1
|
Collier GE, Lavado R. An in-depth examination of Per- and Polyfluoroalkyl (PFAS) effects on transporters, with emphasis on the ABC superfamily: A critical review. Toxicology 2024; 508:153901. [PMID: 39094918 DOI: 10.1016/j.tox.2024.153901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Per- and polyfluoroalkyl (PFAS) substances are a type of chemical compound unique for their multiple carbon-fluorine bonds, imbuing them with strength and environmental permanence. While legacy substances have been phased out due to human health risks, short-chain and alternative PFAS remain omnipresent. However, a detailed explanation for the pathways through which PFAS interact on a cellular and molecular level is still largely unknown, and the human health effects remain mechanistically unexplained. Of particular interest when focusing on this topic are the interactions between these exogenous chemicals and plasma and membrane proteins. Such proteins include serum albumin which can transport PFAS throughout the body, solute carrier proteins (SLC) and ATP binding cassette (ABC) transporters which are able to move PFAS into and out of cells, and proteins and nuclear receptors which interact with PFAS intracellularly. ABC transporters as a family have little available human data despite being responsible for the export of endogenous substances and drugs throughout the body. The multifactorial regulation of these crucial transporters is affected directly and indirectly by PFAS. Changes, which can include alterations to membrane transport activity and differences in protein expression, vary greatly depending on the specific PFAS and protein of interest. Together, the myriad of changes caused by understudied PFAS exposure to a class of understudied proteins crucial to cellular function and drug treatments has not been fully explored regarding human health and presents room for further exploration. This critical work aims to provide a novel framework of existing human data on PFAS and ABC transporters, allowing for future advancement and investigation into human transporter activity, mechanisms of regulation, and interactions with emerging contaminants.
Collapse
Affiliation(s)
- Gracen E Collier
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States.
| |
Collapse
|
2
|
Salamat JM, Ayala EM, Huang CCJ, Wilbanks FS, Knight RC, Akingbemi BT, Pondugula SR. Pregnenolone 16-Alpha Carbonitrile, an Agonist of Rodent Pregnane X Receptor, Regulates Testosterone Biosynthesis in Rodent Leydig Cells. J Xenobiot 2024; 14:1256-1267. [PMID: 39311150 PMCID: PMC11417858 DOI: 10.3390/jox14030071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Leydig cells (LCs) in the testes produce the male sex hormone testosterone (T). Several xenobiotics, including clinical drugs, supplements, and environmental chemicals, are known to disrupt T homeostasis. Notably, some of these xenobiotics are known to activate the pregnane X receptor (PXR), a ligand-dependent nuclear receptor. However, it is currently unknown whether PXR is expressed in LCs and whether PXR activation alters T synthesis in rodent LCs. Therefore, in this study, we sought to determine whether PXR is expressed in rodent LCs and whether pregnenolone 16-alpha carbonitrile (PCN), the prototype agonist of rodent PXR, regulates T biosynthesis in rodent LCs. Hormonal as well as protein and gene expression analyses were conducted in rat primary LCs and MA-10 mouse Leydig cells. Results showed that PXR was expressed at the mRNA and protein level in both rat primary LCs and MA-10 cells. Incubation of rat primary LCs with PCN resulted in a significant decrease in T secretion. This PCN-induced decrease in T secretion was associated with decreased protein expression of key steroidogenic enzymes such as 3β-HSD and CYP17A1. RNA-seq results from MA-10 cells showed that PCN down-regulated the transcripts of steroidogenic enzymes and proteins involved in the T synthesis pathway. Together, these results suggest that PCN, an agonist of rodent PXR, can regulate T biosynthesis in rodent LCs by down-regulating the expression of the steroidogenic enzymes involved in T biosynthesis. Our results are significant as they provide a potential novel mechanism for disruption of testosterone homeostasis by a variety of xenobiotics.
Collapse
Affiliation(s)
| | | | | | | | | | - Benson T. Akingbemi
- 109 Greene Hall, Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.M.S.); (E.M.A.); (C.-C.J.H.); (F.S.W.); (R.C.K.)
| | - Satyanarayana R. Pondugula
- 109 Greene Hall, Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (J.M.S.); (E.M.A.); (C.-C.J.H.); (F.S.W.); (R.C.K.)
| |
Collapse
|
3
|
Liu J, Malekoltojari A, Asokakumar A, Chow V, Li L, Li H, Grimaldi M, Dang N, Campbell J, Barrett H, Sun J, Navarre W, Wilson D, Wang H, Mani S, Balaguer P, Anakk S, Peng H, Krause HM. Diindoles produced from commensal microbiota metabolites function as endogenous CAR/Nr1i3 ligands. Nat Commun 2024; 15:2563. [PMID: 38519460 PMCID: PMC10960024 DOI: 10.1038/s41467-024-46559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/27/2024] [Indexed: 03/25/2024] Open
Abstract
Numerous studies have demonstrated the correlation between human gut bacteria and host physiology, mediated primarily via nuclear receptors (NRs). Despite this body of work, the systematic identification and characterization of microbe-derived ligands that regulate NRs remain a considerable challenge. In this study, we discover a series of diindole molecules produced from commensal bacteria metabolites that act as specific agonists for the orphan constitutive androstane receptor (CAR). Using various biophysical analyses we show that their nanomolar affinities are comparable to those of synthetic CAR agonists, and that they can activate both rodent and human CAR orthologues, which established synthetic agonists cannot. We also find that the diindoles, diindolylmethane (DIM) and diindolylethane (DIE) selectively up-regulate bona fide CAR target genes in primary human hepatocytes and mouse liver without causing significant side effects. These findings provide new insights into the complex interplay between the gut microbiome and host physiology, as well as new tools for disease treatment.
Collapse
Affiliation(s)
- Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ainaz Malekoltojari
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Anjana Asokakumar
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vimanda Chow
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Hao Li
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, Inserm, U1194, France
| | - Nathanlown Dang
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jhenielle Campbell
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - William Navarre
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Derek Wilson
- Department of Chemistry, York University, Toronto, ON, M3J 1P3, Canada
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology; Department of Genetics; Department of Medicine; Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, Inserm, U1194, France
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- School of the Environment, University of Toronto, Toronto, ON, M5S 3H6, Canada.
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Jahanshahi S, Kheirandish F, Kazemi B, Montazeri M, Fallahi S, Rouzbahani AK, Mamaghani AJ. Investigating the Effect of Satureja khuzestanica Essential oil on MDR1 Gene Expression in Leishmania major. Acta Parasitol 2024; 69:526-532. [PMID: 38227108 DOI: 10.1007/s11686-023-00780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Cutaneous leishmaniasis is among the neglected diseases in the world. Pentavalent antimonial compounds are considered the first-line treatment for this disease. However, using alternative natural products has received great attention due to the side effects of chemical drugs and drug resistance of the Leishmania parasite. The present study aims to investigate the effect of Satureja khuzestanica essential oil (SKEO) on MDR1 gene expression. METHODS In this study, standard strains of Leishmania major promastigotes were exposed to 5, 10, 15, and 20 µg/ml of SKEO. MDR1 gene expression of parasites exposed to essential oil was evaluated using real-time PCR. GAPDH was employed as the housekeeping gene for internal control. RESULTS Despite the increase, no statistically significant difference was observed in the relative expression of the MDR1 gene between the control group and the groups containing 5, 10, and 20 µg/ml of SKEO (P > 0.05). The relative expression of the MDR1 gene significantly increased in the group containing 15 μg/ml of essential oil compared to the control one (P < 0.05). CONCLUSION This study showed that the use of essential oil of Satureja khuzestanica plant can have an increasing effect on the expression of MDR1 gene of Leishmania promastigotes, which is the best case if Satureja khuzestanica essential oil reduces the expression of MDR1 gene. So it seems that the use of essential oil of Satoria plant is effective in controlling Leishmania parasite, but its concentrations induce drug resistance. As a result, concentrations of essential oil should be used that have a controlling effect on the growth and proliferation of Leishmania parasite and also have the least effect on the induction of MDR1 gene expression.
Collapse
Affiliation(s)
- Saeideh Jahanshahi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Kheirandish
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Department of Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
- Medical Parasitology and Mycology Department, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Montazeri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shirzad Fallahi
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Arian Karimi Rouzbahani
- USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Amirreza Javadi Mamaghani
- Department of Medical Parasitology and Mycology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
- Hepatitis Research Center, Lorestan University of Medical Science, Khorramabad, Iran
| |
Collapse
|
5
|
Vaidya T, Hoffman L, Chapas A. Evaluating Common Ingredients Contained in Dietary Acne Supplements: An Evidence-Based Review. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:34-41. [PMID: 38495547 PMCID: PMC10941853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Objective Acne vulgaris is a common skin condition treated with various medications targeting different aspects of its pathogenesis. Though increasing in popularity, the United States Food and Drug Administration (FDA) does not evaluate the safety or efficacy of dietary supplements marketed for the treatment of acne, calling into question the veracity of their labels. This review aimed to assess the safety and effectiveness of ingredients in popular acne supplements. Methods A comprehensive review was conducted on 13 popular supplements marketed for acne, found through a Google search. Their ingredients, prices, ratings, and existing literature on efficacy and safety were analyzed. A literature review was performed regarding the most common ingredients contained in these supplements. Results The most common ingredients in acne supplements were probiotics, diindolylmethane (DIM), vitamin A, vitamin B complex, and zinc. Despite the increasing popularity of dietary supplements, including those for skin health and acne, the absence of FDA regulation and evidence-based data raises concerns about their safety and efficacy. The safety of acne supplement ingredients raises significant worries, with reported cases of thrombotic events and adverse effects, even during pregnancy. The lack of standardized labeling and clear dosing information further complicates the understanding and potential risks of these supplements. Additionally, there is a potential for interactions with other medications, yet this information is often not provided on the product labels. Limitations A Google search was used to identify popular acne supplements. Search engine algorithms determine the ranking and presentation of results based on various factors, such as popularity, keywords, as well as user preferences and location, thus posing a potential sampling bias. Conclusion It is crucial to exercise caution and prioritize evidence-based information when counseling patients regarding the use of acne supplements.
Collapse
Affiliation(s)
- Toral Vaidya
- Dr. Vaidya is with the Weill Cornell Department of Dermatology in New York, New York
| | - Lauren Hoffman
- Drs. Hoffman and Chapas are with UnionDerm in New York, New York
| | - Anne Chapas
- Drs. Hoffman and Chapas are with UnionDerm in New York, New York
| |
Collapse
|
6
|
Husain I, Dale OR, Idrisi M, Gurley BJ, Avula B, Katragunta K, Ali Z, Chittiboyina A, Noonan G, Khan IA, Khan SI. Evaluation of the Herb-Drug Interaction (HDI) Potential of Zingiber officinale and Its Major Phytoconstituents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7521-7534. [PMID: 37134183 DOI: 10.1021/acs.jafc.2c07912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ginger is currently one of the most popular herbs commonly added to diverse foods, beverages, and dietary supplements. We evaluated the ability of a well-characterized ginger extract, and several of its phytoconstituents, to activate select nuclear receptors as well as modulate the activity of various cytochrome P450s and ATP-binding cassette (ABC) transporters because phytochemical-mediated modulation of these proteins underlies many clinically relevant herb-drug interactions (HDI). Our results revealed ginger extract activated the aryl hydrocarbon receptor (AhR) in AhR-reporter cells and pregnane X receptor (PXR) in intestinal and hepatic cells. Among the phytochemicals investigated, (S)-6-gingerol, dehydro-6-gingerdione, and (6S,8S)-6-gingerdiol activated AhR, while 6-shogaol, 6-paradol, and dehydro-6-gingerdione activated PXR. Enzyme assays showed that ginger extract and its phytochemicals dramatically inhibited the catalytic activity of CYP3A4, 2C9, 1A2, and 2B6, and efflux transport capabilities of P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP). Dissolution studies with ginger extract conducted in biorelevant simulated intestinal fluid yielded (S)-6-gingerol and 6-shogaol concentrations that could conceivably exceed cytochrome P450 (CYP) IC50 values when consumed in recommended doses. In summary, overconsumption of ginger may disturb the normal homeostasis of CYPs and ABC transporters, which in turn, may elevate the risk for HDIs when consumed concomitantly with conventional medications.
Collapse
Affiliation(s)
- Islam Husain
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Olivia R Dale
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Mantasha Idrisi
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Bill J Gurley
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Kumar Katragunta
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Amar Chittiboyina
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Gregory Noonan
- Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, College Park, Maryland 20740, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| | - Shabana I Khan
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
- Department of Bio-Molecular Sciences, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, United States
| |
Collapse
|
7
|
Liang Y, Jiang Q, Gong Y, Yu Y, Zou H, Zhao J, Zhang T, Zhang J. In vitro and in silico assessment of endocrine disrupting effects of food contaminants through pregnane X receptor. Food Chem Toxicol 2023; 175:113711. [PMID: 36893891 DOI: 10.1016/j.fct.2023.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/26/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
As a promiscuous xenobiotic receptor, pregnane X receptor (PXR) has been confirmed to participate in numerous physiological process. In addition to the conventional estrogen/androgen receptor, PXR also serves as an alternative target for environmental chemical contaminants. In this work, the PXR-mediated endocrine disrupting effects of typical food contaminants were explored. Firstly, the time-resolved fluorescence resonance energy transfer assays confirmed the PXR binding affinities of 2,2',4,4',5,5'-hexachlorobiphenyl, bis(2-ethylhexyl) phthalate, dibutyl phthalate, chlorpyrifos, bisphenol A, and zearalenone, with IC50 values ranging from 1.88 to 4284.00 nM. Then their PXR agonist activities were assessed by PXR-mediated CYP3A4 reporter gene assays. Subsequently, the regulation of gene expressions of PXR and its targets CYP3A4, UGT1A1, and MDR1 by these compounds was further investigated. Intriguingly, all the tested compounds interfered with these gene expressions, confirming their endocrine disrupting effects via PXR-mediated signaling. The compound-PXR-LBD binding interactions were explored by molecular docking and molecular dynamics simulations to unravel the structural basis of their PXR binding capacities. The weak intermolecular interactions are key players in stabilizing these compound-PXR-LBD complexes. During the simulation process, 2,2',4,4',5,5'-hexachlorobiphenyl remained stable while the other 5 compounds underwent relatively severe disturbances. In conclusion, these food contaminants might exhibit endocrine disrupting effects via PXR.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
8
|
Abbott K, Salamat JM, Flannery PC, Chaudhury CS, Chandran A, Vishveshwara S, Mani S, Huang J, Tiwari AK, Pondugula SR. Gefitinib Inhibits Rifampicin-Induced CYP3A4 Gene Expression in Human Hepatocytes. ACS OMEGA 2022; 7:34034-34044. [PMID: 36188260 PMCID: PMC9520547 DOI: 10.1021/acsomega.2c03270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
During multidrug combination chemotherapy, activation of the nuclear receptor and the transcription factor human pregnane xenobiotic receptor (hPXR) has been shown to play a role in the development of chemoresistance. Mechanistically, this could occur due to the cancer drug activation of hPXR and the subsequent upregulation of hPXR target genes such as the drug metabolism enzyme, cytochrome P450 3A4 (CYP3A4). In the context of hPXR-mediated drug resistance, hPXR antagonists would be useful adjuncts to PXR-activating chemotherapy. However, there are currently no clinically approved hPXR antagonists in the market. Gefitinib (GEF), a tyrosine kinase inhibitor used for the treatment of advanced non-small-cell lung cancer and effectively used in combinational chemotherapy treatments, is a promising candidate owing to its hPXR ligand-like features. We, therefore, investigated whether GEF would act as an hPXR antagonist when combined with a known hPXR agonist, rifampicin (RIF). At therapeutically relevant concentrations, GEF successfully inhibited the RIF-induced upregulation of endogenous CYP3A4 gene expression in human primary hepatocytes and human hepatocells. Additionally, GEF inhibited the RIF induction of hPXR-mediated CYP3A4 promoter activity in HepG2 human liver carcinoma cells. The computational modeling of molecular docking predicted that GEF could bind to multiple sites on hPXR including the ligand-binding pocket, allowing for potential as a direct antagonist as well as an allosteric inhibitor. Indeed, GEF bound to the ligand-binding domain of the hPXR in cell-free assays, suggesting that GEF directly interacts with the hPXR. Taken together, our results suggest that GEF, at its clinically relevant therapeutic concentration, can antagonize the hPXR agonist-induced CYP3A4 gene expression in human hepatocytes. Thus, GEF could be a potential candidate for use in combinational chemotherapies to combat hPXR agonist-induced chemoresistance. Further studies are warranted to determine whether GEF has sufficient hPXR inhibitor abilities to overcome the hPXR agonist-induced chemoresistance.
Collapse
Affiliation(s)
- Kodye
L. Abbott
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Julia M. Salamat
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| | - Patrick C. Flannery
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Chloe S. Chaudhury
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| | - Aneesh Chandran
- Department
of Biotechnology and Microbiology, Kannur
University, Kannur, Kerala 670661, India
| | | | - Sridhar Mani
- Albert Einstein
Cancer Center, Albert Einstein College of
Medicine, New York 10461, United States
| | - Jianfeng Huang
- Salk
Institute for Biological Studies, La Jolla, California 92037, United States
| | - Amit K. Tiwari
- Center
of Medical Bio-Allied Health Sciences Research, Ajman University, Ajman 306, United Arab Emirates
- Department
of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, Ohio 43606, United States
- Department
of Cell and Cancer Biology, University of
Toledo, Toledo, Ohio 43614, United
States
| | - Satyanarayana R. Pondugula
- Department
of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, Alabama 36849, United States
- Auburn
University Research Initiative in Cancer, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
9
|
Kumar P, Lee JH, Lee J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol Rev Camb Philos Soc 2021; 96:2522-2545. [PMID: 34137156 PMCID: PMC9290978 DOI: 10.1111/brv.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 02/06/2023]
Abstract
Indole and its derivatives are widespread across different life forms, functioning as signalling molecules in prokaryotes and with more diverse roles in eukaryotes. A majority of indoles found in the environment are attributed to bacterial enzymes converting tryptophan into indole and its derivatives. The involvement of indoles among lower organisms as an interspecies and intraspecies signal is well known, with many reports showing that inter‐kingdom interactions involving microbial indole compounds are equally important as they influence defence systems and even the behaviour of higher organisms. This review summarizes recent advances in our understanding of the functional properties of indole and indole derivatives in diverse eukaryotes. Furthermore, we discuss current perspectives on the role of microbial indoles in human diseases such as diabetes, obesity, atherosclerosis, and cancers. Deciphering the function of indoles as biomarkers of metabolic state will facilitate the formulation of diet‐based treatments and open unique therapeutic opportunities.
Collapse
Affiliation(s)
- Prasun Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
10
|
Li H, Illés P, Karunaratne CV, Nordstrøm LU, Luo X, Yang A, Qiu Y, Kurland IJ, Lukin DJ, Chen W, Jiskrová E, Krasulová K, Pečinková P, DesMarais VM, Liu Q, Albanese JM, Akki A, Longo M, Coffin B, Dou W, Mani S, Dvořák Z. Deciphering structural bases of intestinal and hepatic selectivity in targeting pregnane X receptor with indole-based microbial mimics. Bioorg Chem 2021; 109:104661. [PMID: 33636438 PMCID: PMC8646148 DOI: 10.1016/j.bioorg.2021.104661] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 02/07/2023]
Abstract
Microbial metabolite mimicry is a new concept that promises to deliver compounds that have minimal liabilities and enhanced therapeutic effects in a host. In a previous publication, we have shown that microbial metabolites of L-tryptophan, indoles, when chemically altered, yielded potent anti-inflammatory pregnane X Receptor (PXR)-targeting lead compounds, FKK5 and FKK6, targeting intestinal inflammation. Our aim in this study was to further define structure-activity relationships between indole analogs and PXR, we removed the phenyl-sulfonyl group or replaced the pyridyl residue with imidazolopyridyl of FKK6. Our results showed that while removal of the phenyl-sulfonyl group from FKK6 (now called CVK003) shifts agonist activity away from PXR towards the aryl hydrocarbon receptor (AhR), the imidazolopyridyl addition preserves PXR activity in vitro. However, when these compounds are administered to mice, that unlike the parent molecule, FKK6, they exhibit poor induction of PXR target genes in the intestines and the liver. These data suggest that modifications of FKK6 specifically in the pyridyl moiety can result in compounds with weak PXR activity in vivo. These observations are a significant step forward for understanding the structure-activity relationships (SAR) between indole mimics and receptors, PXR and AhR.
Collapse
Affiliation(s)
- Hao Li
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter Illés
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | | | | | - Xiaoping Luo
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Annie Yang
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yunping Qiu
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Irwin J Kurland
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dana J Lukin
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weijie Chen
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Eva Jiskrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Kristýna Krasulová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petra Pečinková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Vera M DesMarais
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qiang Liu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joseph M Albanese
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ashwin Akki
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Michael Longo
- Department of Medical Education, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breyen Coffin
- Department of Medical Education, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Wei Dou
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sridhar Mani
- Department of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
11
|
Flannery PC, Abbott KL, Pondugula SR. Correlation of PPM1A Downregulation with CYP3A4 Repression in the Tumor Liver Tissue of Hepatocellular Carcinoma Patients. Eur J Drug Metab Pharmacokinet 2020; 45:297-304. [PMID: 31792727 DOI: 10.1007/s13318-019-00595-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE In many patients with hepatocellular carcinoma (HCC), cytochrome P450 3A4 (CYP3A4) expression has been reported to be significantly reduced in the tumor liver tissue. Moreover, this CYP3A4 repression is associated with decreased CYP3A4-mediated drug metabolism in the tumor liver tissue. However, the underlying mechanisms of CYP3A4 repression are not fully understood. We have previously shown that Mg2+/Mn2+-dependent phosphatase 1A (PPM1A) positively regulates human pregnane X receptor (hPXR)-mediated CYP3A4 expression in a PPM1A expression-dependent manner. We sought to determine whether PPM1A expression is downregulated and whether PPM1A downregulation is correlated with CYP3A4 repression in the tumor liver tissue of HCC patients. METHODS Quantitative RT-PCR and western blot analyses were performed to study mRNA and protein expression, respectively. Cell-based reporter gene assays were conducted to examine the hPXR transactivation of CYP3A4 promoter activity. RESULTS Arginase-1 and glypican-3 gene expression studies confirmed that the tumor samples used in our study originate from HCC livers but not non-hepatocellular tumors. mRNA and protein expression of PPM1A and CYP3A4 was found to be significantly repressed in the tumor liver tissues compared to the matched non-tumor liver tissues. In the reporter gene assays, elevated PPM1A levels counteracted the inhibition of hPXR-mediated CYP3A4 promoter activity by signaling pathways that are upregulated in HCC, suggesting that decreased PPM1A levels in HCC could not fully counteract the hPXR-inhibiting signaling pathways. CONCLUSIONS Together, these results are consistent with the conclusion that PPM1A downregulation in the tumor liver tissue of HCC patients correlates with CYP3A4 repression. Downregulation of PPM1A levels in the tumor liver tissue may contribute to reduced hPXR-mediated CYP3A4 expression, and provide a novel mechanism of CYP3A4 repression in the tumor liver tissue of HCC patients.
Collapse
Affiliation(s)
- Patrick C Flannery
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, 109 Greene Hall, Auburn, AL, 36849, USA. .,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
12
|
Differential activation of human pregnane X receptor PXR by isomeric mono-methylated indoles in intestinal and hepatic in vitro models. Toxicol Lett 2020; 324:104-110. [DOI: 10.1016/j.toxlet.2020.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/27/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
|
13
|
Abbott KL, Flannery PC, Gill KS, Boothe DM, Dhanasekaran M, Mani S, Pondugula SR. Adverse pharmacokinetic interactions between illicit substances and clinical drugs. Drug Metab Rev 2019; 52:44-65. [PMID: 31826670 DOI: 10.1080/03602532.2019.1697283] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adverse pharmacokinetic interactions between illicit substances and clinical drugs are of a significant health concern. Illicit substances are taken by healthy individuals as well as by patients with medical conditions such as mental illnesses, acquired immunodeficiency syndrome, diabetes mellitus and cancer. Many individuals that use illicit substances simultaneously take clinical drugs meant for targeted treatment. This concomitant usage can lead to life-threatening pharmacokinetic interactions between illicit substances and clinical drugs. Optimal levels and activity of drug-metabolizing enzymes and drug-transporters are crucial for metabolism and disposition of illicit substances as well as clinical drugs. However, both illicit substances and clinical drugs can induce changes in the expression and/or activity of drug-metabolizing enzymes and drug-transporters. Consequently, with concomitant usage, illicit substances can adversely influence the therapeutic outcome of coadministered clinical drugs. Likewise, clinical drugs can adversely affect the response of coadministered illicit substances. While the interactions between illicit substances and clinical drugs pose a tremendous health and financial burden, they lack a similar level of attention as drug-drug, food-drug, supplement-drug, herb-drug, disease-drug, or other substance-drug interactions such as alcohol-drug and tobacco-drug interactions. This review highlights the clinical pharmacokinetic interactions between clinical drugs and commonly used illicit substances such as cannabis, cocaine and 3, 4-Methylenedioxymethamphetamine (MDMA). Rigorous efforts are warranted to further understand the underlying mechanisms responsible for these clinical pharmacokinetic interactions. It is also critical to extend the awareness of the life-threatening adverse interactions to both health care professionals and patients.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Patrick C Flannery
- College of Osteopathic Medicine, Rocky Vista University, Parker, CO, USA
| | - Kristina S Gill
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Dawn M Boothe
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, AL, USA
| | - Sridhar Mani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.,Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL, USA
| |
Collapse
|
14
|
Feltrin C, Oliveira Simões CM. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem Biol Interact 2019; 314:108825. [PMID: 31553897 DOI: 10.1016/j.cbi.2019.108825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/28/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
The World Health Organization (WHO) and other worldwide health agencies have recently taken initiatives to encourage the use of traditional medicine and/or complementary/alternative medicine in order to promote well-being and public health. In this way, one of the WHO's concerns is the safe use of these therapies. Phytotherapy is a strategy consisting of the use of medicinal plants (MP) and/or herbal medicinal products (HMP) for medicinal purposes. The use of phytotherapy concomitantly with drugs may cause interactions compromising the expected pharmacological action or generating toxic effects. These interactions are complex processes that may occur with multiple medications targeting different metabolic pathways, and involving different compounds present in MP and HMP. Thus, the aim of this review was to summarize the main MP- and HMP-drug interactions that involve specific transporters (P-glycoprotein and BCRP) and CYP450 enzymes (CYP3A4 and CYP2D6), which play relevant roles in the mechanisms of interactions. Firstly, multiple databases were used to search studies describing in vitro or in vivo MP and HMP-drug interactions and, after that, a systematic note-taking and appraisal of the literature was conducted. It was observed that several MP and HMP, metabolic pathways and transcription factors are involved in the transporters and enzymes expression or in the modulation of their activity having the potential to provide such interactions. Thus, the knowledge of MP- and HMP-drug interaction mechanisms could contribute to prevent harmful interactions and can ensure the safe use of these products to help the establishment of the therapeutic planning in order to certify the best treatment strategy to be used.
Collapse
Affiliation(s)
- Clarissa Feltrin
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cláudia Maria Oliveira Simões
- Programa de Pós-Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
15
|
Yen CC, Liu YT, Lin YJ, Yang YC, Chen CC, Yao HT, Chen HW, Lii CK. Bioavailability of the diterpenoid 14-deoxy-11,12-didehydroandrographolide in rats and up-regulation of hepatic drug-metabolizing enzyme and drug transporter expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152841. [PMID: 31035043 DOI: 10.1016/j.phymed.2019.152841] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND 14-Deoxy-11,12-didehydroandrographolide (deAND) is the second most abundant diterpenoid in Andrographis paniculata (Burm. f.) Nees, a traditional medicine used in Asia. To date, the biological activity of deAND has not been clearly investigated. PURPOSE In this study, we intended to examine the modulatory effect of deAND on hepatic drug metabolism as well as its bioavailability. STUDY DESIGN deAND prepared from A. paniculata was orally given to Sprague-Dawley rats and changes in plasma deNAD were determined by HPLC-MS. Modulation of deAND on drug-metabolizing enzyme and drug transporter expression as well as the possible mechanism involved was examined in primary rat hepatocytes. RESULTS After a single oral administration of 50 mg/kg deAND to rats, the maximum plasma concentration (Cmax), time to reach the Cmax, area under the curve (AUC0-24h), mean retention time, and half-life (t1/2) of deAND were 2.65 ± 0.68 μg/ml, 0.29 ± 0.15 h, 6.30 ± 1.66 μg/ml•h, 5.55 ± 2.52 h, and 3.56 ± 1.05 h, respectively. The oral bioavailability was 3.42%. In primary rat hepatocytes treated with up to 10 μM deAND, a dose-dependent increase was noted in the expression of cytochrome P450 (CYP) 1A1/2, CYP2C6, and CYP3A1/2; UDP-glucuronosyltransferase (UGT) 1A1, NAD(P)H:quinone oxidoreductase (NQO1), π form of GSH S-transferase (GSTP), multidrug resistance-associated protein 2, p-glycoprotein, and organic anion transporter protein 2B1. Immunoblotting assay and EMSA revealed that deAND increases the nuclear translocation and DNA binding activity of aryl hydrocarbon receptor (AhR), pregnane X receptor (PXR), and nuclear factor erythroid-derived 2-related factor 2 (Nrf2). Knockdown of AhR and Nrf2 expression abolished deAND induction of CYP isozymes and UGT1A1, NQO1, and GSTP expression, respectively. CONCLUSION These results indicate that deAND quickly passes through enterocytes in rats and effectively up-regulates hepatic drug-metabolizing enzyme and drug transporter expression in an AhR-, PXR-, and Nrf2-dependent manner.
Collapse
Affiliation(s)
- Chih-Ching Yen
- Department of Respiratory Therapy, China Medical University, Taichung 404, Taiwan; Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yun-Ta Liu
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Ying-Jyan Lin
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan
| | - Chien-Chih Chen
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan 333, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung 404, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung 404, Taiwan.
| | - Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung 404, Taiwan; Department of Health and Nutrition Biotechnology, Asia University, Taichung 413, Taiwan.
| |
Collapse
|
16
|
Singh SK, Yende AS, Ponnusamy K, Tyagi RK. A comprehensive evaluation of anti-diabetic drugs on nuclear receptor PXR platform. Toxicol In Vitro 2019; 60:347-358. [PMID: 31233785 DOI: 10.1016/j.tiv.2019.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/09/2019] [Accepted: 06/20/2019] [Indexed: 10/26/2022]
Abstract
Pregnane & Xenobiotic Receptor (PXR), one of the members of nuclear receptor superfamily, acts as a 'master-regulator' of drug metabolism and disposition machinery (DMD). Activation of PXR enables detoxification and elimination of toxic xenobiotics/endobiotics, and defends our body against chemical insults. On the contrary, PXR activation also imposes a serious concern for drug-drug interactions (DDIs). Such DDIs could either decrease the efficacy or lead to accumulation of co-administered drugs at toxic level. Therefore, it is desirable that during drug development process the small drug molecules are screened on PXR-platform prior to their clinical trial and prevent late stage failures. In view of this, we have selected a group of anti-diabetic drug molecules to examine if the success and potential failure of small molecule modulators can be pre-assessed and judiciously correlated on PXR platform. For this purpose, we have examined the PXR activation potential of the selected anti-diabetic drugs. Subsequent to screening of these anti-diabetic drugs, we elaborated the study further with rosiglitazone and pioglitazone (thiazolidinediones, TZDs) which are oral anti-diabetic formulations and have been in controversy owing to their association with cardiotoxicity and bladder cancer respectively. Our study revealed that some of the selected anti-diabetic drugs possess PXR activation potential, implying that these can up-regulate the expression of CYP3A4, UGT1A1, MDR1 and thereby can be predicted to inflict undesirable consequences.
Collapse
Affiliation(s)
- Shashi Kala Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashutosh S Yende
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Rakesh K Tyagi
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
17
|
Zhang Y, Rants'o TA, Jung D, Lopez E, Abbott K, Pondugula SR, McLendon L, Qian J, Hansen RA, Calderón AI. Screening for CYP3A4 inhibition and induction coupled to parallel artificial membrane permeability assay (PAMPA) for prediction of botanical-drug interactions: The case of açaí and maca. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152915. [PMID: 30981185 DOI: 10.1016/j.phymed.2019.152915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/27/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The consumption of botanical dietary supplements (BDS) is a common practice among the US population. However, the potential for botanical-drug interactions exists, and their mechanisms have not been thoroughly studied. CYP3A4 is an important enzyme that contributes to the metabolism of about 60% of clinically used drugs. PURPOSE To investigate the potential for botanical-drug interactions of Lepidium meyenii Walpers (maca) root and Euterpe oleracea Mart. (açaí) berries, two commonly used BDS, when co-administered with CYP3A4-metabolized drugs. METHODS In an attempt to decrease the general discrepancy between in vivo and in vitro studies, the absorption profiles, particularly for passive diffusion, of plant extracts were investigated. Specifically, the parallel artificial membrane permeability assay (PAMPA) model was utilized to simulate intestinal filtration of passively diffused constituents of açaí and maca extracts. These were subsequently screened for in vitro liver CYP3A4 inhibition and induction. In the inhibition assay, midazolam was used as the probe substrate on genotyped human liver microsomes (CYP3A5 null), and the production of its 1'-substituted metabolite when co-cultured with extract treatments was monitored. In the induction assay, extract treatments were applied to human primary hepatocytes, and quantitative PCR analysis was performed to determine CYP3A4 mRNA expression. RESULTS Passively diffused constituents of the methanol açaí extract (IC50 of 28.03 µg/µl) demonstrated the highest inhibition potential, and, at 1.5 µg/µl, induced significant changes in CYP3A4 gene expression. The composition of this extract was further investigated using the chemometric tool Mass Profiler Professional (MPP) on liquid chromatography-mass spectroscopy (LC-MS) data. Subsequently, five compounds of interest characterized by high abundance or high permeability were extracted for further study. This included efforts in effective passive permeability determination and structural elucidation by tandem mass spectrometry (MS/MS). CONCLUSION The passively absorbable portion of a methanol açaí extract exhibited inhibition and induction effects on CYP3A4 suggesting the potential to produce botanical-drug interactions.
Collapse
Affiliation(s)
- Yilue Zhang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Thankhoe A Rants'o
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA; Pharmacology Division, Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Da Jung
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA; College of Science and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Elizabeth Lopez
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA; College of Science and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Kodye Abbott
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | | | - Lane McLendon
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA; College of Science and Mathematics, Auburn University, Auburn, AL 36849, USA
| | - Jingjing Qian
- Department of Health Outcomes Research and Policy, Auburn University, Auburn, AL 36849, USA
| | - Richard A Hansen
- Department of Health Outcomes Research and Policy, Auburn University, Auburn, AL 36849, USA
| | - Angela I Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
18
|
Staudinger JL. Clinical applications of small molecule inhibitors of Pregnane X receptor. Mol Cell Endocrinol 2019; 485:61-71. [PMID: 30726709 DOI: 10.1016/j.mce.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 01/19/2023]
Abstract
The canonical effect of Pregnane X Receptor (PXR, NR1I2) agonism includes enhanced hepatic uptake and a concomitant increase in the first-pass metabolism and efflux of drugs in mammalian liver and intestine. In patients undergoing combination therapy, PXR-mediated gene regulation represents the molecular basis of numerous food-drug, herb-drug, and drug-drug interactions. Moreover, PXR activation promotes chemotherapeutic resistance in certain malignancies. Additional research efforts suggest that sustained PXR activation exacerbates the development of fatty liver disease. Additional metabolic effects of PXR activation in liver are the inhibition of fatty acid oxidation and gluconeogenesis. The identification of non-toxic and selective PXR antagonists is therefore of current research interest. Inhibition of PXR should decrease adverse effects, improve therapeutic effectiveness, and advance clinical outcomes in patients with cancer, fatty liver, and diabetes. This review identifies small molecule PXR antagonists described to date, discusses possible molecular mechanisms of inhibition, and seeks to describe the likely biomedical consequences of the inhibition of this nuclear receptor superfamily member.
Collapse
Affiliation(s)
- Jeff L Staudinger
- Basic Sciences, Kansas City University of Medicine and Biosciences, Joplin, MO, USA.
| |
Collapse
|
19
|
Abbott KL, Chaudhury CS, Chandran A, Vishveshwara S, Dvorak Z, Jiskrova E, Poulikova K, Vyhlidalova B, Mani S, Pondugula SR. Belinostat, at Its Clinically Relevant Concentrations, Inhibits Rifampicin-Induced CYP3A4 and MDR1 Gene Expression. Mol Pharmacol 2019; 95:324-334. [PMID: 30622215 PMCID: PMC6362450 DOI: 10.1124/mol.118.114587] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/03/2019] [Indexed: 01/26/2023] Open
Abstract
Activation of human pregnane X receptor (hPXR) has been associated with induction of chemoresistance. It has been proposed that such chemoresistance via cytochrome P450/drug transporters can be reversed with the use of antagonists that specifically abrogate agonist-mediated hPXR activation. Unfortunately, proposed antagonists lack the specificity and appropriate pharmacological characteristics that allow these features to be active in the clinic. We propose that, ideally, an hPXR antagonist would be a cancer drug itself that is part of a "cancer drug cocktail" and effective as an hPXR antagonist at therapeutic concentrations. Belinostat (BEL), a histone deacetylase inhibitor approved for the treatment of relapsed/refractory peripheral T-cell lymphoma, and often used in combination with chemotherapy, is an attractive candidate based on its hPXR ligand-like features. We sought to determine whether these features of BEL might allow it to behave as an antagonist in combination chemotherapy regimens that include hPXR activators. BEL represses agonist-activated hPXR target gene expression at its therapeutic concentrations in human primary hepatocytes and LS174T human colon cancer cells. BEL repressed rifampicin-induced gene expression of CYP3A4 and multidrug resistance protein 1, as well as their respective protein activities. BEL decreased rifampicin-induced resistance to SN-38, the active metabolite of irinotecan, in LS174T cells. This finding indicates that BEL could suppress hPXR agonist-induced chemoresistance. BEL attenuated the agonist-induced steroid receptor coactivator-1 interaction with hPXR, and, together with molecular docking studies, the study suggests that BEL directly interacts with multiple sites on hPXR. Taken together, our results suggest that BEL, at its clinically relevant therapeutic concentration, can antagonize hPXR agonist-induced gene expression and chemoresistance.
Collapse
Affiliation(s)
- Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Chloe S Chaudhury
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Aneesh Chandran
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Saraswathi Vishveshwara
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Zdenek Dvorak
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Eva Jiskrova
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Karolina Poulikova
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Barbora Vyhlidalova
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Sridhar Mani
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology (K.L.A., C.S.C., S.R.P.) and Auburn University Research Initiative in Cancer (K.L.A., C.S.C., S.R.P.), Auburn University, Auburn, Alabama; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India (A.C., S.V.); Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic (Z.D., E.J., K.P., B.V.); and Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, New York (S.M.)
| |
Collapse
|
20
|
Chai SC, Lin W, Li Y, Chen T. Drug discovery technologies to identify and characterize modulators of the pregnane X receptor and the constitutive androstane receptor. Drug Discov Today 2019; 24:906-915. [PMID: 30731240 PMCID: PMC6421094 DOI: 10.1016/j.drudis.2019.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022]
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are ligand-activated nuclear receptors (NRs) that are notorious for their role in drug metabolism, causing unintended drug-drug interactions and decreasing drug efficacy. They control the xenobiotic detoxification system by regulating the expression of an array of drug-metabolizing enzymes and transporters that excrete exogenous chemicals and maintain homeostasis of endogenous metabolites. Much effort has been invested in recognizing potential drugs for clinical use that can activate PXR and CAR to enhance the expression of their target genes, and in identifying PXR and CAR inhibitors that can be used as co-therapeutics to prevent adverse effects. Here, we present current technologies and assays used in the quest to characterize PXR and CAR modulators, which range from biochemical to cell-based and animal models.
Collapse
Affiliation(s)
- Sergio C Chai
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yongtao Li
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology & Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
21
|
Bartonkova I, Dvorak Z. Essential oils of culinary herbs and spices activate PXR and induce CYP3A4 in human intestinal and hepatic in vitro models. Toxicol Lett 2018; 296:1-9. [DOI: 10.1016/j.toxlet.2018.07.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/29/2018] [Accepted: 07/19/2018] [Indexed: 12/26/2022]
|
22
|
Alqahtani S, Bukhari I, Albassam A, Alenazi M. An update on the potential role of intestinal first-pass metabolism for the prediction of drug–drug interactions: the role of PBPK modeling. Expert Opin Drug Metab Toxicol 2018; 14:625-634. [DOI: 10.1080/17425255.2018.1482277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Saeed Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ishfaq Bukhari
- Department of Pharmacology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maha Alenazi
- Pharmacy Department, Prince Sultan Cardiac Center, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Huang CS, Chen HW, Lin TY, Lin AH, Lii CK. Shikonin upregulates the expression of drug-metabolizing enzymes and drug transporters in primary rat hepatocytes. JOURNAL OF ETHNOPHARMACOLOGY 2018; 216:18-25. [PMID: 29414119 DOI: 10.1016/j.jep.2018.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shikonin, a naphthoquinone pigment abundant in the root of the Chinese herb Lithospermum erythrorhizon, has been widely used to treat inflammatory diseases for thousands of years. Whether shikonin changes drug metabolism remains unclear. AIM OF THE STUDY We investigated whether shikonin modulates the expression of hepatic drug-metabolizing enzymes and transporters as well as the possible mechanisms of this action. MATERIALS AND METHODS Primary hepatocytes isolated from Sprague-Dawley rats were treated with 0-2 μM shikonin and the protein and mRNA levels of drug-metabolizing enzymes and transporters as well as the activation of aryl hydrocarbon receptor (AhR) and NF-E2-related factor 2 (Nrf2) were determined. RESULTS Shikonin dose-dependently increased the protein and RNA expression of phase I enzymes, i.e., cytochrome P450 (CYP) 1A1/2, CYP3A2, CYP2D1, and CYP2C6; phase II enzymes, i.e., glutathione S-transferase (GST), NADP(H) quinone oxidoreductase 1 (NQO1), and UDP glucuronosyltransferase 1A1; and phase III drug transporters, i.e., P-glycoprotein, multidrug resistance-associated protein 2/3, organic anion transporting polypeptide (OATP) 1B1, and OATP2B1. Immunoblot analysis and EMSA revealed that shikonin increased AhR and Nrf2 nuclear contents and DNA binding activity. AhR and Nrf2 knockdown by siRNA attenuated the ability of shikonin to induce drug-metabolizing enzyme expression. In addition, shikonin increased p38, JNK, and ERK1/2 phosphorylation, and inhibitors of the respective kinases inhibited shikonin-induced Nrf2 nuclear translocation. CONCLUSIONS Shikonin effectively upregulates the transcription of CYP isozymes, phase II detoxification enzymes, and phase III membrane transporters and this function is at least partially through activation of AhR and Nrf2. Moreover, Nrf2 activation is dependent on mitogen-activated protein kinases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Basic Helix-Loop-Helix Transcription Factors/agonists
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biotransformation
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/pharmacology
- Extracellular Signal-Regulated MAP Kinases
- Gene Expression Regulation, Enzymologic/drug effects
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- JNK Mitogen-Activated Protein Kinases
- Male
- Membrane Transport Proteins/drug effects
- Membrane Transport Proteins/genetics
- Membrane Transport Proteins/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Naphthoquinones/pharmacology
- Phosphorylation
- Primary Cell Culture
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Receptors, Aryl Hydrocarbon/agonists
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Transcriptional Activation/drug effects
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Chin-Shiu Huang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Tzu-Yu Lin
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Ai-Hsuan Lin
- Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan
| | - Chong-Kuei Lii
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan; Department of Nutrition, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404, Taiwan.
| |
Collapse
|
24
|
Li T, Kong ANT, Ma Z, Liu H, Liu P, Xiao Y, Jiang X, Wang L. Protein arginine methyltransferase 1 may be involved in pregnane x receptor-activated overexpression of multidrug resistance 1 gene during acquired multidrug resistant. Oncotarget 2018; 7:20236-48. [PMID: 26934120 PMCID: PMC4991450 DOI: 10.18632/oncotarget.7752] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 02/02/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Pregnane x receptor (PXR) - activated overexpression of the multidrug resistance 1 (MDR1) gene is an important way for tumor cells to acquire drug resistance. However, the detailed mechanism still remains unclear. In the present study, we aimed to investigate whether protein arginine methyl transferase 1(PRMT1) is involved in PXR - activated overexpression of MDR1 during acquired multidrug resistant. EXPERIMENTAL DESIGN Arginine methyltransferase inhibitor 1 (AMI-1) was used to pharmacologically block PRMT1 in resistant breast cancer cells (MCF7/adr). The mRNA and protein levels of MDR1 were detected by real-time PCR and western blotting analysis. Immunofluorescence microscopy and co-immunoprecipitation were used to investigate the physical interaction between PXR and PRMT1. Then, 136 candidate compounds were screened for PRMT1 inhibitors. Lastly, luciferase reporter gene and nude mice bearing resistant breast cancer xenografts were adopted to investigate the anti-tumor effect of PRMT1 inhibitors when combined with adriamycin. RESULTS AMI-1 significantly suppressed the expression of MDR1 in MCF7/adr cells and increased cells sensitivity of MCF7/adr to adriamycin. Physical interaction between PRMT1 and PXR exists in MCF7/adr cells, which could be disrupted by AMI-1. Those results suggest that PRMT1 may be involved in PXR-activated overexpression of MDR1 in resistant breast cancer cells, and AMI-1 may suppress MDR1 by disrupting the interaction between PRMT1 and PXR. Then, five compounds including rutin, isoquercitrin, salvianolic acid A, naproxen, and felodipline were identified to be PRMT1 inhibitors. Finally, those PRMT1 inhibitors were observed to significantly decrease MDR1 promoter activity in vitro and enhance the antitumor effect of adriamycin in nude mice that bearing resistant breast cancer xenografts. CONCLUSIONS PRMT1 may be an important co-activator of PXR in activating MDR1 gene during acquired resistance, and PRMT1 inhibitor combined with chemotherapy drugs may be a new strategy for overcoming tumor MDR.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China.,People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100, China
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics & Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Zhiqiang Ma
- People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100, China
| | - Haiyan Liu
- People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100, China
| | - Pinghua Liu
- People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan 666100, China
| | - Yu Xiao
- State Drug Clinical Trial Agency, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Science, Chengdu, Sichuan 610065, China
| | - Xuehua Jiang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ling Wang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
25
|
Jackson JS, Kennedy CJ. Regulation of hepatic abcb4 and cyp3a65 gene expression and multidrug/multixenobiotic resistance (MDR/MXR) functional activity in the model teleost, Danio rerio (zebrafish). Comp Biochem Physiol C Toxicol Pharmacol 2017. [PMID: 28624525 DOI: 10.1016/j.cbpc.2017.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Multidrug/multixenobiotic resistance (MDR/MXR) confers resistance to a diverse range of potentially toxic pharmaceuticals and environmental contaminants through a cellular response that involves the coordinated induction and activity of the ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) and the Phase I metabolizing enzyme cytochrome P450 3A (CYP3A). In mammals, ligand-mediated pregnane X receptor (PXR) transcriptional activity regulates the induction of P-gp and CYP3A; however, this mechanism has not been well-characterized in piscine species. Zebrafish (Danio rerio) treated with the Pxr agonist pregnenolone 16α-carbonitrile (PCN) showed decreased P-gp (zebrafish Abcb4) and CYP3A (zebrafish Cyp3a65) mRNA levels after 48h exposure; however, treatment with PCN also resulted in increased hepatic MDR/MXR functional activity (i.e. increased Rhodamine 123 efflux) in vivo. Consistent with mammalian-like MDR/MXR regulated by PXR, the PCN-mediated modulation of hepatic Abcb4 and Cyp3a65 mRNA levels and MDR/MXR functional activity was attenuated by co-treatment with PCN and the mammalian PXR antagonist, ketoconazole (KTC). These results provide evidence that zebrafish Pxr may play a role in MDR/MXR through transcriptional regulation of abcb4 and cyp3a65 gene expression.
Collapse
Affiliation(s)
- Jeremy S Jackson
- Department of Biological Sciences, Simon Fraser University, 8888 University Way, Burnaby, BC V5A 1S6, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Way, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
26
|
Stepankova M, Pastorkova B, Bachleda P, Dvorak Z. Itraconazole cis-diastereoisomers activate aryl hydrocarbon receptor AhR and pregnane X receptor PXR and induce CYP1A1 in human cell lines and human hepatocytes. Toxicology 2017; 383:40-49. [PMID: 28390928 DOI: 10.1016/j.tox.2017.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/24/2017] [Accepted: 04/03/2017] [Indexed: 12/27/2022]
Abstract
Triazole antimycotic itraconazole contains in its structure three chiral centres; therefore, it forms eight stereoisomers. Commercial preparations of itraconazole are a mixture of four cis-diastereoisomers. There is much evidence that efficacy, adverse effects, and toxicity of chiral drugs may be stereospecific. Therefore, we have prepared 4 pure cis-diastereoisomers of itraconazole and investigated their effects on transcriptional activities of xenoreceptors aryl hydrocarbon receptor AhR and pregnane X receptor PXR. Gene reporter assays showed that itraconazole dose-dependently activated both AhR and PXR, and the activation of AhR but not of PXR was enantiospecific. Itraconazole diastereoisomers transformed AhR and PXR into their DNA-binding forms, as demonstrated by electromobility shift assays. Cytochrome P450 CYP1A1 mRNA and protein were induced by itraconazole diastereoisomers in human hepatoma cells HepG2, human skin cells HaCaT, and in primary human hepatocytes. The expression of CYP3A4 in human intestinal LS180 cells was not influenced by itraconazole, but we observed downregulation of CYP3A4 in human hepatocytes. Collectively, we show that itraconazole is a dual activator of AhR and PXR, with differential effects on the target genes for xenoreceptors. The enantiospecific pattern was observed only in gene reporter assays for AhR. The data presented here might be of toxicological and clinical importance.
Collapse
Affiliation(s)
- Martina Stepankova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Barbora Pastorkova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Petr Bachleda
- 2nd Department of Surgery, University Hospital Olomouc, I.P. Pavlova 6, 775 20 Olomouc, Czech Republic
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
27
|
Shan E, Zhu Z, He S, Chu D, Ge D, Zhan Y, Liu W, Yang J, Xiong J. Involvement of pregnane X receptor in the suppression of carboxylesterases by metformin in vivo and in vitro, mediated by the activation of AMPK and JNK signaling pathway. Eur J Pharm Sci 2017; 102:14-23. [PMID: 28238946 DOI: 10.1016/j.ejps.2017.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2D) is a complex metabolic disorder requiring polypharmacy treatment in clinic, with metformin being widely used antihyperglycemic drug. However, the mechanisms of metformin as a perpetrator inducing potential drug-drug interactions and adverse drug reactions are scarcely known to date. Carboxylesterases (CESs) are major hydrolytic enzymes highly expressed in the liver, including mouse carboxylesterase 1d (Ces1d) and Ces1e. In the present study, experiments are designed to investigate the effects and mechanisms of metformin on Ces1d and Ces1e in vivo and in vitro. In results, metformin suppresses the expression and activity of Ces1d and Ces1e in a dose- and time-dependent manner. The decreased expression of nuclear receptor PXR and its target gene P-gp indicates the involvements of PXR in the suppressed expression of carboxylesterases by metformin. Furthermore, metformin significantly suppresses the phosphorylation of AMPK and JNK, and the suppression of carboxylesterases induced by metformin is repeatedly abolished by AMPK inhibitor Compound C and JNK inhibitor SP600125. It implies that the activation of AMPK and JNK pathways mediates the suppression of carboxylesterases by metformin. The findings deserve further elucidation including clinical trials and have a potential to make contribution for the rational medication in the treatment of T2D patients.
Collapse
Affiliation(s)
- Enfang Shan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhu Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongbao Chu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dinghao Ge
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yunran Zhan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
28
|
Drug Transporter Expression and Activity in Human Hepatoma HuH-7 Cells. Pharmaceutics 2016; 9:pharmaceutics9010003. [PMID: 28036031 PMCID: PMC5374369 DOI: 10.3390/pharmaceutics9010003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022] Open
Abstract
Human hepatoma cells may represent a valuable alternative to the use of human hepatocytes for studying hepatic drug transporters, which is now a regulatory issue during drug development. In the present work, we have characterized hepatic drug transporter expression, activity and regulation in human hepatoma HuH-7 cells, in order to determine the potential relevance of these cells for drug transport assays. HuH-7 cells displayed notable multidrug resistance-associated protein (MRP) activity, presumed to reflect expression of various hepatic MRPs, including MRP2. By contrast, they failed to display functional activities of the uptake transporters sodium taurocholate co-transporting polypeptide (NTCP), organic anion-transporting polypeptides (OATPs) and organic cation transporter 1 (OCT1), and of the canalicular transporters P-glycoprotein and breast cancer resistance protein (BCRP). Concomitantly, mRNA expressions of various sinusoidal and canalicular hepatic drug transporters were not detected (NTCP, OATP1B1, organic anion transporter 2 (OAT2), OCT1 and bile salt export pump) or were found to be lower (OATP1B3, OATP2B1, multidrug and toxin extrusion protein 1, BCRP and MRP3) in hepatoma HuH-7 cells than those found in human hepatocytes, whereas other transporters such as OAT7, MRP4 and MRP5 were up-regulated. HuH-7 cells additionally exhibited farnesoid X receptor (FXR)- and nuclear factor erythroid 2-related factor 2 (Nrf2)-related up-regulation of some transporters. Such data indicate that HuH-7 cells, although expressing rather poorly some main hepatic drug transporters, may be useful for investigating interactions of drugs with MRPs, notably MRP2, and for studying FXR- or Nrf2-mediated gene regulation.
Collapse
|
29
|
PXR- and CAR-mediated herbal effect on human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1121-1129. [DOI: 10.1016/j.bbagrm.2016.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/17/2016] [Accepted: 02/18/2016] [Indexed: 12/17/2022]
|
30
|
Xie F, Ding X, Zhang QY. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm Sin B 2016; 6:374-383. [PMID: 27709006 PMCID: PMC5045550 DOI: 10.1016/j.apsb.2016.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Oral administration is the most commonly used route for drug treatment. Intestinal cytochrome P450 (CYP)-mediated metabolism can eliminate a large proportion of some orally administered drugs before they reach systemic circulation, while leaving the passage of other drugs unimpeded. A better understanding of the ability of intestinal P450 enzymes to metabolize various clinical drugs in both humans and preclinical animal species, including the identification of the CYP enzymes expressed, their regulation, and the relative importance of intestinal metabolism compared to hepatic metabolism, is important for improving bioavailability of current drugs and new drugs in development. Here, we briefly review the expression of drug-metabolizing P450 enzymes in the small intestine of humans and several preclinical animal species, and provide an update of the various factors or events that regulate intestinal P450 expression, including a cross talk between the liver and the intestine. We further compare various clinical and preclinical approaches for assessing the impact of intestinal drug metabolism on bioavailability, and discuss the utility of the intestinal epithelium–specific NADPH-cytochrome P450 reductase-null (IECN) mouse as a useful model for studying in vivo roles of intestinal P450 in the disposition of orally administered drugs.
Collapse
|
31
|
Amacher DE. The regulation of human hepatic drug transporter expression by activation of xenobiotic-sensing nuclear receptors. Expert Opin Drug Metab Toxicol 2016; 12:1463-1477. [PMID: 27548410 DOI: 10.1080/17425255.2016.1223626] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION If a drug is found to be an inducer of hepatic drug metabolizing enzymes via activation of nuclear receptors such as pregnane X receptor (PXR) or constitutive androstane receptor (CAR), it is likely that drug transporters regulated through these same receptors will be induced as well. This review highlights what is currently known about the molecular mechanisms that regulate transporter expression and where the research is directed. Areas covered: This review is focused on publications that describe the role of activated hepatic nuclear receptors in the subsequent regulation of drug uptake and/or efflux transporters following exposure to xenobiotics. Expert opinion: Many of the published studies on the role of nuclear receptors in the regulation of drug transporters involve non-human test animals. But due to species response differences, these associations are not always applicable to humans. For this reason, some relevant human in vitro models have been developed, such as primary or cryopreserved human hepatocytes, human liver slices, or HepG2 or HuH7 cell lines transiently or stably transfected with PXR expression and reporter constructs as well as in vivo models such as PXR-humanized mice. These human-relevant test systems will continue to be developed and applied for the testing of investigational drugs.
Collapse
|
32
|
Pondugula SR, Pavek P, Mani S. Pregnane X Receptor and Cancer: Context-Specificity is Key. NUCLEAR RECEPTOR RESEARCH 2016; 3. [PMID: 27617265 DOI: 10.11131/2016/101198] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR) is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Petr Pavek
- Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, Hradec Králové 500 05, Czech Republic, European Union
| | - Sridhar Mani
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
33
|
Pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinolines: Novel compounds that reverse ABCG2-mediated resistance in cancer cells. Cancer Lett 2016; 376:118-26. [DOI: 10.1016/j.canlet.2016.03.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/11/2016] [Accepted: 03/14/2016] [Indexed: 11/21/2022]
|
34
|
Thomson CA, Ho E, Strom MB. Chemopreventive properties of 3,3'-diindolylmethane in breast cancer: evidence from experimental and human studies. Nutr Rev 2016; 74:432-43. [PMID: 27261275 DOI: 10.1093/nutrit/nuw010] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diet is a modifiable factor associated with the risk of several cancers, with convincing evidence showing a link between diet and breast cancer. The role of bioactive compounds of food origin, including those found in cruciferous vegetables, is an active area of research in cancer chemoprevention. This review focuses on 3,3'-diindolylmethane (DIM), the major bioactive indole in crucifers. Research of the cancer-preventive activity of DIM has yielded basic mechanistic, animal, and human trial data. Further, this body of evidence is largely supported by observational studies. Bioactive DIM has demonstrated chemopreventive activity in all stages of breast cancer carcinogenesis. This review describes current evidence related to the metabolism and mechanisms of DIM involved in the prevention of breast cancer. Importantly, this review also focuses on current evidence from human observational and intervention trials that have contributed to a greater understanding of exposure estimates that will inform recommendations for DIM intake.
Collapse
Affiliation(s)
- Cynthia A Thomson
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA.
| | - Emily Ho
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Meghan B Strom
- Cynthia A. Thomson is with the Mel & Enid Zuckerman College of Public Health, the University of Arizona Cancer Center, and the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA. Emily Ho is with the Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, and the Linus Pauling Institute, Oregon State University, Corvallis, Oregon, USA. Meghan B. Strom is with the Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
35
|
Litwa E, Rzemieniec J, Wnuk A, Lason W, Krzeptowski W, Kajta M. RXRα, PXR and CAR xenobiotic receptors mediate the apoptotic and neurotoxic actions of nonylphenol in mouse hippocampal cells. J Steroid Biochem Mol Biol 2016; 156:43-52. [PMID: 26643981 DOI: 10.1016/j.jsbmb.2015.11.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/21/2015] [Accepted: 11/26/2015] [Indexed: 12/26/2022]
Abstract
In the present study, we investigated the role of the retinoid X receptor (RXR), the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), in the apoptotic and toxic effects of nonylphenol in mouse primary neuronal cell cultures. Our study demonstrated that nonylphenol activated caspase-3 and induced lactate dehydrogenase (LDH) release in hippocampal cells, which was accompanied by an increase in the mRNA expression and protein levels of RXRα, PXR and CAR. Nonylphenol stimulated Rxra, Pxr, and Car mRNA expression. These effects were followed by increase in the protein levels of particular receptors. Immunofluorescence labeling revealed the cellular distribution of RXRα, PXR and CAR in hippocampal neurons in response to nonylphenol, shortening of neurites and cytoplasmic shrinking, as indicated by MAP2 staining. It also showed NP-induced translocation of receptor-specific immunofluorescence from cytoplasm to the nucleus. The use of specific siRNAs demonstrated that Rxra-, Pxr-, and Car-siRNA-transfected cells were less vulnerable to nonylphenol-induced activation of caspase-3 and LDH, thus confirming the key involvement of RXRα/PXR/CAR signaling pathways in the apoptotic and neurotoxic actions of nonylphenol. These new data give prospects for the targeting xenobiotic nuclear receptors to protect the developing nervous system against endocrine disrupting chemicals.
Collapse
Affiliation(s)
- E Litwa
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - J Rzemieniec
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - A Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Lason
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - W Krzeptowski
- Department of Cell Biology and Imaging, Confocal Microscopy Laboratory, Institute of Zoology, Jagiellonian University, 9 Gronostajowa Street, 30-387 Krakow, Poland
| | - M Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
36
|
Fallopia japonica, a Natural Modulator, Can Overcome Multidrug Resistance in Cancer Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:868424. [PMID: 26346937 PMCID: PMC4545274 DOI: 10.1155/2015/868424] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/26/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023]
Abstract
Resistance of cancer cells to chemotherapy is controlled by the decrease of intracellular drug accumulation, increase of detoxification, and diminished propensity of cancer cells to undergo apoptosis. ATP-binding cassette (ABC) membrane transporters with intracellular metabolic enzymes contribute to the complex and unresolved phenomenon of multidrug resistance (MDR). Natural products as alternative medicine have great potential to discover new MDR inhibitors with diverse modes of action. In this study, we characterized several extracts of traditional Chinese medicine (TCM) plants (N = 16) for their interaction with ABC transporters, cytochrome P3A4 (CYP3A4), and glutathione-S-transferase (GST) activities and their cytotoxic effect on different cancer cell lines. Fallopia japonica (FJ) (Polygonaceae) shows potent inhibitory effect on CYP3A4 P-glycoprotein activity about 1.8-fold when compared to verapamil as positive control. FJ shows significant inhibitory effect (39.81%) compared with the known inhibitor ketoconazole and 100 μg/mL inhibited GST activity to 14 μmol/min/mL. FJ shows moderate cytotoxicity in human Caco-2, HepG-2, and HeLa cell lines; IC50 values were 630.98, 198.80, and 317.37 µg/mL, respectively. LC-ESI-MS were used to identify and quantify the most abundant compounds, emodin, polydatin, and resveratrol, in the most active extract of FJ. Here, we present the prospect of using Fallopia japonica as natural products to modulate the function of ABC drug transporters. We are conducting future study to evaluate the ability of the major active secondary metabolites of Fallopia japonica to modulate MDR and their impact in case of failure of chemotherapy.
Collapse
|
37
|
Fadlalla K, Elgendy R, Gilbreath E, Pondugula SR, Yehualaeshet T, Mansour M, Serbessa T, Manne U, Samuel T. 3-(2-Bromoethyl)-indole inhibits the growth of cancer cells and NF-κB activation. Oncol Rep 2015; 34:495-503. [PMID: 26063116 PMCID: PMC4484612 DOI: 10.3892/or.2015.3970] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/20/2015] [Indexed: 12/20/2022] Open
Abstract
Indole-3-carbinol (I3C) and diindolylmethane (DIM), found in cruciferous vegetables, have chemopreventive and anticancer properties. In the present study, 14 substituted indoles were tested for activity against SW480 colon cancer cells. Among these, 3-(2-bromoethyl)-indole, named BEI-9, showed the greatest inhibition. The effects of BEI-9 on cancer cells were analyzed by MTS and CellTiter-Glo assays for effects on cell viability, by microscopy for phenotypic changes, by scratch wound assays for effects on migration, by flow cytometry for changes in the cell cycle, by immunoblotting for cyclin D and A to assess effects on cell cycle regulation, and by NF-κB reporter assays for effects on basal and drug-induced NF-κB activation. BEI-9 inhibited the growth of SW480 and HCT116 colon cancer cells at concentrations of 12.5 and 5 µM, respectively. BEI-9 also inhibited cell motility as determined with scratch wound assays, and reduced the levels of cyclin D1 and A. Furthermore, in reporter cells, BEI-9 (0.8 µM) inhibited basal and induced NF-κB activation and increased cell death when combined with the cytokine TNFα or the drug camptothecin (CPT), both of which activate NF-κB. Preliminary experiments to identify a safe dose range for immunodeficient mice showed that BEI-9, administered intraperitoneally, was tolerable at doses below 10 mg/kg. Thus, BEI-9 and other indole derivatives may be useful in chemoprevention or as chemosensitizers. Since NF-κB activation is implicated in carcinogenesis and in reducing sensitivity to anticancer drugs, BEI-9 should be investigated in combination with drugs such as CPT, which activate NF-κB.
Collapse
Affiliation(s)
- Khalda Fadlalla
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL, USA
| | - Ramy Elgendy
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ebony Gilbreath
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Teshome Yehualaeshet
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL, USA
| | - Mahmoud Mansour
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Tesfaye Serbessa
- Department of Natural Sciences, Elizabeth City State University, Elizabeth City, NC, USA
| | - Upender Manne
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, AL, USA
| |
Collapse
|
38
|
Pondugula SR, Ferniany G, Ashraf F, Abbott KL, Smith BF, Coleman ES, Mansour M, Bird RC, Smith AN, Karthikeyan C, Trivedi P, Tiwari AK. Stearidonic acid, a plant-based dietary fatty acid, enhances the chemosensitivity of canine lymphoid tumor cells. Biochem Biophys Res Commun 2015; 460:1002-7. [PMID: 25847597 DOI: 10.1016/j.bbrc.2015.03.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 01/26/2023]
Abstract
Lymphoma is the most common hematopoietic tumor in dogs and humans, with similar pathogenesis and therapeutic responses. Anticancer drugs like vincristine (VCR) and doxorubicin (DOX) are often used in treating lymphoma. However, the cure rate is generally poor due to chemoresistance. Here, we sought to determine whether stearidonic acid (SDA), a plant-based dietary fatty acid, sensitizes chemoresistant canine lymphoid-tumor cells. GL-1 B-cell lymphoid-tumor cells were found to be highly sensitive to the antitumor-activity of VCR and DOX, while OSW T-cell and 17-71 B-cell lymphoid-tumor cells were moderately and fully resistant, respectively. SDA, at its non-toxic concentrations, significantly promoted the antitumor action of VCR and DOX in both OSW and 17-71 cells. SDA-mediated chemosensitization was associated with SDA inhibition of P-glycoprotein (P-gp) function. This was confirmed in HEK293 cells stably expressing P-gp as well as by increased binding-affinity of SDA to P-gp in P-gp docking analysis. SDA at its chemosensitizing concentrations did not affect the viability of healthy dog peripheral blood mononuclear cells, suggesting that SDA is non-toxic to normal dog peripheral blood leucocytes at its chemosensitizing concentrations. Our study identifies a novel dietary fatty acid that may be used as a dietary supplement in combination with chemotherapy to promote the antitumor efficacy of the chemotherapy drugs in dogs and possibly in humans with chemoresistant lymphoma.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA.
| | - Glennie Ferniany
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Farah Ashraf
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Bruce F Smith
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA; Scott-Ritchey Research Center, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Elaine S Coleman
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA
| | - Mahmoud Mansour
- Department of Anatomy, Physiology and Pharmacology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - R Curtis Bird
- Department of Pathobiology, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Annette N Smith
- Department of Clinical Sciences, Auburn University, Auburn, AL 36849, USA; Auburn University Research Initiative in Cancer, Auburn University, Auburn, AL 36849, USA
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, MP 462033, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, MP 462033, India
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
39
|
Pondugula SR, Flannery PC, Apte U, Babu JR, Geetha T, Rege SD, Chen T, Abbott KL. Mg2+/Mn2+-dependent phosphatase 1A is involved in regulating pregnane X receptor-mediated cytochrome p450 3A4 gene expression. Drug Metab Dispos 2015; 43:385-91. [PMID: 25561723 PMCID: PMC11024896 DOI: 10.1124/dmd.114.062083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/05/2015] [Indexed: 04/20/2024] Open
Abstract
Variations in the expression of human pregnane X receptor (hPXR)-mediated cytochrome p450 3A4 (CYP3A4) in liver can alter therapeutic response to a variety of drugs and may lead to potential adverse drug interactions. We sought to determine whether Mg(2+)/Mn(2+)-dependent phosphatase 1A (PPM1A) regulates hPXR-mediated CYP3A4 expression. PPM1A was found to be coimmunoprecipitated with hPXR. Genetic or pharmacologic activation of PPM1A led to a significant increase in hPXR transactivation of CYP3A4 promoter activity. In contrast, knockdown of endogenous PPM1A not only attenuated hPXR transactivation, but also increased proliferation of HepG2 human liver carcinoma cells, suggesting that PPM1A expression levels regulate hPXR, and that PPM1A expression is regulated in a proliferation-dependent manner. Indeed, PPM1A expression and hPXR transactivation were found to be significantly reduced in subconfluent HepG2 cells compared with confluent HepG2 cells, suggesting that both PPM1A expression and hPXR-mediated CYP3A4 expression may be downregulated in proliferating livers. Elevated PPM1A levels led to attenuation of hPXR inhibition by tumor necrosis factor-α and cyclin-dependent kinase-2, which are known to be upregulated and essential during liver regeneration. In mouse regenerating livers, similar to subconfluent HepG2 cells, expression of both PPM1A and the mouse PXR target gene cyp3a11 was found to be downregulated. Our results show that PPM1A can positively regulate PXR activity by counteracting PXR inhibitory signaling pathways that play a major role in liver regeneration. These results implicate a novel role for PPM1A in regulating hPXR-mediated CYP3A4 expression in hepatocytes and may explain a mechanism for CYP3A repression in regenerating livers.
Collapse
Affiliation(s)
- Satyanarayana R Pondugula
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Patrick C Flannery
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Udayan Apte
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Jeganathan Ramesh Babu
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Thangiah Geetha
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Shraddha D Rege
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Taosheng Chen
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| | - Kodye L Abbott
- Department of Anatomy, Physiology, and Pharmacology (S.R.P., P.C.F., K.L.A.) and Department of Nutrition, Dietetics, and Hospitality Management (J.R.B., S.D.R.), Auburn University, Auburn, Alabama; Department of Chemistry (T.G.), Auburn University at Montgomery, Montgomery, Alabama; Department of Chemical Biology and Therapeutics (T.C.), St. Jude Children's Research Hospital, Memphis, Tennessee; and Department of Pharmacology, Toxicology, and Therapeutics (U.A.), University of Kansas, Kansas City, Kansas
| |
Collapse
|