1
|
Olson KR, Derry PJ, Kent TA, Straub KD. The Effects of Antioxidant Nutraceuticals on Cellular Sulfur Metabolism and Signaling. Antioxid Redox Signal 2023; 38:68-94. [PMID: 35819295 PMCID: PMC9885552 DOI: 10.1089/ars.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/03/2023]
Abstract
Significance: Nutraceuticals are ingested for health benefits, in addition to their general nutritional value. These dietary supplements have become increasingly popular since the late 20th century and they are a rapidly expanding global industry approaching a half-trillion U.S. dollars annually. Many nutraceuticals are promulgated as potent antioxidants. Recent Advances: Experimental support for the efficacy of nutraceuticals has lagged behind anecdotal exuberance. However, accumulating epidemiological evidence and recent, well-controlled clinical trials are beginning to support earlier animal and in vitro studies. Although still somewhat limited, encouraging results have been suggested in essentially all organ systems and against a wide range of pathophysiological conditions. Critical Issues: Health benefits of "antioxidant" nutraceuticals are largely attributed to their ability to scavenge oxidants. This has been criticized based on several factors, including limited bioavailability, short tissue retention time, and the preponderance of endogenous antioxidants. Recent attention has turned to nutraceutical activation of downstream antioxidant systems, especially the Keap1/Nrf2 (Kelch like ECH associated protein 1/nuclear factor erythroid 2-related factor 2) axis. The question now becomes, how do nutraceuticals activate this axis? Future Directions: Reactive sulfur species (RSS), including hydrogen sulfide (H2S) and its metabolites, are potent activators of the Keap1/Nrf2 axis and avid scavengers of reactive oxygen species. Evidence is beginning to accumulate that a variety of nutraceuticals increase cellular RSS by directly providing RSS in the diet, or through a number of catalytic mechanisms that increase endogenous RSS production. We propose that nutraceutical-specific targeting of RSS metabolism will lead to the design and development of even more efficacious antioxidant therapeutic strategies. Antioxid. Redox Signal. 38, 68-94.
Collapse
Affiliation(s)
- Kenneth R. Olson
- Department of Physiology, Indiana University School of Medicine—South Bend, South Bend, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Paul J. Derry
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
| | - Thomas A. Kent
- Center for Genomics and Precision Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, USA
- Department of Chemistry, Rice University, Houston, Texas, USA
- Stanley H. Appel Department of Neurology, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
| | - Karl D. Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, Arkansas, USA
- Department of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Owczarek-Januszkiewicz A, Magiera A, Olszewska MA. Enzymatically Modified Isoquercitrin: Production, Metabolism, Bioavailability, Toxicity, Pharmacology, and Related Molecular Mechanisms. Int J Mol Sci 2022; 23:14784. [PMID: 36499113 PMCID: PMC9738368 DOI: 10.3390/ijms232314784] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Quercetin and its glycosides, such as isoquercitrin or rutin, are among the most ubiquitous flavonoids present in plants. They possess numerous health-promoting properties, whose applicability is, however, limited by poor water solubility and absorption issues. Enzymatically modified isoquercitrin (EMIQ) is an isoquercitrin derivative obtained from rutin via enzymatic transformations that greatly enhance its bioavailability. Due to advantageous reports on its safety and bioactivity, EMIQ is currently gaining importance as a food additive and a constituent of dietary supplements. This review summarizes the thus-far-conducted investigations into the metabolism, toxicity, biological properties, and molecular mechanisms of EMIQ and presents a comprehensive characterization of this valuable substance, which might represent the future of flavonoid supplementation.
Collapse
Affiliation(s)
| | | | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszynskiego St., 90-151 Lodz, Poland
| |
Collapse
|
3
|
Carter LE, Bugiel S, Nunnikhoven A, Verster AJ, Bondy GS, Curran IHA. Genomic analysis of Fisher F344 rat kidneys from a reproductive study following dietary ochratoxin A exposure. Food Chem Toxicol 2022; 167:113302. [PMID: 35843423 DOI: 10.1016/j.fct.2022.113302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by species of Penicillium and Aspergillus, and is found in many commodities including cereal grains, nuts, and coffee. OTA is a renal carcinogen and nephrotoxin at high concentrations, targeting the proximal tubules. This study uses transcriptomics and the previously reported apical data (Bondy et al., 2021) to infer mode-of-action of OTA toxicity in male and female rats exposed to low doses of OTA in utero and throughout development. Our findings support a male-specific activation of the innate and adaptive immune responses in F1 pups to OTA exposure. This was not found in the female F1 pups, and may be due to female-specific increased p38 activity and VDR signaling. Differentially expressed genes related to karyomegaly, MAPK activity, and immune activation appears to develop from in utero exposure to OTA whereas those related to decreased kidney and liver function, and changes to reproductive pathways occur in both rat generations. Together, these transcriptional results confirm that dietary exposure to OTA causes renal toxicity as well as alterations to hepatic and reproductive pathways in rats. In utero exposure of rats to OTA results in sex-specific alterations in immune response pathways, VDR signaling, and p38 activity.
Collapse
Affiliation(s)
- L E Carter
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada.
| | - S Bugiel
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A Nunnikhoven
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - A J Verster
- Bureau of Food Surveillance and Science Integration, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - G S Bondy
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| | - I H A Curran
- Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, K1A 0K9, Canada
| |
Collapse
|
4
|
Tahir MA, Abbas A, Muneeb M, Bilal RM, Hussain K, Abdel-Moneim AME, Farag MR, Dhama K, Elnesr SS, Alagawany M. Ochratoxicosis in poultry: occurrence, environmental factors, pathological alterations and amelioration strategies. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2090887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Muhammad A. Tahir
- Department of Pathobiology, Bahauddin Zakariya University, Multan, Pakistan
| | - Asghar Abbas
- Department of Veterinary and Animal Sciences, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Muhammad Muneeb
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Rana M. Bilal
- Department of Animal Nutrition, Faculty of Veterinary and Animal Sciences, Islamia University, Bahawalpur, Pakistan
| | - Kashif Hussain
- Department of Veterinary and Animal Sciences, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | | | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Agriculture Faculty, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Tiwari D, Mittal N, Jha HC. Unraveling the links between neurodegeneration and Epstein-Barr virus-mediated cell cycle dysregulation. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100046. [PMID: 36685766 PMCID: PMC9846474 DOI: 10.1016/j.crneur.2022.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 01/25/2023] Open
Abstract
The Epstein-Barr virus is a well-known cell cycle modulator. To establish successful infection in the host, EBV alters the cell cycle at multiple steps via antigens such as EBNAs, LMPs, and certain other EBV-encoded transcripts. Interestingly, several recent studies have indicated the possibility of EBV's neurotrophic potential. However, the effects and outcomes of EBV infection in the CNS are under-explored. Additionally, more and more epidemiological evidence implicates the cell-cycle dysregulation in neurodegeneration. Numerous hypotheses which describe the triggers that force post-mitotic neurons to re-enter the cell cycle are prevalent. Apart from the known genetic and epigenetic factors responsible, several reports have shown the association of microbial infections with neurodegenerative pathology. Although, studies implicating the herpesvirus family members in neurodegeneration exist, the involvement of Epstein-Barr virus (EBV), in particular, is under-evaluated. Interestingly, a few clinical studies have reported patients of AD or PD to be seropositive for EBV. Based on the findings mentioned above, in this review, we propose that EBV infection in neurons could drive it towards neurodegeneration through dysregulation of cell-cycle events and induction of apoptosis.
Collapse
Affiliation(s)
- Deeksha Tiwari
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Nitish Mittal
- Computational and Systems Biology, Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056, Basel, Switzerland,Corresponding author.
| | - Hem Chandra Jha
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, India,Corresponding author.
| |
Collapse
|
6
|
Moon Y, Korcsmáros T, Nagappan A, Ray N. MicroRNA target-based network predicts androgen receptor-linked mycotoxin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113130. [PMID: 34968797 DOI: 10.1016/j.ecoenv.2021.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Stress-responsive microRNAs (miRNAs) contribute to the regulation of cellular homeostasis or pathological processes, including carcinogenesis, by reprogramming target gene expression following human exposure to environmental or dietary xenobiotics. Herein, we predicted the targets of carcinogenic mycotoxin-responsive miRNAs and analyzed their association with disease and functionality. miRNA target-derived prediction indicated potent associations of oncogenic mycotoxin exposure with metabolism- or hormone-related diseases, including sex hormone-linked cancers. Mechanistically, the signaling network evaluation suggested androgen receptor (AR)-linked signaling as a common pivotal cluster associated with metabolism- or hormone-related tumorigenesis in response to aflatoxin B1 and ochratoxin A co-exposure. Particularly, high levels of AR and AR-linked genes for the retinol and xenobiotic metabolic enzymes were positively associated with attenuated disease biomarkers and good prognosis in patients with liver or kidney cancers. Moreover, AR-linked signaling was protective against OTA-induced genetic insults in human hepatocytes whereas it was positively involved in AFB1-induced genotoxic actions. Collectively, miRNA target network-based predictions provide novel clinical insights into the progression or intervention against malignant adverse outcomes of human exposure to environmental oncogenic insults.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Tamás Korcsmáros
- Earlham Institute, Norwich NR4 7UZ, UK; Quadram Institute Bioscience, Norwich NR4 7UZ, UK
| | - Arulkumar Nagappan
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Navin Ray
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
7
|
Zhu L, Wang H, Yuhan J, Zhang B, Li H, Asakiya C, Huang K, He X, Xu W. Exosomes mediated the delivery of ochratoxin A-induced cytotoxicity in HEK293 cells. Toxicology 2021; 461:152926. [PMID: 34481902 DOI: 10.1016/j.tox.2021.152926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
Ochratoxin A (OTA) is one of the mycotoxins, which widely pollutes food systems and seriously threatens human health. OTA's target organ is the kidney. Exosome, as one of the extracellular vesicles, could be secreted by all kinds of cells. It contains different proteins, nucleic acid, and lipid, which are decided by their donor cells and could be uptake by the recipient cells, release their contents, and affect the recipient cell's life activity. In this study, a 24 h-treatment with 5 μM OTA was found to significantly reduce the cell viability of HEK293 cells and meanwhile to provide a sufficient quantity of exosomes, thus this concentration and time were selected for subsequent experiments. In addition, exosomes extracted by ultracentrifugation had higher purity, fewer impurities, and uniform morphology than that by the ExoQuick-TC kit. Furthermore, these exosomes increased ROS levels and decreased mitochondrial membrane potential in HEK293 cells. By RNA-seq, the cytotoxicity mechanisms induced by OTA-treated HEK293 cell-derived exosomes (EXO-OTA) and OTA were mainly the metabolism of proteins and the cell cycle respectively. Also, it proved that exosomes deliver partial OTA-induced cytotoxicity.
Collapse
Affiliation(s)
- Liye Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Haomiao Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jieyu Yuhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Boyang Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongyu Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Charles Asakiya
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
8
|
Niaz K, Shah SZA, Khan F, Bule M. Ochratoxin A-induced genotoxic and epigenetic mechanisms lead to Alzheimer disease: its modulation with strategies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44673-44700. [PMID: 32424756 DOI: 10.1007/s11356-020-08991-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a naturally occurring mycotoxin mostly found in food items including grains and coffee beans. It induces DNA single-strand breaks and has been considered to be carcinogenic. It is recognized as a serious threat to reproductive health both in males and females. OTA is highly nephrotoxic and carcinogenic, and its potency changes evidently between species and sexes. There is a close association between OTA, mutagenicity, carcinogenicity, and genotoxicity, but the underlying mechanisms are not clear. Reports regarding genotoxic effects in relation to OTA which leads to the induction of DNA adduct formation, protein synthesis inhibition, perturbation of cellular energy production, initiation of oxidative stress, induction of apoptosis, influences on mitosis, induction of cell cycle arrest, and interference with cytokine pathways. All these mechanisms are associated with nephrotoxicity, hepatotoxicity, teratotoxicity, immunological toxicity, and neurotoxicity. OTA administration activates various mechanisms such as p38 MAPK, JNKs, and ERKs dysfunctions, BDNF disruption, TH overexpression, caspase-3 and 9 activation, and ERK-1/2 phosphorylation which ultimately lead to Alzheimer disease (AD) progression. The current review will focus on OTA in terms of recent discoveries in the field of molecular biology. The main aim is to investigate the underlying mechanisms of OTA in regard to genotoxicity and epigenetic modulations that lead to AD. Also, we will highlight the strategies for the purpose of attenuating the hazards posed by OTA exposure.
Collapse
Affiliation(s)
- Kamal Niaz
- Department of Pharmacology and Toxicology, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan.
| | - Syed Zahid Ali Shah
- Department of Pathology, Faculty of Veterinary Science, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Fazlullah Khan
- The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, 1417614411, Iran
| | - Mohammed Bule
- Department of Pharmacy, College of Medicine and Health Sciences, Ambo University, Ambo, Oromia, Ethiopia
| |
Collapse
|
9
|
Effects of Single and Repeated Oral Doses of Ochratoxin A on the Lipid Peroxidation and Antioxidant Defense Systems in Mouse Kidneys. Toxins (Basel) 2020; 12:toxins12110732. [PMID: 33266415 PMCID: PMC7700583 DOI: 10.3390/toxins12110732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
Ochratoxin-A (OTA) is a carcinogenic and nephrotoxic mycotoxin, which may cause health problems in humans and animals, and it is a contaminant in foods and feeds. The purpose of the present study is to evaluate the effect of oral OTA exposure on the antioxidant defense and lipid peroxidation in the kidney. In vivo administration of OTA in CD1, male mice (1 or 10 mg/kg body weight in a single oral dose for 24 h and repeated daily oral dose for 72 h or repeated daily oral dose of 0.5 mg/kg bodyweight for 21 days) resulted in a significant elevation of OTA levels in blood plasma. Some histopathological alterations, transcriptional changes in the glutathione system, and oxidative stress response-related genes were also found. In the renal cortex, the activity of the glutathione-system-related enzymes and certain metabolites of the lipid peroxidation (conjugated dienes, trienes, and thiobarbituric reactive substances) also changed.
Collapse
|
10
|
Ye N, Lv Z, Dai H, Huang Z, Shi F. Dietary alpha-lipoic acid supplementation improves spermatogenesis and semen quality via antioxidant and anti-apoptotic effects in aged breeder roosters. Theriogenology 2020; 159:20-27. [PMID: 33113440 DOI: 10.1016/j.theriogenology.2020.10.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/16/2022]
Abstract
The purpose of the present study was to investigate the effects of dietary alpha-lipoic acid (ALA) supplementation on the reproductive performance of aged breeder roosters. Sixteen 50-wk-old ROSS 308 breeder roosters were randomly allocated to two groups: roosters received a basal diet (CON), or a basal diet supplemented with 300 mg/kg of ALA (ALA). The results indicated that dietary ALA supplementation significantly increased sperm concentration, motility, viability, and membrane functional integrity. ALA also dramatically increased seminiferous tubule epithelial height (SEH) and testis scores. The ALA group had a higher serum concentration of testosterone than the CON group. ALA supplementation remarkably increased total antioxidant capacity (T-AOC), the enzyme activities of glutathione peroxidase (GPx), and catalase (CAT) in the testes; following a decrease in malondialdehyde (MDA) levels. In addition, we noted significant upregulation of Nrf2 mRNA and protein expression of and mRNA expression of its Downstream Genes (GPx1, NQO1, and GCLC), as well as significant downregulation of Keap1 mRNA expression in testicular tissue of aged roosters with ALA supplementation. The protein expression of Caspase 3 was downregulated and the protein expression of proliferating cell nuclear antigen (PCNA) was upregulated by ALA supplementation. The mRNA expression of spermatogenesis-related genes (ER1, AKT1, and Cav1) were markedly augmented in the ALA group compared with the CON group. In conclusion, dietary ALA supplementation enhanced the testicular antioxidant capacity through the Nrf2-signaling pathway, exerted anti-apoptotic effects, and improved the reproductive performance of aged roosters.
Collapse
Affiliation(s)
- Nanwei Ye
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
12
|
Akyürek LM, Hussein A, Nicholson AG, Mauritz NJ, Mölne J. Pulmonary manifestations of systemic karyomegaly. Respir Med Case Rep 2020; 29:101032. [PMID: 32154101 PMCID: PMC7058920 DOI: 10.1016/j.rmcr.2020.101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023] Open
Abstract
Over 40 years ago, abnormal enlargement of the nucleus of tubular epithelial cells was reported in a rare distinct hereditary chronic interstitial nephritis, karyomegalic interstitial nephritis (KIN). Here, we report the second case of systemic karyomegaly with pulmonary manifestations and present a detailed characterization of the karyomegalic cells in lung parenchyma. A 59-year-old woman who was diagnosed with KIN developed renal failure and eventually received a renal transplant later evaluated for chronic and progressive restrictive lung disease. The KIN diagnosis prompted us to carefully examine her lung parenchyma. Karyomegalic cells were identified in the alveolar epithelium, interstitium, as well as, in the vascular wall. Viral serological and biochemical blood analyses were negative. We consider that the pulmonary manifestations of karyomegaly expands the differential diagnosis of interstitial lung disease in patients with KIN.
Collapse
Affiliation(s)
- Levent M. Akyürek
- Institute of Biomedicine, Department of Laboratory Medicine, Division of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Corresponding author.
| | - Aziz Hussein
- Institute of Biomedicine, Department of Laboratory Medicine, Division of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Andrew G. Nicholson
- Department of Histopathology, Royal Brompton and Harefield NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, UK
| | - Nils-Johan Mauritz
- Department of Nephrology, Jönköping, Region Jönköping County, Sweden
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Johan Mölne
- Institute of Biomedicine, Department of Laboratory Medicine, Division of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
13
|
Omotayo OP, Omotayo AO, Babalola OO, Mwanza M. Comparative study of aflatoxin contamination of winter and summer ginger from the North West Province of South Africa. Toxicol Rep 2019; 6:489-495. [PMID: 31194138 PMCID: PMC6554596 DOI: 10.1016/j.toxrep.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/20/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023] Open
Abstract
The presence of mycotoxins in staple food can have adverse effect that result in ill health and associated socio-economic losses. Mycotoxins are naturally occurring toxins produced by certain fungi and can be found in staple food plants such as ginger. Ginger is a renowned medicinal plant that is extensively used for cooking and healing. However, this medicinal plant is with little information about its possible mycotoxins contamination. This study determined the occurrence and prevalence of Aflatoxin B1, B2, G1 and G2 and Ochratoxin A contamination in raw ginger sold around Mahikeng, North West Province, South Africa. Samples were collected purposively from various retailers over winter and summer. The analytical procedure optimized was based on immunoaffinity column cleanup (IAC), followed by High performance liquid chromatography with fluorescence (HPLC-FLC) detection. ELISA was also used for mycotoxin screening. On HPLC, the limits of detection and quantification for the four Aflatoxins were 3.9 × 10-7-1.4 × 10 -3 and 1.3 × 10-6 - 4.7 × 10-3 for samples collected in winter, and 3.7 × 10-7- 1.4 × 10-3, LOQ 1.2 × 10-6 - 4.6 × 10-3 for the summer samples. The average recoveries at three spiking levels ranged from 62 to 91% for the summer samples and 70-93% for those collected in winter. A linearity was observed for the analytes whose correlation coefficients were within the range of 0.9995 and 1.000 for the winter samples and 0.9995 and 1.000 for those collected in summer. The results showed that the contamination levels, especially for samples collected in summer were greater than the legally permissible limits. The t-test analysis shows that the mean and standard deviation of the four types of Aflatoxins considered were higher in summer than in winter. The findings of the study indicated that ginger, as for all agricultural commodities, are prone to mycotoxin contamination.
Collapse
Affiliation(s)
- Oluwadara Pelumi Omotayo
- Department of Biological Sciences, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, North West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Abiodun Olusola Omotayo
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, North West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Department of Biological Sciences, Faculty of Natural and Agricultural Science, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, North West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, North West University, Mafikeng Campus, Mmabatho 2735, South Africa
- Department of Animal Health, Faculty of Natural and Agricultural Science, North West University, Private Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
14
|
Rašić D, Micek V, Klarić MS, Peraica M. Oxidative stress as a mechanism of combined OTA and CTN toxicity in rat plasma, liver and kidney. Hum Exp Toxicol 2018; 38:434-445. [DOI: 10.1177/0960327118819049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ochratoxin A (OTA) and citrinin (CTN) commonly coexist in grains. Aiming to evaluate oxidative stress in OTA + CTN toxicity, male Wistar rats were orally treated with two doses of OTA (0.125 and 0.250 mg kg−1 of body weight (b.w.)), CTN (2 mg kg−1 of b.w.) and resveratrol (RSV; 20 mg kg−1 of b.w.) and combined daily during 3 weeks. Protein carbonyl concentrations were measured in kidneys and liver; catalytic activity of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) level in plasma, kidneys and liver, while malondialdehyde (MDA) concentration was measured in plasma, kidneys, liver and urine. Mycotoxin treatment significantly increased MDA concentration in plasma and kidney and decreased SOD activity in the liver. Rats treated with CTN and OTA125 + CTN had lower plasma GPx activity. Concentration of GSH in the kidney and protein carbonyls in the kidney and liver as well as GPx activity in the kidney and liver, SOD activity in the kidney and CAT activity in the liver were not affected. Protective effect of RSV was observed on GSH in the kidney and plasma and MDA in the kidney, plasma and urine. Oxidative stress is involved in OTA + CTN toxicity in vivo because such treatment affects parameters of oxidative stress, particularly in plasma. RSV can reduce but not overcome oxidative stress induced by combined OTA and CTN treatment.
Collapse
Affiliation(s)
- D Rašić
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - V Micek
- Laboratory Animals Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - MS Klarić
- Department of Microbiology, University of Zagreb, Zagreb, Croatia
| | - M Peraica
- Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| |
Collapse
|
15
|
Molecular signatures of cytotoxic effects in human embryonic kidney 293 cells treated with single and mixture of ochratoxin A and citrinin. Food Chem Toxicol 2018; 123:374-384. [PMID: 30428381 DOI: 10.1016/j.fct.2018.11.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 01/04/2023]
Abstract
Ochratoxin A (OTA) and citrinin (CTN) are important mycotoxins, which often coexist in food and feed stuff. In this study, individual and combinative cytotoxicity of OTA and CTN were tested in human embryonic kidney (HEK) 293 cells via MTT assay, and synergistic cytotoxic effects were found following co-treatment with OTA and CTN, manifested by significant accumulation of HEK293 cells in S and G2/M stages. Transcriptomic and sRNA sequencing were performed to explore molecular signatures mediating individual or combinative cytotoxicity. A total of 378 miRNAs were identified, among which 66 miRNAs targeting thousands of genes were differentially expressed in response to different treatments, and 120 differentially expressed genes (DEGs) were regulated by either individual or combinative treatments. Correlations between two representative miRNAs (hsa-miR-1-3p and hsa-miR-122-5p), and their target genes, programmed cell death 10 (PDCD10) and cyclin G1 (CCNG1), associated with apoptotic signaling and cell cycle were analyzed by luciferase assay system. Further, their expression patterns were validated by quantitative real-time PCR and western blot analysis, suggesting that both miRNA-target interactions might account for the mycotoxin-induced cell death. Taken together, these findings provide molecular evidences for synergistic cytotoxic effects of exposure to single and mixture of OTA and CTN in HEK293 cells.
Collapse
|
16
|
Abstract
The important renal tumors that can be induced by exposure of rats to chemical carcinogens are renal tubule tumors (RTTs) derived from tubule epithelium; renal pelvic carcinoma derived from the urothelial lining of the pelvis; renal mesenchymal tumors (RMTs) derived from the interstitial connective tissue; and nephroblastoma derived from the metanephric primordia. However, almost all of our knowledge concerning mechanisms of renal carcinogenesis in the rodent pertains to the adenomas and carcinomas originating from renal tubule epithelium. Currently, nine mechanistic pathways can be identified in either the rat or mouse following chemical exposure. These include direct DNA reactivity, indirect DNA reactivity through free radical formation, multiphase bioactivation involving glutathione conjugation, mitotic disruption, sustained cell proliferation from direct cytotoxicity, sustained cell proliferation by disruption of a physiologic process (alpha 2u-globulin nephropathy), exaggerated pharmacologic response, species-dominant metabolic pathway, and chemical exacerbation of chronic progressive nephropathy. Spontaneous occurrence of RTTs in the rat will be included since one example is a confounder for interpreting kidney tumor results in chemical carcinogenicity studies in rats.
Collapse
|
17
|
Enciso JM, López de Cerain A, Pastor L, Azqueta A, Vettorazzi A. Is oxidative stress involved in the sex-dependent response to ochratoxin A renal toxicity? Food Chem Toxicol 2018; 116:379-387. [DOI: 10.1016/j.fct.2018.04.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 11/28/2022]
|
18
|
Low level of ochratoxin A affects genome-wide expression in kidney of pig. Toxicon 2017; 136:67-77. [DOI: 10.1016/j.toxicon.2017.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/18/2023]
|
19
|
Kangawa Y, Yoshida T, Abe H, Seto Y, Miyashita T, Nakamura M, Kihara T, Hayashi SM, Shibutani M. Anti-inflammatory effects of the selective phosphodiesterase 3 inhibitor, cilostazol, and antioxidants, enzymatically-modified isoquercitrin and α-lipoic acid, reduce dextran sulphate sodium-induced colorectal mucosal injury in mice. ACTA ACUST UNITED AC 2017; 69:179-186. [DOI: 10.1016/j.etp.2016.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/25/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
|
20
|
Kangawa Y, Yoshida T, Maruyama K, Okamoto M, Kihara T, Nakamura M, Ochiai M, Hippo Y, Hayashi SM, Shibutani M. Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation. Food Chem Toxicol 2017; 100:103-114. [DOI: 10.1016/j.fct.2016.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/04/2016] [Accepted: 12/14/2016] [Indexed: 12/26/2022]
|
21
|
Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P. Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol Basis Dis 2017; 1863:324-336. [DOI: 10.1016/j.bbadis.2016.09.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 02/08/2023]
|
22
|
Limited Link between Oxidative Stress and Ochratoxin A-Induced Renal Injury in an Acute Toxicity Rat Model. Toxins (Basel) 2016; 8:toxins8120373. [PMID: 27983637 PMCID: PMC5198567 DOI: 10.3390/toxins8120373] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
Ochratoxin A (OTA) displays nephrotoxicity and hepatotoxicity. However, in the acute toxicity rat model, there is no evidence on the relationship between OTA and nephrotoxicity and hepatotoxicity. Based on this, the integrated analysis of physiological status, damage biomarkers, oxidative stress, and DNA damage were performed. After OTA treatment, the body weight decreased and AST, ALP, TP, and BUN levels in serum increased. Hydropic degeneration, swelling, vacuolization, and partial drop occurred in proximal tubule epithelial cells. PCNA and Kim-1 were dose-dependently increased in the kidney, but Cox-2 expression and proliferation were not found in the liver. In OTA-treated kidneys, the mRNA expressions of Kim-1, Cox-2, Lcn2, and Clu were dose-dependently increased. The mRNA expressions of Vim and Cox-2 were decreased in OTA-treated livers. Some oxidative stress indicators were altered in the kidneys (ROS and SOD) and livers (SOD and GSH). DNA damage and oxidative DNA damage were not found. In conclusion, there is a limited link between oxidative stress and OTA-induced renal injury in an acute toxicity rat model.
Collapse
|
23
|
Different Toxicity Mechanisms for Citrinin and Ochratoxin A Revealed by Transcriptomic Analysis in Yeast. Toxins (Basel) 2016; 8:toxins8100273. [PMID: 27669300 PMCID: PMC5086634 DOI: 10.3390/toxins8100273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/13/2016] [Accepted: 09/17/2016] [Indexed: 11/30/2022] Open
Abstract
Citrinin (CIT) and ochratoxin A (OTA) are important mycotoxins, which frequently co-contaminate foodstuff. In order to assess the toxicologic threat posed by the two mycotoxins separately or in combination, their biological effects were studied here using genomic transcription profiling and specific live cell gene expression reporters in yeast cells. Both CIT and OTA cause highly transient transcriptional activation of different stress genes, which is greatly enhanced by the disruption of the multidrug exporter Pdr5. Therefore, we performed genome-wide transcription profiling experiments with the pdr5 mutant in response to acute CIT, OTA, or combined CIT/OTA exposure. We found that CIT and OTA activate divergent and largely nonoverlapping gene sets in yeast. CIT mainly caused the rapid induction of antioxidant and drug extrusion-related gene functions, while OTA mainly deregulated developmental genes related with yeast sporulation and sexual reproduction, having only a minor effect on the antioxidant response. The simultaneous exposure to CIT and OTA gave rise to a genomic response, which combined the specific features of the separated mycotoxin treatments. The application of stress-specific mutants and reporter gene fusions further confirmed that both mycotoxins have divergent biological effects in cells. Our results indicate that CIT exposure causes a strong oxidative stress, which triggers a massive transcriptional antioxidant and drug extrusion response, while OTA mainly deregulates developmental genes and only marginally induces the antioxidant defense.
Collapse
|
24
|
Ochratoxin A: Molecular Interactions, Mechanisms of Toxicity and Prevention at the Molecular Level. Toxins (Basel) 2016; 8:111. [PMID: 27092524 PMCID: PMC4848637 DOI: 10.3390/toxins8040111] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 01/28/2023] Open
Abstract
Ochratoxin A (OTA) is a widely-spread mycotoxin all over the world causing major health risks. The focus of the present review is on the molecular and cellular interactions of OTA. In order to get better insight into the mechanism of its toxicity and on the several attempts made for prevention or attenuation of its toxic action, a detailed description is given on chemistry and toxicokinetics of this mycotoxin. The mode of action of OTA is not clearly understood yet, and seems to be very complex. Inhibition of protein synthesis and energy production, induction of oxidative stress, DNA adduct formation, as well as apoptosis/necrosis and cell cycle arrest are possibly involved in its toxic action. Since OTA binds very strongly to human and animal albumin, a major emphasis is done regarding OTA-albumin interaction. Displacement of OTA from albumin by drugs and by natural flavonoids are discussed in detail, hypothesizing their potentially beneficial effect in order to prevent or attenuate the OTA-induced toxic consequences.
Collapse
|
25
|
Mantle P, Kilic MA, Mor F, Ozmen O. Contribution of organ vasculature in rat renal analysis for ochratoxin a: relevance to toxicology of nephrotoxins. Toxins (Basel) 2015; 7:1005-17. [PMID: 25811304 PMCID: PMC4417951 DOI: 10.3390/toxins7041005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/12/2014] [Accepted: 03/17/2015] [Indexed: 02/02/2023] Open
Abstract
Assumptions surrounding the kidney as a target for accumulation of ochratoxin A (OTA) are addressed because the contribution of the toxin in blood seems invariably to have been ignored. Adult rats were maintained for several weeks on toxin-contaminated feed. Using standard perfusion techniques, animals were anaesthetised, a blood sample was taken, one kidney was ligated, and the other kidney perfused with physiological saline in situ under normal blood pressure. Comparative analysis of OTA in pairs of kidneys showed marked reduction in the perfused organ in the range 37%-98% (mean 75%), demonstrating the general efficiency of perfusion supported also by histology, and implying a major role of blood in the total OTA content of kidney. Translation of OTA values in plasma to whole blood, and its predicted contribution as a 25% vascular compartment in kidney gave values similar to those in non-perfused kidneys. Thus, apparent 'accumulation' of OTA in kidney is due to binding to plasma proteins and long half-life in plasma. Attention should be re-focused on whole animal pharmacokinetics during chronic OTA exposure. Similar principles may be applied to DNA-OTA adducts which are now recognised as occurring in blood; application could also extend to other nephrotoxins such as aristolochic acid. Thus, at least, quantitative reassessment in urological tissues seems necessary in attributing adducts specifically as markers of potentially-tumourigenic exposure.
Collapse
Affiliation(s)
- Peter Mantle
- Centre for Environmental Policy, Imperial College London, London SW7 2AZ, UK.
| | - Mehmet A Kilic
- Molecular Biology Section, Department of Biology, Science Faculty, Akdeniz University, Antalya 07058, Turkey.
| | - Firdevs Mor
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur 15030, Turkey.
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur 15030, Turkey.
| |
Collapse
|
26
|
Bondy GS, Caldwell DS, Aziz SA, Coady LC, Armstrong CL, Curran IHA, Koffman RL, Kapal K, Lefebvre DE, Mehta R. Effects of Chronic Ochratoxin A Exposure on p53 Heterozygous and p53 Homozygous Mice. Toxicol Pathol 2015; 43:715-29. [DOI: 10.1177/0192623314568391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exposure to the mycotoxin ochratoxin A (OTA) causes nephropathy in domestic animals and rodents and renal tumors in rodents and poultry. Humans are exposed to OTA by consuming foods made with contaminated cereal grains and other commodities. Management of human health risks due to OTA exposure depends, in part, on establishing a mode of action (MOA) for OTA carcinogenesis. To further investigate OTA’s MOA, p53 heterozygous (p53+/−) and p53 homozygous (p53+/+) mice were exposed to OTA in diet for 26 weeks. The former are susceptible to tumorigenesis upon chronic exposure to genotoxic carcinogens. OTA-induced renal damage but no tumors were observed in either strain, indicating that p53 heterozygosity conferred little additional sensitivity to OTA. Renal changes included dose-dependent increases in cellular proliferation, apoptosis, karyomegaly, and tubular degeneration in proximal tubules, which were consistent with ochratoxicosis. The lowest observed effect level for renal changes in p53+/− and p53+/+ mice was 200 μg OTA/kg bw/day. Based on the lack of tumors and the severity of renal and body weight changes at a maximum tolerated dose, the results were interpreted as suggestive of a primarily nongenotoxic (epigenetic) MOA for OTA carcinogenesis in this mouse model.
Collapse
Affiliation(s)
- Genevieve S. Bondy
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Donald S. Caldwell
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Syed A. Aziz
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Laurie C. Coady
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Cheryl L. Armstrong
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Ivan H. A. Curran
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | | | - Kamla Kapal
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - David E. Lefebvre
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Rekha Mehta
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
27
|
Qi X, Yu T, Zhu L, Gao J, He X, Huang K, Luo Y, Xu W. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses. Toxicol Appl Pharmacol 2014; 280:543-9. [PMID: 25218026 DOI: 10.1016/j.taap.2014.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity.
Collapse
Affiliation(s)
- Xiaozhe Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|
28
|
Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem Toxicol 2014; 68:267-82. [DOI: 10.1016/j.fct.2014.03.018] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/11/2014] [Accepted: 03/14/2014] [Indexed: 01/10/2023]
|