1
|
Bai W, Xue Y, Guo Y, Zhang D, Ma K, Chen Z, Xia K, Liao B, Huang G, Pan S, Zheng Y, Wang H, Yang H, Zhang LK, Guan YQ. Reactive oxygen species produced by photodynamic therapy enhance docosahexaenoic acid lipid peroxidation and induce the death of breast cancer cells. Colloids Surf B Biointerfaces 2024; 241:114012. [PMID: 38850743 DOI: 10.1016/j.colsurfb.2024.114012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Breast cancer remains a serious threat to women's physical and emotional health. The combination therapies can overcome the deficiency of single therapy, enhance the therapeutic effects and reduce the side effects at the same time. In this study, we synthesize a novel nanomedicine that enhanced the therapeutic effects of breast cancer treatment by combining photodynamic therapy and chemotherapy. The doxorubicin (DOX) and photosensitizer methyl pyropheophorbide-a (MPPa) are loaded into the nano-drug delivery system as DPSPFA/MPPa/DOX. In response to near-infrared (NIR) laser, the drugs were quickly released to the cancer cells. The MPPa produces reactive oxygen species (ROS) under the action of photodynamics. Unsaturated fatty acids with ROS promotes lipid peroxidation and the combination of chemotherapy and photodynamic therapy. The data shows that the DPSPFA/MPPa/DOX has a spherical shape, good dispersibility and stability, and the particle size is roughly 200 nm. The drug loading capability of DOX is about 13 %. Both of MCF7 cell model in vitro and breast cancer model in vivo, DPSPFA/MPPa/DOX showed an excellent anti-tumor effect of 86.9 % and without any obvious side effects. These findings might offer potential for a new approach for breast cancer treatment.
Collapse
Affiliation(s)
- Weiwei Bai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yongyong Xue
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yiyan Guo
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dandan Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kuo Ma
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhendong Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Kunwen Xia
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Beining Liao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Guowei Huang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Shengjun Pan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuxin Zheng
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Haoyuan Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Hao Yang
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China; School of Engineering, Westlake University, Hangzhou 310030, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China; MOE Key laboratory of Laser Life Science & Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China; South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China.
| |
Collapse
|
2
|
Kranrod J, Konkel A, Valencia R, Darwesh AM, Fischer R, Schunck WH, Seubert JM. Cardioprotective properties of OMT-28, a synthetic analog of omega-3 epoxyeicosanoids. J Biol Chem 2024; 300:107372. [PMID: 38754781 PMCID: PMC11214398 DOI: 10.1016/j.jbc.2024.107372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/12/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
OMT-28 is a metabolically robust small molecule developed to mimic the structure and function of omega-3 epoxyeicosanoids. However, it remained unknown to what extent OMT-28 also shares the cardioprotective and anti-inflammatory properties of its natural counterparts. To address this question, we analyzed the ability of OMT-28 to ameliorate hypoxia/reoxygenation (HR)-injury and lipopolysaccharide (LPS)-induced endotoxemia in cultured cardiomyocytes. Moreover, we investigated the potential of OMT-28 to limit functional damage and inflammasome activation in isolated perfused mouse hearts subjected to ischemia/reperfusion (IR) injury. In the HR model, OMT-28 (1 μM) treatment largely preserved cell viability (about 75 versus 40% with the vehicle) and mitochondrial function as indicated by the maintenance of NAD+/NADH-, ADP/ATP-, and respiratory control ratios. Moreover, OMT-28 blocked the HR-induced production of mitochondrial reactive oxygen species. Pharmacological inhibition experiments suggested that Gαi, PI3K, PPARα, and Sirt1 are essential components of the OMT-28-mediated pro-survival pathway. Counteracting inflammatory injury of cardiomyocytes, OMT-28 (1 μM) reduced LPS-induced increases in TNFα protein (by about 85% versus vehicle) and NF-κB DNA binding (by about 70% versus vehicle). In the ex vivo model, OMT-28 improved post-IR myocardial function recovery to reach about 40% of the baseline value compared to less than 20% with the vehicle. Furthermore, OMT-28 (1 μM) limited IR-induced NLRP3 inflammasome activation similarly to a direct NLRP3 inhibitor (MCC950). Overall, this study demonstrates that OMT-28 possesses potent cardio-protective and anti-inflammatory properties supporting the hypothesis that extending the bioavailability of omega-3 epoxyeicosanoids may improve their prospects as therapeutic agents.
Collapse
Affiliation(s)
- Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | | | - Robert Valencia
- Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ahmed M Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | | | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, Alberta, Canada; Faculty of Medicine and Dentistry, Department of Pharmacology, College of Health Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Mori C, Lee JY, Tokumoto M, Satoh M. Cadmium Toxicity Is Regulated by Peroxisome Proliferator-Activated Receptor δ in Human Proximal Tubular Cells. Int J Mol Sci 2022; 23:ijms23158652. [PMID: 35955783 PMCID: PMC9369238 DOI: 10.3390/ijms23158652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 12/13/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. Renal proximal tubule disorder is the main symptom of Cd chronic poisoning. Our previous study demonstrated that Cd inhibits the total activities of peroxisome proliferator-activated receptor (PPAR) transcription factors in human and rat proximal tubular cells. In this study, we investigated the involvement of PPAR in Cd renal toxicity using the HK-2 human proximal tubular cell line. Among PPAR isoform genes, only PPARD knockdown significantly showed resistance to Cd toxicity in HK-2 cells. The transcriptional activity of PPARδ was decreased not only by PPARD knockdown but also by Cd treatment. DNA microarray analysis showed that PPARD knockdown changed the expression of apoptosis-related genes in HK-2 cells. PPARD knockdown decreased apoptosis signals and caspase-3 activity induced by Cd treatment. PPARD knockdown did not affect the intracellular Cd level after Cd treatment. These results suggest that PPARδ plays a critical role in the modification of susceptibility to Cd renal toxicity and that the apoptosis pathway may be involved in PPARδ-related Cd toxicity.
Collapse
|
4
|
Khalid W, Gill P, Arshad MS, Ali A, Ranjha MMAN, Mukhtar S, Afzal F, Maqbool Z. Functional behavior of DHA and EPA in the formation of babies brain at different stages of age, and protect from different brain-related diseases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2070642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Waseem Khalid
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Poonam Gill
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | | | - Anwar Ali
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, China
| | | | - Shanza Mukhtar
- Department of Nutrition and Dietetics, The University of Faisalabad, Pakistan
| | - Fareed Afzal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University, Faisalabad, Pakistan
| |
Collapse
|
5
|
Ding Q, Hao Q, Zhang Q, Yang Y, Olsen RE, Ringø E, Ran C, Zhang Z, Zhou Z. Excess DHA Induces Liver Injury via Lipid Peroxidation and Gut Microbiota-Derived Lipopolysaccharide in Zebrafish. Front Nutr 2022; 9:870343. [PMID: 35571918 PMCID: PMC9096794 DOI: 10.3389/fnut.2022.870343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Being highly unsaturated, n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are prone to lipid peroxidation. In this study, zebrafish were fed with low-fat diet (LFD), high-fat diet (HFD), or 2% DHA-supplemented HFD (HFDHA2.0). To study the possible negative effects of the high level of dietary DHA, growth rates, blood chemistry, liver histology, hepatic oxidative stress, apoptosis, and inflammatory processes were assessed. The cell studies were used to quantify the effects of DHA and antioxidant on cellular lipid peroxidation and viability. The possible interaction between gut microbiota and zebrafish host was evaluated in vitro. HFDHA2.0 had no effect on hepatic lipid level but induced liver injury, oxidative stress, and hepatocellular apoptosis, including intrinsic and death receptor-induced apoptosis. Besides, the inclusion of 2% DHA in HFD increased the abundance of Proteobacteria in gut microbiota and serum endotoxin level. In the zebrafish liver cell model, DHA activated intrinsic apoptosis while the antioxidant 4-hydroxy-Tempo (tempo) inhibited the pro-apoptotic negative effects of DHA. The apoptosis induced by lipopolysaccharide (LPS) was unaffected by the addition of tempo. In conclusion, the excess DHA supplementation generates hepatocellular apoptosis-related injury to the liver. The processes might propagate along at least two routes, involving lipid peroxidation and gut microbiota-generated LPS.
Collapse
Affiliation(s)
- Qianwen Ding
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rolf Erik Olsen
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Einar Ringø
- Norway-China Joint Lab on Fish Gastrointestinal Microbiota, Institute of Biology, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Bioscience, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Tamarindo GH, Góes RM. Docosahexaenoic acid differentially modulates the cell cycle and metabolism- related genes in tumor and pre-malignant prostate cells. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158766. [PMID: 32712248 DOI: 10.1016/j.bbalip.2020.158766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/13/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) has different molecular features along progression, including androgen profile, which is associated to therapy inefficiency leading to more aggressive phenotype. Docosahexaenoic acid (DHA) has antiproliferative and pro-apoptotic properties in different cancers associated to cell metabolism modulation. The latter is of particular interest since metabolic reprogramming is one of PCa hallmarks, but is not clear how this occurs among disease progression. Therefore, we evaluated DHA antiproliferative potential in distinct androgenic backgrounds associated to metabolism modulation and androgen-regulated genes. For this purpose, pre-malignant PNT1A and tumor AR-positive 22rv1, and AR-negative PC3 cells were incubated with DHA at 100 μM-48 h. DHA reduced at least 26% cell number for all lineages due to S-phase decrease in AR-positive and G2/M arrest in AR-negative. Mitochondrial metabolic rate decreased in PNT1A (~38%) and increased in tumor cells (at least 40%). This was associated with ROS overproduction (1.6-fold PNT1A; 2.1 22rv1; 2.2 PC3), lipid accumulation (3-fold PNT1A; 1.8 22rv1; 3.6 PC3) and mitochondria damage in all cell lines. AKT, AMPK and PTEN were not activated in any cell line, but p-ERK1/2 increased (1.5-fold) in PNT1A. Expression of androgen-regulated and nuclear receptors genes showed that DHA affected them in a distinct pattern in each cell line, but most converged to metabolism regulation, response to hormones, lipids and stress. In conclusion, regardless of androgenic or PTEN background DHA exerted antiproliferative effect associated to cell cycle impairment, lipid deregulation and oxidative stress, but differentially regulated gene expression probably due to distinct molecular features of each pathologic stage.
Collapse
Affiliation(s)
| | - Rejane Maira Góes
- Institute of Biology, University of Campinas, Campinas, SP, Brazil; Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
7
|
Xi Y, Zhang Y, Zhu S, Luo Y, Xu P, Huang Z. PPAR-Mediated Toxicology and Applied Pharmacology. Cells 2020; 9:cells9020352. [PMID: 32028670 PMCID: PMC7072218 DOI: 10.3390/cells9020352] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/26/2020] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor family, attract wide attention as promising therapeutic targets for the treatment of multiple diseases, and their target selective ligands were also intensively developed for pharmacological agents such as the approved drugs fibrates and thiazolidinediones (TZDs). Despite their potent pharmacological activities, PPARs are reported to be involved in agent- and pollutant-induced multiple organ toxicity or protective effects against toxicity. A better understanding of the protective and the detrimental role of PPARs will help to preserve efficacy of the PPAR modulators but diminish adverse effects. The present review summarizes and critiques current findings related to PPAR-mediated types of toxicity and protective effects against toxicity for a systematic understanding of PPARs in toxicology and applied pharmacology.
Collapse
Affiliation(s)
- Yue Xi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yunhui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sirui Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuping Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Correspondence: (P.X.); (Z.H.); Tel.: +1-412-708-4694(P.X.); +86-20-39943092 (Z.H.)
| |
Collapse
|
8
|
In vitro metabolic stability and biotransformation of isosteviol in human and rat liver fractions. Drug Metab Pharmacokinet 2019; 34:194-200. [PMID: 30880146 DOI: 10.1016/j.dmpk.2019.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
Isosteviol is a lead compound whose cardioprotective property has been partly explained by its regulation of ion channels and interference with signalling pathways in the metabolism of some fatty acids. This study determined the metabolic stability of isosteviol in human liver microsomes and H9c2 cell line, and the identity of its metabolites in human and rat liver fractions. Isosteviol was largely unmetabolized in H9c2 cells and in NADPH-only supplemented human liver fractions, suggesting a very limited contribution of phase I biotransformation to its hepatic clearance. The in vitro half-life of isosteviol in UDPGA-only supplemented medium was observed to be 24.9 min with an estimated intrinsic clearance of 0.349 mL/min/kg in man. Analysis by LC-MS/MS and Q-tof showed that isosteviol is mainly metabolised to its acyl-β-D-glucuronide in humans and rats. Mono-hydroxy-isosteviol and dihydroisosteviol were also identified. Rat liver fraction, however, generated dihydroxy-isosteviol in addition to two mono-hydroxy derivatives. Further studies confirmed that dihydroisosteviol is subsequently biotransformed to its acyl-β-D-glucuronide in man and rat. These findings suggest that future studies of the efficacy and toxicity of isosteviol might have to consider xenobiotics that alter the glucuronidation pathways significantly in man.
Collapse
|
9
|
Abstract
The nuclear receptor peroxisome proliferator-activated receptor δ (PPARδ) can transcriptionally regulate target genes. PPARδ exerts essential regulatory functions in the heart, which requires constant energy supply. PPARδ plays a key role in energy metabolism, controlling not only fatty acid (FA) and glucose oxidation, but also redox homeostasis, mitochondrial biogenesis, inflammation, and cardiomyocyte proliferation. PPARδ signaling is impaired in the heart under various pathological conditions, such as pathological cardiac hypertrophy, myocardial ischemia/reperfusion, doxorubicin cardiotoxicity and diabetic cardiomyopathy. PPARδ deficiency in the heart leads to cardiac dysfunction, myocardial lipid accumulation, cardiac hypertrophy/remodeling and heart failure. This article provides an up-today overview of this research area and discusses the role of PPARδ in the heart in light of the complex mechanisms of its transcriptional regulation and its potential as a translatable therapeutic target for the treatment of cardiac disorders.
Collapse
Affiliation(s)
- Qinglin Yang
- Cardiovascular Center of Excellence, LSU Healther Science Center, 533 Bolivar St, New Orleans, LA 70112, USA
| | - Qinqiang Long
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
| |
Collapse
|
10
|
Ethanol and C2 ceramide activate fatty acid oxidation in human hepatoma cells. Sci Rep 2018; 8:12923. [PMID: 30150688 PMCID: PMC6110824 DOI: 10.1038/s41598-018-31025-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/04/2018] [Indexed: 02/07/2023] Open
Abstract
Obesogenic lipids and the sphingolipid ceramide have been implicated as potential cofactors in alcoholic liver disease (ALD) patients. However, the mechanisms by which these lipids modulate lipid trafficking in ethanol-treated human liver cells to promote steatosis, an early stage of ALD, are poorly understood. We measured fatty acid (FA) uptake, triglyceride export, FA synthesis and FA oxidation in human hepatoma (VL-17A) cells in response to ethanol and the exogenous lipids oleate, palmitate and C2 ceramide. We found that in combination with ethanol, both oleate and palmitate promote lipid droplet accumulation while C2 ceramide inhibits lipid droplet accumulation by enhancing FA oxidation. Further, using both a pharmacologic and siRNA approach to reduce peroxisome proliferator-activated receptors α (PPARα) gene expression, we demonstrate that C2 ceramide abrogates ethanol-mediated suppression of FA oxidation through an indirect PPARα mechanism. Together, these data suggest that lipids interact differentially with ethanol to modulate hepatocellular lipid droplet accumulation and may provide novel targets for preventing the earliest stage of alcoholic liver disease, alcoholic steatosis.
Collapse
|
11
|
DHA and 19,20-EDP induce lysosomal-proteolytic-dependent cytotoxicity through de novo ceramide production in H9c2 cells with a glycolytic profile. Cell Death Discov 2018; 4:29. [PMID: 30131878 PMCID: PMC6102239 DOI: 10.1038/s41420-018-0090-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023] Open
Abstract
Docosahexaenoic acid (DHA) and their CYP-derived metabolites, epoxydocosapentaenoic acids (EDPs), are important fatty acids obtained from dietary sources. While it is known that they have significant biological effects, which can differ between cell type and disease state, our understanding of how they work remains limited. Previously, we demonstrated that DHA and 19,20-EDP triggered pronounced cytotoxicity in H9c2 cells correlating with increased ceramide production. In this study, we examine whether DHA- and 19,20-EDP-induced cell death depends on the type of metabolism (glycolysis or OXPHOS). We cultivated H9c2 cells in distinct conditions that result in either glycolytic or oxidative metabolism. Our major findings suggest that DHA and its epoxy metabolite, 19,20-EDP, trigger cytotoxic effects toward H9c2 cells with a glycolytic metabolic profile. Cell death occurred through a mechanism involving activation of a lysosomal-proteolytic degradation pathway. Importantly, accumulation of ceramide played a critical role in the susceptibility of glycolytic H9c2 cells to cytotoxicity. Furthermore, our data suggest that an alteration in the cellular metabolic profile is a major factor determining the type and magnitude of cellular toxic response. Together, the novelty of this study demonstrates that DHA and 19,20-EDP induce cell death in H9c2 cells with a glycolytic metabolicwct 2 profile through a lysosomal-proteolytic mechanism.
Collapse
|
12
|
Dei Cas M, Ghidoni R. Cancer Prevention and Therapy with Polyphenols: Sphingolipid-Mediated Mechanisms. Nutrients 2018; 10:nu10070940. [PMID: 30037082 PMCID: PMC6073226 DOI: 10.3390/nu10070940] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
Polyphenols, chemically characterized by a polyhydroxylated phenolic structure, are well known for their widespread pharmacological properties: anti-inflammatory, antibiotic, antiseptic, antitumor, antiallergic, cardioprotective and others. Their distribution in food products is also extensive especially in plant foods such as vegetables, cereals, legumes, fruits, nuts and certain beverages. The latest scientific literature outlines a resilient interconnection between cancer modulation and dietary polyphenols by sphingolipid-mediated mechanisms, usually correlated with a modification of their metabolism. We aim to extensively survey this relationship to show how it could be advantageous in cancer treatment or prevention by nutrients. From this analysis it emerges that a combination of classical chemotherapy with nutrients and especially with polyphenols dietary sources may improve efficacy and decreases negative side effects of the antineoplastic drug. In this multifaceted scenario, sphingolipids play a pivotal role as bioactive molecules, emerging as the mediators of cell proliferation in cancer and modulator of chemotherapeutics.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, University of Milan, 20142 Milan, Italy.
| | - Riccardo Ghidoni
- Department of Health Sciences, University of Milan, 20142 Milan, Italy.
| |
Collapse
|
13
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Zlobine I, Gopal K, Ussher JR. Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1555-68. [DOI: 10.1016/j.bbalip.2016.02.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
|
15
|
Fan D, Takawale A, Shen M, Samokhvalov V, Basu R, Patel V, Wang X, Fernandez-Patron C, Seubert JM, Oudit GY, Kassiri Z. A Disintegrin and Metalloprotease-17 Regulates Pressure Overload-Induced Myocardial Hypertrophy and Dysfunction Through Proteolytic Processing of Integrin β1. Hypertension 2016; 68:937-48. [PMID: 27550917 DOI: 10.1161/hypertensionaha.116.07566] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022]
Abstract
A disintegrin and metalloprotease-17 (ADAM17) belongs to a family of transmembrane enzymes, and it can mediate ectodomain shedding of several membrane-bound molecules. ADAM17 levels are elevated in patients with hypertrophic and dilated cardiomyopathy; however, its direct role in hypertrophic cardiomyopathy is unknown. Cardiomyocyte-specific ADAM17 knockdown mice (ADAM17(flox/flox)/αMHC-Cre; ADAM17(f/f)/Cre) and littermates with intact ADAM17 levels (ADAM17(f/f)) were subjected to cardiac pressure-overload by transverse aortic constriction. Cardiac function/architecture was assessed by echocardiography at 2 and 5 weeks post transverse aortic constriction. ADAM17 knockdown enhanced myocardial hypertrophy, fibrosis, more severe left ventricular dilation, and systolic dysfunction at 5 weeks post transverse aortic constriction. Pressure overload-induced upregulation of integrin β1 was much greater with ADAM17 knockdown, concomitant with the greater activation of the focal adhesion kinase pathway, suggesting that integrin β1 could be a substrate for ADAM17. ADAM17 knockdown did not alter other cardiomyocyte integrins, integrin α5 or α7, and HB-EGF (heparin-bound epidermal growth factor), another potential substrate for ADAM17, remained unaltered after pressure overload. ADAM17-mediated cleavage of integrin β1 was confirmed by an in vitro assay. Intriguingly, ADAM17 knockdown did not affect the myocardial hypertrophy induced by a subpressor dose of angiotensin II, which occurs independent from the integrin β1-mediated pathway. ADAM17-knockdown enhanced the hypertrophic response to cyclic mechanical stretching in neonatal rat cardiomyocytes. This study reports a novel cardioprotective function for ADAM17 in pressure overload cardiomyopathy, where loss of ADAM17 promotes hypertrophy by reducing the cleavage of cardiac integrin β1, a novel substrate for ADAM17. This function of ADAM17 is selective for pressure overload-induced myocardial hypertrophy and dysfunction, and not agonist-induced hypertrophy.
Collapse
Affiliation(s)
- Dong Fan
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Abhijit Takawale
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Mengcheng Shen
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Victor Samokhvalov
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Ratnadeep Basu
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Vaibhav Patel
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Xiuhua Wang
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Carlos Fernandez-Patron
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - John M Seubert
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Gavin Y Oudit
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.)
| | - Zamaneh Kassiri
- From the Departments of Physiology (D.F., A.T., M.S., X.W., Z.K.), Biochemistry (C.F.-P.), Medicine, Faculty of Medicine and Dentistry (R.B., V.P., G.Y.O.), and Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada (V.S., J.M.S.); and Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Edmonton, Canada (D.F., A.T., M.S., V.S., R.B., V.P., X.W., C.F.-P., J.M.S., G.Y.O., Z.K.).
| |
Collapse
|
16
|
Samokhvalov V, Jamieson KL, Fedotov I, Endo T, Seubert JM. SIRT Is Required for EDP-Mediated Protective Responses toward Hypoxia-Reoxygenation Injury in Cardiac Cells. Front Pharmacol 2016; 7:124. [PMID: 27242531 PMCID: PMC4868841 DOI: 10.3389/fphar.2016.00124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/28/2016] [Indexed: 01/11/2023] Open
Abstract
Hypoxia–reoxygenation (H/R) injury is known to cause extensive injury to cardiac myocardium promoting development of cardiac dysfunction. Despite the vast number of studies dedicated to studying H/R injury, the molecular mechanisms behind it are multiple, complex, and remain very poorly understood, which makes development of novel pharmacological agents challenging. Docosahexaenoic acid (DHA, 22:6n3) is an n - 3 polyunsaturated fatty acid obtained from dietary sources, which produces numerous effects including regulation of cell survival and death mechanisms. The beneficial effects of DHA toward the cardiovascular system are well documented but the relative role of DHA or one of its more potent metabolites is unresolved. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), have more potent biological activity than DHA in cardiac cells. In this study we examined whether EDPs protect HL-1 cardiac cells from H/R injury. Our observations demonstrate that treatment with 19,20-EDP protected HL-1 cardiac cells from H/R damage through a mechanism(s) protecting and enhancing mitochondrial quality. EDP treatment increased the relative rates of mitobiogenesis and mitochondrial respiration in control and H/R exposed cardiac cells. The observed EDP protective response toward H/R injury involved SIRT1-dependent pathways.
Collapse
Affiliation(s)
- Victor Samokhvalov
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta Edmonton, AB, Canada
| | - Kristi L Jamieson
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta Edmonton, AB, Canada
| | - Ilia Fedotov
- Department of Biochemistry, Saratov State Medical University Saratov, Russia
| | - Tomoko Endo
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of AlbertaEdmonton, AB, Canada; Department of Pharmacological Sciences, School of Pharmaceutical Sciences, Health Sciences University of HokkaidoHokkaido, Japan
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of AlbertaEdmonton, AB, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
17
|
CYP-epoxygenase metabolites of docosahexaenoic acid protect HL-1 cardiac cells against LPS-induced cytotoxicity Through SIRT1. Cell Death Discov 2015; 1. [PMID: 27182450 PMCID: PMC4864499 DOI: 10.1038/cddiscovery.2015.54] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Bacterial LPS is an environmental toxin capable of promoting various cardiac complications. Current evidence suggests that LPS-induced myocardial dysfunction emerges as a consequence of compromised quality of cardiac mitochondria. Docosahexaenoic acid (DHA, 22:6n3) is an n-3 polyunsaturated fatty acid (PUFA), which produces a broad spectrum of intrinsic physiological effects including regulation of cell survival and death mechanisms. Although, numerous studies revealed fundamentally beneficial effects of DHA on cardiovascular system, it remains unknown whether these effects were produced by DHA or one of its possibly more potent metabolites. Emerging evidence indicates that cytochrome P450 (CYP) epoxygenase metabolites of DHA, epoxydocosapentaenoic acids (EDPs), produce more potent biological activity compared to its precursor DHA. In this study, we investigated whether DHA and its metabolite 19,20-EDP could protect HL-1 cardiac cells against LPS-induced cytotoxicity. We provide evidence that exogenously added or DHA-derived EDPs promote mitochondrial biogenesis and function in HL-1 cardiac cells. Our results illustrate the CYP epoxygenase metabolite of DHA, 19,20-EDP, confers extensive protection to HL-1 cardiac cells against LPS-induced cytotoxicity via activation of SIRT1.
Collapse
|
18
|
Kim YA, Day J, Lirette CA, Costain WJ, Johnston LJ, Bittman R. Synthesis and photochemical properties of PEGylated coumarin-caged ceramides for cell studies. Chem Phys Lipids 2015. [PMID: 26200920 DOI: 10.1016/j.chemphyslip.2015.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Caged ceramide analogues (C6-, C16-, C18-, C22- and C24-Cer) have been prepared by introducing a hydrophilic coumarin-based cage bearing a short polyethylene glycol (PEG) chain. (6-Bromo-7-mTEGylated-coumarin-4-yl)methyl (Btc) caged ceramide showed efficient photo-uncaging to release the parent ceramide upon direct exposure to 350 nm UV light; in contrast (7-mTEGylated-coumarin-4-yl)methyl (Tc) caged ceramide was photolysed more slowly. In preliminary experiments, Btc-caged ceramides were taken up by cells and their photolysis led to decreases in cell viability, but not to activation of caspase enzymes, suggesting that either reactive oxygen species or an alternate caspase-independent pathway may be responsible for the decreases in cell viability caused by photolysis of caged ceramides.
Collapse
Affiliation(s)
- Young Ah Kim
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, NY 11367, USA.
| | - Jenna Day
- National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Carol Ann Lirette
- National Research Council of Canada, Ottawa, ON K1A 0R6, Canada; Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | | - Robert Bittman
- Department of Chemistry and Biochemistry, Queens College of The City University of New York, Flushing, NY 11367, USA
| |
Collapse
|