1
|
Lin Y, Xu H, Wang K, Wang X, Wu X, Tang Z, Lin Y, Chen C, Wang B. Transcriptomics integrated with metabolomics reveals the effect of benzo[a]pyrene exposure on acute lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117323. [PMID: 39549570 DOI: 10.1016/j.ecoenv.2024.117323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/20/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Benzo[a]pyrene (BaP), a major harmful component in PM2.5, is widely present in automobile emissions and atmospheric pollution. BaP exposure directly targets the lungs, often resulting in acute lung injury (ALI). However, comprehensive metabolic and transcriptomic profiles related to BaP-induced ALI remain unexplored. To simulate BaP-induced lung injury, we performed intratracheal instillation of BaP. To investigate how BaP exposure affects lung transcriptome and metabolic profiles, we used RNA sequencing and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). We aimed to understand the underlying mechanisms of BaP-induced lung damage. Metabolomics analyses indicated that in BaP-exposed animals, most fatty acids, carbohydrates, and steroids were significantly reduced, whereas most amino acids and organic acids remained unchanged. Analysis of transcriptomics data showed that fatty acid synthesis decreased and fatty acid oxidation increased, suggesting that lipid breakdown occurs after BaP exposure. Additionally, there were increases in oxidative stress system activity and decreases in immune system function. Finally, BaP altered mitochondrial, lipid, immune system, and fatty acid pathways, as indicated by pathway enrichment analyses. These results show that BaP substantially affects metabolic and inflammatory responses, enhancing the broader understanding of the underlying mechanisms of ALI after BaP exposure.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haibo Xu
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kaitao Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xinye Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Wu
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zhiyi Tang
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuxi Lin
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chengshui Chen
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Department of Pulmonary and Critical Care Medicine, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China.
| | - Beibei Wang
- Department of Pulmonary and Critical Care Medicine, and Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
2
|
Yue H, Yang X, Wu X, Geng X, Ji X, Li G, Sang N. Maternal NO 2 exposure disturbs the long noncoding RNA expression profile in the lungs of offspring in time-series patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114140. [PMID: 36209526 DOI: 10.1016/j.ecoenv.2022.114140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Gestation is a sensitive window to nitrogen dioxide (NO2) exposure, which may disturb fetal lung development and lung function later in life. Animal and epidemiological studies indicated that long noncoding RNAs (lncRNAs) participate in abnormal lung development induced by environmental pollutant exposure. In the present study, pregnant C57BL/6J mice were exposed to 2.5 ppm NO2 (mimicking indoor occupational exposure) or clean air, and lncRNAs expression profiles in the lungs of offspring mice were determined by lncRNA-seq on embryonic day 13.5 (E13.5), E18.5, postnatal day 1 (P1), and P14. The lung histopathology examination of offspring was performed, followed by weighted gene coexpression network analysis (WGCNA), prediction of lncRNAs-target genes, and the biological processes enrichment analysis of lncRNAs. Our results indicated that maternal NO2 exposure induced hypoalveolarization on P14 and differentially expressed lncRNAs showed a time-series pattern. Following WGCNA and enrichment analysis, 2 modules participated in development-related pathways. Importantly, the expressions of related genes were altered, some of which were confirmed to be related to abnormal vascular development and even lung diseases. The research points out that the maternal NO2 exposure leads to abnormal lung development in offspring that might be related to altered lncRNAs expression profiles with time-series-pattern.
Collapse
Affiliation(s)
- Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaowen Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaoyun Wu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
3
|
The Aryl Hydrocarbon Receptor (AHR): A Novel Therapeutic Target for Pulmonary Diseases? Int J Mol Sci 2022; 23:ijms23031516. [PMID: 35163440 PMCID: PMC8836075 DOI: 10.3390/ijms23031516] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/30/2021] [Accepted: 01/13/2022] [Indexed: 01/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a cytoplasmic transcription factor that is well-known for regulating xenobiotic metabolism. Studies in knockout and transgenic mice indicate that the AHR plays a vital role in the development of liver and regulation of reproductive, cardiovascular, hematopoietic, and immune homeostasis. In this focused review on lung diseases associated with acute injury and alveolar development, we reviewed and summarized the current literature on the mechanistic role(s) and therapeutic potential of the AHR in acute lung injury, chronic obstructive pulmonary disease, and bronchopulmonary dysplasia (BPD). Pre-clinical studies indicate that endogenous AHR activation is necessary to protect neonatal and adult lungs against hyperoxia- and cigarette smoke-induced injury. Our goal is to provide insight into the high translational potential of the AHR in the meaningful management of infants and adults with these lung disorders that lack curative therapies.
Collapse
|
4
|
Bolte EE, Moorshead D, Aagaard KM. Maternal and early life exposures and their potential to influence development of the microbiome. Genome Med 2022; 14:4. [PMID: 35016706 PMCID: PMC8751292 DOI: 10.1186/s13073-021-01005-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
At the dawn of the twentieth century, the medical care of mothers and children was largely relegated to family members and informally trained birth attendants. As the industrial era progressed, early and key public health observations among women and children linked the persistence of adverse health outcomes to poverty and poor nutrition. In the time hence, numerous studies connecting genetics ("nature") to public health and epidemiologic data on the role of the environment ("nurture") have yielded insights into the importance of early life exposures in relation to the occurrence of common diseases, such as diabetes, allergic and atopic disease, cardiovascular disease, and obesity. As a result of these parallel efforts in science, medicine, and public health, the developing brain, immune system, and metabolic physiology are now recognized as being particularly vulnerable to poor nutrition and stressful environments from the start of pregnancy to 3 years of age. In particular, compelling evidence arising from a diverse array of studies across mammalian lineages suggest that modifications to our metagenome and/or microbiome occur following certain environmental exposures during pregnancy and lactation, which in turn render risk of childhood and adult diseases. In this review, we will consider the evidence suggesting that development of the offspring microbiome may be vulnerable to maternal exposures, including an analysis of the data regarding the presence or absence of a low-biomass intrauterine microbiome.
Collapse
Affiliation(s)
- Erin E Bolte
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - David Moorshead
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA
| | - Kjersti M Aagaard
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA.
- Immunology & Microbiology Graduate Program, Baylor College of Medicine, Houston, USA.
- Medical Scientist Training Program, Baylor College of Medicine, Houston, USA.
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Baylor College of Medicine and Texas Children's Hospital, Houston, USA.
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, USA.
- Department of Molecular & Cell Biology, Baylor College of Medicine, Houston, USA.
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
5
|
Attenuation of Polycyclic Aromatic Hydrocarbon (PAH)-Mediated Pulmonary DNA Adducts and Cytochrome P450 (CYP)1B1 by Dietary Antioxidants, Omega-3 Fatty Acids, in Mice. Antioxidants (Basel) 2022; 11:antiox11010119. [PMID: 35052622 PMCID: PMC8773186 DOI: 10.3390/antiox11010119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Numerous human and animal studies have reported positive correlation between carcinogen-DNA adduct levels and cancer occurrence. Therefore, attenuation of DNA adduct levels would be expected to suppress tumorigenesis. In this investigation, we report that the antioxidants omega 3-fatty acids, which are constituents of fish oil (FO), significantly decreased DNA adduct formation by polycyclic aromatic hydrocarbons (PAHs). B6C3F1 male mice were fed an FO or corn oil (CO) diet, or A/J male mice were pre-fed with omega-3 fatty acids eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA). While the B6C3F1 mice were administered two doses of a mixture of seven carcinogenic PAHs including benzo(a)pyrene (BP), the A/J mice were treated i.p. with pure benzo[a]pyrene (BP). Animals were euthanized after 1, 3, or 7 d after PAH treatment. DNA adduct levels were measured by the 32P-postlabeling assay. Our results showed that DNA adduct levels in the lungs of mice 7 d after treatment were significantly decreased in the FO or EPA/DHA groups compared with the CO group. Interestingly, both qPCR and Western blot analyses revealed that FO, DHA and EPA/DHA significantly decreased the expression of cytochrome P450 (CYP) 1B1. CYP1B1 plays a critical role in the metabolic activation of BP to DNA-reactive metabolites. qPCR also showed that the expression of some metabolic and DNA repair genes was induced by BP and inhibited by FO or omega-3 fatty acids in liver, but not lung. Our results suggest that a combination of mechanism entailing CYP1B1 inhibition and the modulation of DNA repair genes contribute to the attenuation of PAH-mediated carcinogenesis by omega 3 fatty acids.
Collapse
|
6
|
Stading R, Couroucli X, Lingappan K, Moorthy B. The role of cytochrome P450 (CYP) enzymes in hyperoxic lung injury. Expert Opin Drug Metab Toxicol 2020; 17:171-178. [PMID: 33215946 DOI: 10.1080/17425255.2021.1853705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hyperoxic lung injury is a condition that can occur in patients in need of supplemental oxygen, such as premature infants with bronchopulmonary dysplasia or adults with acute respiratory distress syndrome. Cytochrome P450 (CYP) enzymes play critical roles in the metabolism of endogenous and exogenous compounds. AREAS COVERED Through their complex pathways, some subfamilies of these enzymes may contribute to or protect against hyperoxic lung injury. Oxidative stress from reactive oxygen species (ROS) production is most likely a major contributor of hyperoxic lung injury. CYP1A enzymes have been shown to protect against hyperoxic lung injury while CYP1B enzymes seem to contribute to it. CYP2J2 enzymes help protect against hyperoxic lung injury by triggering EET production, thereby, increasing antioxidant enzymes. The metabolism of arachidonic acid to ω-terminal hydroxyeicosatetraenoic acid (20-HETEs) by CYP4A and CYP4F enzymes could impact hyperoxic lung injury via the vasodilating effects of 20-HETE. CYP2E1 and CYP2A enzymes may contribute to the oxidative stress in the lungs caused by ethanol- and nicotine-metabolism, respectively. EXPERT OPINION Overall, the CYP enzymes, depending upon the isoform, play a contributory or protective role in hyperoxic lung injury, and are, therefore, ideal candidates for developing drugs that can treat oxygen-mediated lung injury.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Xanthi Couroucli
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital , Houston, TX, USA
| |
Collapse
|
7
|
Banerjee S, Suter MA, Aagaard KM. Interactions between Environmental Exposures and the Microbiome: Implications for Fetal Programming. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2020; 13:39-48. [PMID: 33283070 PMCID: PMC7716732 DOI: 10.1016/j.coemr.2020.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Decades of population-based health outcomes data highlight the importance of understanding how environmental exposures in pregnancy affect maternal and neonatal outcomes. Animal model research and epidemiological studies have revealed that such exposures are able to alter fetal programming through stable changes in the epigenome, including altered DNA methylation patterns and histone modifications in the developing fetus and infant. It is similarly known that while microbes can biotransform environmental chemicals via conjugation and de-conjugation, specific exposures can also alter the community profile and function of the human microbiome. In this review, we consider how alterations to the maternal and or fetal/infant microbiome through environmental exposures could directly and indirectly alter fetal programming. We highlight two specific environmental exposures, cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs), and outline their effects on the developing fetus and the perinatal (maternal and fetal/infant) microbiome. We further consider how chemical exposures in the setting of natural disasters may be of particular importance to environmental health.
Collapse
Affiliation(s)
- Sohini Banerjee
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Departments of Molecular & Human Genetics, Molecular & Cell Biology, and Molecular Physiology & Biophysics, 1 Baylor Plaza, Houston, TX 77030
| | - Melissa A. Suter
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Departments of Molecular & Human Genetics, Molecular & Cell Biology, and Molecular Physiology & Biophysics, 1 Baylor Plaza, Houston, TX 77030
| | - Kjersti M. Aagaard
- Baylor College of Medicine, Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine and Departments of Molecular & Human Genetics, Molecular & Cell Biology, and Molecular Physiology & Biophysics, 1 Baylor Plaza, Houston, TX 77030
| |
Collapse
|
8
|
Stading R, Chu C, Couroucli X, Lingappan K, Moorthy B. Molecular role of cytochrome P4501A enzymes inoxidative stress. CURRENT OPINION IN TOXICOLOGY 2020; 20-21:77-84. [PMID: 33283080 PMCID: PMC7709944 DOI: 10.1016/j.cotox.2020.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cytochrome P4501A (CYP1A) enzymes play important roles in xenobiotic and endobiotic metabolism. Due to uncoupling reactions during the enzymatic cycle, CYP1A enzymes can release reactive oxidative species (ROS) in the form of superoxide radical, hydrogen peroxide, hydroxyl radical etc. An imbalance between production of free radicals and the ability of antioxidants to detoxify the free radicals can lead to accumulation of ROS, which in turn can lead to oxidative stress. Oxidative stress can lead to inflammation and toxicity, which in turn can cause human diseases such as bronchopulmonary disease (BPD), ARDS, renal hypertension, etc. CYP1A enzymes, depending on the organ system, they either contribute or protect against oxidative injury. Thus, they have dual roles in regard to oxidative stress. This review presents an overview of the mechanistic relationship between CYP1A enzymes and oxidative stress in relation to various diseases in different organs (e.g., liver, lungs, heart, kidneys, and reproductive organs).
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Xanthi Couroucli
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX
| |
Collapse
|
9
|
Suter MA, Aagaard KM, Coarfa C, Robertson M, Zhou G, Jackson BP, Thompson D, Putluri V, Putluri N, Hagan J, Wang L, Jiang W, Lingappan K, Moorthy B. Association between elevated placental polycyclic aromatic hydrocarbons (PAHs) and PAH-DNA adducts from Superfund sites in Harris County, and increased risk of preterm birth (PTB). Biochem Biophys Res Commun 2019; 516:344-349. [PMID: 31208719 PMCID: PMC6637943 DOI: 10.1016/j.bbrc.2019.06.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/09/2019] [Indexed: 01/13/2023]
Abstract
The preterm birth (PTB) rate in Harris County, Texas, exceeds the U.S. rate (11.4% vs.9.6%), and there are 15 active Superfund sites in Harris County. Polycyclic aromatic hydrocarbons (PAHs) are contaminants of concern (COC) at Superfund sites across the nation. In this investigation, we tested the hypothesis that higher levels of exposure to PAHs and PAH-DNA adducts in placenta of women living near Superfund sites contribute to the increased rate of PTBs. Levels of benzo[a]pyene (BP), benzo[b]fluorene (BbF) and dibenz[a,h]anthracene (DBA), were higher in placentae from preterm deliveries compared with term deliveries in women living near Superfund sites, whereas this was not the case for women living in non-Superfund site areas. Among the PAHs, DBA levels were significantly higher than BP or BbF, and DBA levels were inversely correlated with gestational age at delivery and birth weight. Bulky PAH-DNA adducts are more prevalent in placental tissue from individuals residing near Superfund sites. Expression of Ah receptor (AHR) and NF-E2-related factor 2 (NRF2) was decreased in preterm deliveries in subjects residing near Superfund sites. Unbiased metabolomics revealed alterations in pathways involved in pentose phosphate, inositol phosphate and starch and sucrose metabolism in preterm subjects in Superfund site areas. In summary, this is the first report showing an association between PAH levels, DNA adducts, and modulation of endogenous metabolic pathways with PTBs in subjects residing near Superfund sites, and further studies could lead to novel strategies in the understanding of the mechanisms by which PAHs contribute to PTBs in women.
Collapse
Affiliation(s)
- Melissa A Suter
- Departments of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Kjersti M Aagaard
- Departments of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Cristian Coarfa
- Duncan Cancer Center, Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Matthew Robertson
- Department of Molecular & Cell Biology at Baylor College of Medicine, Houston, TX, USA
| | - Guodong Zhou
- Institute of Biotechnology, Texas A&M University Health Sciences, Houston, TX, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Dominique Thompson
- Departments of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Vasanta Putluri
- Department of Molecular & Cell Biology at Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular & Cell Biology at Baylor College of Medicine, Houston, TX, USA
| | - Joseph Hagan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
10
|
Gray ME, Meehan J, Blair EO, Ward C, Langdon SP, Morrison LR, Marland JRK, Tsiamis A, Kunkler IH, Murray A, Argyle D. Biocompatibility of common implantable sensor materials in a tumor xenograft model. J Biomed Mater Res B Appl Biomater 2019; 107:1620-1633. [PMID: 30367816 PMCID: PMC6767110 DOI: 10.1002/jbm.b.34254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
Abstract
Real-time monitoring of tumor microenvironment parameters using an implanted biosensor could provide valuable information on the dynamic nature of a tumor's biology and its response to treatment. However, following implantation biosensors may lose functionality due to biofouling caused by the foreign body response (FBR). This study developed a novel tumor xenograft model to evaluate the potential of six biomaterials (silicon dioxide, silicon nitride, Parylene-C, Nafion, biocompatible EPOTEK epoxy resin, and platinum) to trigger a FBR when implanted into a solid tumor. Biomaterials were chosen based on their use in the construction of a novel biosensor, designed to measure spatial and temporal changes in intra-tumoral O2 , and pH. None of the biomaterials had any detrimental effect on tumor growth or body weight of the murine host. Immunohistochemistry showed no significant changes in tumor necrosis, hypoxic cell number, proliferation, apoptosis, immune cell infiltration, or collagen deposition. The absence of biofouling supports the use of these materials in biosensors; future investigations in preclinical cancer models are required, with a view to eventual applications in humans. To our knowledge this is the first documented investigation of the effects of modern biomaterials, used in the production of implantable sensors, on tumor tissue after implantation. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1620-1633, 2019.
Collapse
Affiliation(s)
- Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
- Institute of Sensors, Signals and Systems, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - Ewen O. Blair
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Linda R. Morrison
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| | | | | | - Ian H. Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Alan Murray
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| |
Collapse
|
11
|
Maturu P, Wei-Liang Y, Jiang W, Wang L, Lingappan K, Barrios R, Liang Y, Moorthy B, Couroucli XI. Newborn Mice Lacking the Gene for Cyp1a1 Are More Susceptible to Oxygen-Mediated Lung Injury, and Are Rescued by Postnatal β-Naphthoflavone Administration: Implications for Bronchopulmonary Dysplasia in Premature Infants. Toxicol Sci 2018; 157:260-271. [PMID: 28201809 DOI: 10.1093/toxsci/kfx036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Prolonged hyperoxia contributes to bronchopulmonary dysplasia (BPD) in preterm infants. β-Naphthoflavone (BNF) is a potent inducer of cytochrome P450 (CYP)1A enzymes, which have been implicated in hyperoxic injuries in adult mice. In this investigation, we tested the hypothesis that newborn mice lacking the Cyp1a1 gene would be more susceptible to hyperoxic lung injury than wild-type (WT) mice and that postnatal BNF treatment would rescue this phenotype by mechanisms involving CYP1A and/or NAD(P)H quinone oxidoreductase (NQO1) enzymes. Newborn WT or Cyp1a1-null mice were treated with BNF (10 mg/kg) or the vehicle corn oil (CO) i.p., from postnatal day (PND) 2 to 14 once every other day, while being maintained in room air or hyperoxia (85% O2) for 14 days. Both genotypes showed lung injury, inflammation, and alveolar simplification in hyperoxia, with Cyp1a1-null mice displaying increased susceptibility compared to WT mice. BNF treatment resulted in significant attenuation of lung injury and inflammation, with improved alveolarization in both WT and Cyp1a1-null mice. BNF exposed normoxic or hyperoxic WT mice showed increased expression of hepatic CYP1A1/1A2, pulmonary CYP1A1, and NQO1 expression at both mRNA and protein levels, compared with vehicle controls. However, BNF caused greater induction of hepatic CYP1A2 and pulmonary NQO1 enzymes in the Cyp1a1-null mice, suggesting that BNF protects against hyperoxic lung injury in WT and Cyp1a1-null mice through the induction of CYP1A and NQO1 enzymes. Further studies on the protective role of flavonoids against hyperoxic lung injury in newborns could lead to novel strategies for the prevention and/or treatment of BPD.
Collapse
Affiliation(s)
- Paramahamsa Maturu
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Yanhong Wei-Liang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Lihua Wang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Krithika Lingappan
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Roberto Barrios
- Department of Pathology and Genomic Medicine, The Methodist Hospital Physician Organization, Houston, Texas, USA
| | - Yao Liang
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Xanthi I Couroucli
- Section of Neonatology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Maturu P, Wei-Liang Y, Androutsopoulos VP, Jiang W, Wang L, Tsatsakis AM, Couroucli XI. Quercetin attenuates the hyperoxic lung injury in neonatal mice: Implications for Bronchopulmonary dysplasia (BPD). Food Chem Toxicol 2018; 114:23-33. [PMID: 29432836 DOI: 10.1016/j.fct.2018.02.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
Abstract
Quercetin (QU) is one of the most common flavonoids that are present in a wide variety of fruits, vegetables, and beverages. This compound possesses potent anti-inflammatory and anti-oxidant properties. Supplemental oxygen is routinely administered to premature infants with pulmonary insufficiency. However, hyperoxia is one of the major risk factors for the development of bronchopulmonary dysplasia (BPD), which is also termed chronic lung disease in premature infants. Currently, no preventive approaches have been reported against BPD. The treatment of BPD is notably limited to oxygen administration, ventilatory support, and steroids. Since QU has been shown to be effective in reducing inflammation and oxidative stress in various disease models, we hypothesized that the postnatal QU treatment of newborn mice will protect against hyperoxic lung injury by the upregulation of the phase I (CYP1A/B) and/or phase II, NADPH quinone reductase enzymes. Newborn C57BL/6J mice within 24 h of birth with the nursing dams were exposed to either 21% O2 (air) and/or 85% O2 (hyperoxia) for 7 days. The mice were treated, intraperitoneally (i.p.) once every other day with quercetin, at a concentration of 20 mg/kg, or saline alone from postnatal day (PND) 2-6. The mice were sacrificed on day 7, and lung and liver tissues were collected. The expression levels of CYP1A1, CYP1B1, NQO1 proteins and mRNA as well as the levels of MDA-protein adducts were analyzed in lung and liver tissues. The findings indicated that QU attenuated hyperoxia-mediated lung injury by reducing inflammation and improving alveolarization with decreased number of neutrophil and macrophage infiltration. The attenuation of this lung injury correlated with the upregulation of CYP1A1/CYP1B1/NQO1 mRNA, proteins and the down regulation of NF-kB levels and MDA-protein adducts in lung and liver tissues. The present study demonstrated the potential therapeutic value of quercetin in the prevention and/or treatment of BPD.
Collapse
Affiliation(s)
- Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Yanhong Wei-Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Vasilis P Androutsopoulos
- Laboratory of Toxicology, University of Crete, Medical School, Voutes, Heraklion 71409, Crete, Greece
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Aristides M Tsatsakis
- Laboratory of Toxicology, University of Crete, Medical School, Voutes, Heraklion 71409, Crete, Greece
| | - Xanthi I Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
13
|
Tang W, Huang S, Du L, Sun W, Yu Z, Zhou Y, Chen J, Li X, Li X, Yu B, Chen D. Expression of HMGB1 in maternal exposure to fine particulate air pollution induces lung injury in rat offspring assessed with micro-CT. Chem Biol Interact 2018; 280:64-69. [DOI: 10.1016/j.cbi.2017.12.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
|
14
|
Jiang W, Maturu P, Liang YW, Wang L, Lingappan K, Couroucli X. Hyperoxia-mediated transcriptional activation of cytochrome P4501A1 (CYP1A1) and decreased susceptibility to oxygen-mediated lung injury in newborn mice. Biochem Biophys Res Commun 2018; 495:408-413. [PMID: 29101037 PMCID: PMC5743196 DOI: 10.1016/j.bbrc.2017.10.166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 02/02/2023]
Abstract
Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this study, we tested the hypothesis that newborn transgenic mice carrying the human CYP1A1-Luc promoter will display transcriptional activation of the human CYP1A1 promoter in vivo upon exposure to hyperoxia, and that these mice will be less susceptible to hyperoxic lung injury and alveolar simplification than similarly exposed wild type (WT) mice. Newborn WT (CD-1) or transgenic mice carrying a 13.2 kb human CYP1A1 promoter and the luciferase (Luc) reporter gene (CYP1A1-luc) were maintained in room air or exposed to hyperoxia (85% O2) for 7-14 days. Hyperoxia exposure of CYP1A1-Luc mice for 7 and 14 days resulted in 4- and 30-fold increases, respectively, in hepatic Luc (CYP1A1) expression, compared to room air controls. In lung, hyperoxia caused a 2-fold induction of reporter Luc at 7 days, but the induction declined after 14 days. The newborn CYP1A1-Luc mice were less susceptible to lung injury and alveolar simplification than similarly exposed wild type (WT) CD-1 mice. Also, the CYP1A1-Luc mice showed increased levels of hepatic and pulmonary CYP1A1 expression and hepatic CYP1A2 activity after hyperoxia exposure. Hyperoxia also increased NADP(H) quinone reductase (NQO1) pulmonary gene expression in both CD-1 and CYP1A1-Luc mice at both time points, but this was more pronounced in the latter at 14 days. Our results support the hypothesis that hyperoxia activates the human CYP1A1 promoter in newborn mice, and that increased endogenous expression of CYP1A1 and NADP(H) quinone reductase (NQO1) contributes to the decreased susceptibilities to hyperoxic lung injury in the transgenic animals. This is the first report providing evidence of hyperoxia-mediated transcriptional activation of the human CYP1A1 promoter in newborn mice, and this in conjunction with decreased lung injury, suggests that these phenomena have important implications for BPD.
Collapse
Affiliation(s)
- Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Paramahamsa Maturu
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Yanhong Wei Liang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Lihua Wang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Krithika Lingappan
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA
| | - Xanthi Couroucli
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, MC: FC530.01, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Role of Cytochrome P450 (CYP)1A in Hyperoxic Lung Injury: Analysis of the Transcriptome and Proteome. Sci Rep 2017; 7:642. [PMID: 28377578 PMCID: PMC5428698 DOI: 10.1038/s41598-017-00516-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/28/2017] [Indexed: 01/22/2023] Open
Abstract
Hyperoxia contributes to lung injury in experimental animals and diseases such as acute respiratory distress syndrome in humans. Cytochrome P450 (CYP)1A enzymes are protective against hyperoxic lung injury (HLI). The molecular pathways and differences in gene expression that modulate these protective effects remain largely unknown. Our objective was to characterize genotype specific differences in the transcriptome and proteome of acute hyperoxic lung injury using the omics platforms: microarray and Reverse Phase Proteomic Array. Wild type (WT), Cyp1a1−/− and Cyp1a2−/− (8–10 wk, C57BL/6J background) mice were exposed to hyperoxia (FiO2 > 0.95) for 48 hours. Comparison of transcriptome changes in hyperoxia-exposed animals (WT versus knock-out) identified 171 genes unique to Cyp1a1−/− and 119 unique to Cyp1a2−/− mice. Gene Set Enrichment Analysis revealed pathways including apoptosis, DNA repair and early estrogen response that were differentially regulated between WT, Cyp1a1−/− and Cyp1a2−/− mice. Candidate genes from these pathways were validated at the mRNA and protein level. Quantification of oxidative DNA adducts with 32P-postlabeling also revealed genotype specific differences. These findings provide novel insights into mechanisms behind the differences in susceptibility of Cyp1a1−/− and Cyp1a2−/− mice to HLI and suggest novel pathways that need to be investigated as possible therapeutic targets for acute lung injury.
Collapse
|
16
|
Tang W, Du L, Sun W, Yu Z, He F, Chen J, Li X, Li X, Yu L, Chen D. Maternal exposure to fine particulate air pollution induces epithelial-to-mesenchymal transition resulting in postnatal pulmonary dysfunction mediated by transforming growth factor-β/Smad3 signaling. Toxicol Lett 2016; 267:11-20. [PMID: 28041981 DOI: 10.1016/j.toxlet.2016.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/17/2016] [Accepted: 12/26/2016] [Indexed: 02/01/2023]
Abstract
Fine particles from air pollution, also called particulate matter, less than 2.5 micrometers in diameter (PM2.5), are a threat to child health. Epidemiological investigations have related maternal exposure to PM2.5 to postnatal respiratory symptoms, such as frequent wheezing, chronic cough, and lung function decrements. However, only few experimental animal studies have been performed to study the effects of PM2.5.The aim of this study was to investigate the effects of maternal exposure to PM2.5 on postnatal pulmonary dysfunction in a rat model and to examine the mechanism of PM2.5-induced morphological pulmonary changes.Timed pregnant Sprague-Dawley rats were treated with PM2.5 (0.1, 0.5, 2.5, or 7.5mg/kg) once every three days from day 0 to 18 of pregnancy. After delivery, pups were sacrificed on postnatal day (PND)1 and 28. The effects of transforming growth factor-beta (TGF-β) on epithelial-mesenchymal transition (EMT) were determined by immunohistochemistry, Western blotting, and quantitative RT-PCR. The offspring underwent pulmonary function measurements on PND28, lung tissues were histopathologically examined, and markers of oxidative stress were measured. Maternally PM2.5-exposed offspring pups displayed significant decreases in lung volume parameters, compliance, and airflow during expiration on PND28. The PM2.5-exposed group showed interstitial proliferation in lung histology, significant oxidative stress in lungs, and up-regulation of TGF-β-induced EMT via increased vimentin and α-smooth muscle actin and decreased E-cadherin levels on PND1 and PND28.These results suggest that EMT up-regulation mediated by the TGF-β/Smad3 pathway plays a role in postnatal pulmonary dysfunction associated with maternal exposure to PM2.5.
Collapse
Affiliation(s)
- Wenting Tang
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China; Department of Obstetrics and Gynecology, Dongguan People's Hospital, Dongguan,China
| | - Lili Du
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Wen Sun
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Fang He
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Jingsi Chen
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xiaomei Li
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Xiuying Li
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Lin Yu
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou, China.
| |
Collapse
|
17
|
Zaragoza-Ojeda M, Eguía-Aguilar P, Perezpeña-Díazconti M, Arenas-Huertero F. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line. Toxicol Lett 2016; 256:64-76. [DOI: 10.1016/j.toxlet.2016.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
|
18
|
Dinu D, Chu C, Veith A, Lingappan K, Couroucli X, Jefcoate CR, Sheibani N, Moorthy B. Mechanistic role of cytochrome P450 (CYP)1B1 in oxygen-mediated toxicity in pulmonary cells: A novel target for prevention of hyperoxic lung injury. Biochem Biophys Res Commun 2016; 476:346-351. [PMID: 27235555 DOI: 10.1016/j.bbrc.2016.05.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
Supplemental oxygen, which is routinely administered to preterm infants with pulmonary insufficiency, contributes to bronchopulmonary dysplasia (BPD) in these infants. Hyperoxia also contributes to the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in adults. The mechanisms of oxygen-mediated pulmonary toxicity are not completely understood. Recent studies have suggested an important role for cytochrome P450 (CYP)1A1/1A2 in the protection against hyperoxic lung injury. The role of CYP1B1 in oxygen-mediated pulmonary toxicity has not been studied. In this investigation, we tested the hypothesis that CYP1B1 plays a mechanistic role in oxygen toxicity in pulmonary cells in vitro. In human bronchial epithelial cell line BEAS-2B, hyperoxic treatment for 1-3 days led to decreased cell viability by about 50-80%. Hyperoxic cytotoxicity was accompanied by an increase in levels of reactive oxygen species (ROS) by up to 110%, and an increase of TUNEL-positive cells by up to 4.8-fold. Western blot analysis showed hyperoxia to significantly down-regulate CYP1B1 protein level. Also, there was a decrease of CYP1B1 mRNA by up to 38% and Cyp1b1 promoter activity by up to 65%. On the other hand, CYP1B1 siRNA appeared to rescue the cell viability under hyperoxia stress, and overexpression of CYP1B1 significantly attenuated hyperoxic cytotoxicity after 48 h of incubation. In immortalized lung endothelial cells derived from Cyp1b1-null and wild-type mice, hyperoxia increased caspase 3/7 activities in a time-dependent manner, but endothelial cells lacking the Cyp1b1 gene showed significantly decreased caspase 3/7 activities after 48 and 72 h of incubation, implying that CYP1B1 might promote apoptosis in wild type lung endothelial cells under hyperoxic stress. In conclusion, our results support the hypothesis that CYP1B1 plays a mechanistic role in pulmonary oxygen toxicity, and CYP1B1-mediated apoptosis could be one of the mechanisms of oxygen toxicity. Thus, CYP1B1 could be a novel target for preventative and/or therapeutic interventions against BPD in infants and ALI/ARDS in adults.
Collapse
Affiliation(s)
- Daniela Dinu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chun Chu
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alex Veith
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Krithika Lingappan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xanthi Couroucli
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Colin R Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Galam L, Rajan A, Failla A, Soundararajan R, Lockey RF, Kolliputi N. Deletion of P2X7 attenuates hyperoxia-induced acute lung injury via inflammasome suppression. Am J Physiol Lung Cell Mol Physiol 2016; 310:L572-81. [PMID: 26747786 DOI: 10.1152/ajplung.00417.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence shows that hyperoxia is a serious complication of oxygen therapy in acutely ill patients that causes excessive production of free radicals leading to hyperoxia-induced acute lung injury (HALI). Our previous studies have shown that P2X7 receptor activation is required for inflammasome activation during HALI. However, the role of P2X7 in HALI is unclear. The main aim of this study was to determine the effect of P2X7 receptor gene deletion on HALI. Wild-type (WT) and P2X7 knockout (P2X7 KO) mice were exposed to 100% O2 for 72 h. P2X7 KO mice treated with hyperoxia had enhanced survival in 100% O2 compared with the WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1β, TNF-α, monocyte chemoattractant protein-1, and IL-6 levels were attenuated in P2X7 KO mice. P2X7 deletion decreased lung edema and alveolar protein content, which are associated with enhanced alveolar fluid clearance. In addition, activation of the inflammasome was suppressed in P2X7-deficient alveolar macrophages and was associated with suppression of IL-1β release. Furthermore, P2X7-deficient alveolar macrophage in type II alveolar epithelial cells (AECs) coculture model abolished protein permeability across mouse type II AEC monolayers. Deletion of P2X7 does not lead to a decrease in epithelial sodium channel expression in cocultures of alveolar macrophages and type II AECs. Taken together, these findings show that deletion of P2X7 is a protective factor and therapeutic target for the amelioration of hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Lakshmi Galam
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ashna Rajan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Athena Failla
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Ramani Soundararajan
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Richard F Lockey
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida
| |
Collapse
|
20
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
21
|
Wagner K, Gröger M, McCook O, Scheuerle A, Asfar P, Stahl B, Huber-Lang M, Ignatius A, Jung B, Duechs M, Möller P, Georgieff M, Calzia E, Radermacher P, Wagner F. Blunt Chest Trauma in Mice after Cigarette Smoke-Exposure: Effects of Mechanical Ventilation with 100% O2. PLoS One 2015. [PMID: 26225825 PMCID: PMC4520521 DOI: 10.1371/journal.pone.0132810] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cigarette smoking (CS) aggravates post-traumatic acute lung injury and increases ventilator-induced lung injury due to more severe tissue inflammation and apoptosis. Hyper-inflammation after chest trauma is due to the physical damage, the drop in alveolar PO2, and the consecutive hypoxemia and tissue hypoxia. Therefore, we tested the hypotheses that 1) CS exposure prior to blunt chest trauma causes more severe post-traumatic inflammation and thereby aggravates lung injury, and that 2) hyperoxia may attenuate this effect. Immediately after blast wave-induced blunt chest trauma, mice (n=32) with or without 3-4 weeks of CS exposure underwent 4 hours of pressure-controlled, thoraco-pulmonary compliance-titrated, lung-protective mechanical ventilation with air or 100 % O2. Hemodynamics, lung mechanics, gas exchange, and acid-base status were measured together with blood and tissue cytokine and chemokine concentrations, heme oxygenase-1 (HO-1), activated caspase-3, and hypoxia-inducible factor 1-α (HIF-1α) expression, nuclear factor-κB (NF-κB) activation, nitrotyrosine formation, purinergic receptor 2X4 (P2XR4) and 2X7 (P2XR7) expression, and histological scoring. CS exposure prior to chest trauma lead to higher pulmonary compliance and lower PaO2 and Horovitz-index, associated with increased tissue IL-18 and blood MCP-1 concentrations, a 2-4-fold higher inflammatory cell infiltration, and more pronounced alveolar membrane thickening. This effect coincided with increased activated caspase-3, nitrotyrosine, P2XR4, and P2XR7 expression, NF-κB activation, and reduced HIF-1α expression. Hyperoxia did not further affect lung mechanics, gas exchange, pulmonary and systemic cytokine and chemokine concentrations, or histological scoring, except for some patchy alveolar edema in CS exposed mice. However, hyperoxia attenuated tissue HIF-1α, nitrotyrosine, P2XR7, and P2XR4 expression, while it increased HO-1 formation in CS exposed mice. Overall, CS exposure aggravated post-traumatic inflammation, nitrosative stress and thereby organ dysfunction and injury; short-term, lung-protective, hyperoxic mechanical ventilation have no major beneficial effect despite attenuation of nitrosative stress, possibly due to compensation of by regional alveolar hypoxia and/or consecutive hypoxemia, resulting in down-regulation of HIF-1α expression.
Collapse
MESH Headings
- Acute Lung Injury/etiology
- Acute Lung Injury/physiopathology
- Acute Lung Injury/therapy
- Animals
- Disease Models, Animal
- Female
- Hyperoxia/complications
- Hyperoxia/pathology
- Hyperoxia/physiopathology
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung/pathology
- Lung/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Oxidative Stress
- Pulmonary Disease, Chronic Obstructive/etiology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- Pulmonary Disease, Chronic Obstructive/therapy
- Reactive Nitrogen Species/metabolism
- Receptors, Purinergic P2X/metabolism
- Respiration, Artificial/adverse effects
- Smoking/adverse effects
- Thoracic Injuries/complications
- Thoracic Injuries/physiopathology
- Thoracic Injuries/therapy
- Wounds, Nonpenetrating/complications
- Wounds, Nonpenetrating/physiopathology
- Wounds, Nonpenetrating/therapy
Collapse
Affiliation(s)
- Katja Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| | - Michael Gröger
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Oscar McCook
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | | | - Pierre Asfar
- Laboratoire HIFIH, UPRES EA 3859, PRES l’UNAM, IFR 132, CNRS UMR 6214, INSERM U1083, Université Angers, Département de Réanimation Médicale et de Médecine Hyperbare, Centre Hospitalier Universitaire, Angers, France
| | - Bettina Stahl
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Markus Huber-Lang
- Klinik für Unfall-, Hand-, Plastische und Wiederherstellungschirurgie, Universitätsklinikum, Ulm, Germany
| | - Anita Ignatius
- Institut für Unfallchirurgische Forschung und Biomechanik, Universitätsklinikum, Ulm, Germany
| | - Birgit Jung
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Matthias Duechs
- Abteilung Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach/Riss, Germany
| | - Peter Möller
- Institut für Pathologie, Universitätsklinikum, Ulm, Germany
| | | | - Enrico Calzia
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- * E-mail:
| | - Florian Wagner
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Ulm, Germany
- Klinik für Anästhesiologie, Universitätsklinikum, Ulm, Germany
| |
Collapse
|
22
|
Wilks MF, Tsatsakis AM. Environmental contaminants and target organ toxicities – new insights into old problems. Toxicol Lett 2014; 230:81-4. [DOI: 10.1016/j.toxlet.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|