(s)
- Miriam E. Mossoba
- Corresponding author at: US FDA, MOD-1 Laboratories, 8301 Muirkirk Rd., HFS-025, Lab 1406, Laurel, MD 20708, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Human health assessment for long-term oral ingestion of diethylene glycol. Regul Toxicol Pharmacol 2017; 87 Suppl 2:S1-S20. [DOI: 10.1016/j.yrtph.2017.03.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 11/22/2022]
|
20
|
Zheng JL, Yuan SS, Shen B, Wu CW. Organ-specific effects of low-dose zinc pre-exposure on high-dose zinc induced mitochondrial dysfunction in large yellow croaker Pseudosciaena crocea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:653-661. [PMID: 27909949 DOI: 10.1007/s10695-016-0319-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
The study was carried out to evaluate the effects of low-dose zinc (Zn) pre-exposure on survival rate, new Zn accumulation, and mitochondrial bioenergetics in the liver and spleen of large yellow croaker exposed to high-dose Zn. To the end, fish were pre-exposed to 0 and 2 mg L-1 Zn for 48 h and post-exposed to 0 and 12 mg L-1 Zn for 48 h. Twelve milligrams Zn per liter exposure alone reduced survival rate, but the effect did not appear in the 2 mg L-1 Zn pre-exposure groups. Two milligrams per liter Zn pre-exposure also ameliorated 12 mg Zn L-1 induced new Zn accumulation, reactive oxygen species (ROS) levels, and mitochondrial swelling in the liver. However, these effects did not appear in the spleen. In the liver, 2 mg L-1 Zn pre-exposure apparently relieved 12 mg L-1 Zn induced down-regulation of activities of ATP synthase (F-ATPase), succinate dehydrogenase (SDH), and malate dehydrogenase (MDH). The mRNA levels of these genes remained relatively stable in fish exposed to 12 mg L-1 Zn alone, but increased in fish exposed to 12 mg L-1 Zn with 2 mg L-1 Zn pre-treatment. In the spleen, 2 mg Zn L-1 pre-exposure did not mitigate the down-regulation of mRNA levels of genes and activities of relative enzymes induced by 12 mg L-1 Zn. In conclusion, our study demonstrated low-dose zinc pre-exposure ameliorated high-dose zinc induced mitochondrial dysfunction in the liver but not in the spleen of large yellow croaker, indicating an organ-specific effect.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Shuang-Shuang Yuan
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Bin Shen
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China
| | - Chang-Wen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, People's Republic of China.
| |
Collapse
|
21
|
Robinson CN, Latimer B, Abreo F, Broussard K, McMartin KE. In-vivo evidence of nephrotoxicity and altered hepatic function in rats following administration of diglycolic acid, a metabolite of diethylene glycol. Clin Toxicol (Phila) 2017; 55:196-205. [DOI: 10.1080/15563650.2016.1271128] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Corie N. Robinson
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center – Shreveport, Shreveport, LA, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center – Shreveport, Shreveport, LA, USA
| | - Fleurette Abreo
- Department of Pathology, Louisiana State University Health Sciences Center – Shreveport, Shreveport, LA, USA
| | | | - Kenneth E. McMartin
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center – Shreveport, Shreveport, LA, USA
| |
Collapse
|
22
|
Conrad T, Landry GM, Aw TY, Nichols R, McMartin KE. Diglycolic acid, the toxic metabolite of diethylene glycol, chelates calcium and produces renal mitochondrial dysfunction in vitro. Clin Toxicol (Phila) 2016; 54:501-11. [DOI: 10.3109/15563650.2016.1162312] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Taylor Conrad
- Louisiana State University Health School of Medicine-Shreveport, Shreveport, LA, USA
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Greg M. Landry
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Tak Yee Aw
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Royce Nichols
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Kenneth E. McMartin
- Department of Pharmacology, Toxicology, and Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
23
|
Ye J, Li J, Xia R, Zhou M, Yu L. Prohibitin protects proximal tubule epithelial cells against oxidative injury through mitochondrial pathways. Free Radic Res 2015. [DOI: 10.3109/10715762.2015.1075654] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Landry GM, Dunning CL, Abreo F, Latimer B, Orchard E, McMartin KE. Diethylene glycol-induced toxicities show marked threshold dose response in rats. Toxicol Appl Pharmacol 2014; 282:244-51. [PMID: 25545985 DOI: 10.1016/j.taap.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 11/16/2022]
Abstract
Diethylene glycol (DEG) exposure poses risks to human health because of widespread industrial use and accidental exposures from contaminated products. To enhance the understanding of the mechanistic role of metabolites in DEG toxicity, this study used a dose response paradigm to determine a rat model that would best mimic DEG exposure in humans. Wistar and Fischer-344 (F-344) rats were treated by oral gavage with 0, 2, 5, or 10g/kg DEG and blood, kidney and liver tissues were collected at 48h. Both rat strains treated with 10g/kg DEG had equivalent degrees of metabolic acidosis, renal toxicity (increased BUN and creatinine and cortical necrosis) and liver toxicity (increased serum enzyme levels, centrilobular necrosis and severe glycogen depletion). There was no liver or kidney toxicity at the lower DEG doses (2 and 5g/kg) regardless of strain, demonstrating a steep threshold dose response. Kidney diglycolic acid (DGA), the presumed nephrotoxic metabolite of DEG, was markedly elevated in both rat strains administered 10g/kg DEG, but no DGA was present at 2 or 5g/kg, asserting its necessary role in DEG-induced toxicity. These results indicate that mechanistically in order to produce toxicity, metabolism to and significant target organ accumulation of DGA are required and that both strains would be useful for DEG risk assessments.
Collapse
Affiliation(s)
- Greg M Landry
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Cody L Dunning
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Fleurette Abreo
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Brian Latimer
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Elysse Orchard
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States; Division of Animal Resources, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| | - Kenneth E McMartin
- Department of Pharmacology, Toxicology, & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
| |
Collapse
|
25
|
Devoti E, Marta E, Belotti E, Bregoli L, Liut F, Maiorca P, Mazzucotelli V, Cancarini G. Diethylene glycol poisoning from transcutaneous absorption. Am J Kidney Dis 2014; 65:603-6. [PMID: 25445099 DOI: 10.1053/j.ajkd.2014.07.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/09/2014] [Indexed: 11/11/2022]
Abstract
A case of transcutaneous diethylene glycol poisoning with severe acute kidney injury, but a positive outcome, is described. A man without significant medical history was admitted to our hospital due to anuria, gastrointestinal symptoms, and hypertension. Ultrasonography excluded vascular damage and postrenal obstruction. Laboratory tests showed acute kidney injury and metabolic acidosis with increased anion gap; hemodialysis therapy was started. The brother of the patient reported that the patient had been smearing his skin with brake fluid containing diethylene glycol to treat a "dermatitis." Only supportive therapy was given due to the lack of a specific antidote. Continuous venovenous hemofiltration was performed. The kidney biopsy showed acute toxic proximal tubulonecrosis, without deposition of oxalate crystals. His neurologic condition worsened dramatically; supportive care was continued. Over time, acute kidney injury and neurologic damage gradually improved; 33 days after admission, he went to a rehabilitation unit for 5 months, with complete clinical recovery. Historically, diethylene glycol has been the cause of large-scale poisonings from ingestion of contaminated drugs. The clinical evolution is unpredictable. Treatment is not well defined; early hemodialysis treatment reduces levels of toxic metabolites, and fomepizole could be useful in cases with an early diagnosis. A comparison of the characteristics of diethylene glycol versus ethylene glycol poisoning is given.
Collapse
Affiliation(s)
- Elisabetta Devoti
- Operative Unit of Nephrology, A.O. Spedali Civili di Brescia and University of Brescia, Brescia, Italy.
| | - Elisabetta Marta
- Operative Unit of Nephrology, A.O. Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| | - Elena Belotti
- Operative Unit of Nephrology, A.O. Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| | - Laura Bregoli
- Operative Unit of Nephrology, A.O. Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| | - Francesca Liut
- Operative Unit of Nephrology, A.O. Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| | - Paolo Maiorca
- Operative Unit of Nephrology, A.O. Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| | - Valentina Mazzucotelli
- Operative Unit of Nephrology, A.O. Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| | - Giovanni Cancarini
- Operative Unit of Nephrology, A.O. Spedali Civili di Brescia and University of Brescia, Brescia, Italy
| |
Collapse
|