1
|
Gu X, Zou Y, Huang Z, Wei M, Ji L. Biochemical biomarkers for the toxicity induced by Traditional Chinese Medicine: A review update. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119315. [PMID: 39755183 DOI: 10.1016/j.jep.2024.119315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) is widely used in China for disease treatment and has become a valuable resource for drug development due to its high efficacy and low risk of side-effects. However, growing toxicity reports has garnered significant global attention. A major challenge in addressing TCM-induced toxicity is lack of specific and sensitive biomarkers for diagnosing and predicting its toxicity. Identifying toxicological biomarkers reflecting TCM-induced toxicity is crucial for timely detection and intervention, and provides significant clues for elucidating the underlying toxic mechanism and key target. AIM OF THE STUDY This article aims to summarize and classify some potential toxicological biomarkers for side-effects induced by TCM and its contained phytochemical ingredients. METHODS The keywords "biomarkers", "traditional Chinese medicine", "Chinese herb", "phytochemical ingredient", "natural product", "toxicity", "hepatotoxicity", "nephrotoxicity", "cardiotoxicity" were used to collect relevant information from literature databases (including PubMed, Web of Science) up to October 2024. RESULTS Research has indicated that more sensitive and specific biomarkers are needed for reflecting TCM's side-effects. PA-protein adducts and AA-DNA adducts could be served as diagnostic biomarkers for hepatotoxicity and nephrotoxicity induced by TCM containing PA and AA, respectively. Multiple miRNAs like miRNA-122-3p, miRNA-5099, and miRNA-21-3p, as well as some endogenous metabolites such as hypoxanthine, choline, and L-valine could be potential biomarkers associated with TCM-induced hepatotoxicity, nephrotoxicity, and cardiotoxicity. CONCLUSION In this review, different research demonstrates that DNA/protein-adducts, noncoding RNAs, endogenous metabolites and so on show the potential to be new early-warning biomarkers for TCM-induced toxicity with high specificity and sensitivity.
Collapse
Affiliation(s)
- Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Zou
- School of Basic Medical Science of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Academy of International Standardization for Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Feng K, Li X, Bai Y, Zhang D, Tian L. Mechanisms of cancer cell death induction by triptolide: A comprehensive overview. Heliyon 2024; 10:e24335. [PMID: 38293343 PMCID: PMC10826740 DOI: 10.1016/j.heliyon.2024.e24335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
The need for naturally occurring constituents is driven by the rise in the cancer prevalence and the unpleasant side effects associated with chemotherapeutics. Triptolide, the primary active component of "Tripterygium Wilfordii", has exploited for biological mechanisms and therapeutic potential against various tumors. Based on the recent pre-clinical investigations, triptolide is linked to the induction of death of cancerous cells by triggering cellular apoptosis via inhibiting heat shock protein expression (HSP70), and cyclin dependent kinase (CDKs) by up regulating expression of P21. MKP1, histone methyl transferases and RNA polymerases have all recently identified as potential targets of triptolide in cells. Autophagy, AKT signaling pathway and various pathways involving targeted proteins such as A-disintegrin & metalloprotease-10 (ADAM10), Polycystin-2 (PC-2), dCTP pyro-phosphatase 1 (DCTP1), peroxiredoxin-I (Prx-I), TAK1 binding protein (TAB1), kinase subunit (DNA-PKcs) and the xeroderma-pigmentosum B (XPB or ERCC3) have been exploited. Besides that, triptolide is responsible for enhancing the effectiveness of various chemotherapeutics. In addition, several triptolide moieties, including minnelide and LLDT8, have progressed in investigations on humans for the treatment of cancer. Targeted strategies, such as triptolide conjugation with ligands or triptolide loaded nano-carriers, are efficient techniques to confront toxicities associated with triptolide. We expect and anticipate that advances in near future, regarding combination therapies of triptolide, might be beneficial against cancerous cells.
Collapse
Affiliation(s)
- Ke Feng
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Xiaojiang Li
- Department of General Surgery, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Yuzhuo Bai
- Department of Breast and Thyroid Surgery Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| | - Dawei Zhang
- Department of General Surgery Baishan Hospital of Traditional Chinese Medicine, Baishan, 134300, China
| | - Lin Tian
- Department of Lung Oncology, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, 130000, China
| |
Collapse
|
3
|
Ye X, Chen L. Protective role of autophagy in triptolide-induced apoptosis of TM3 Leydig cells. J Transl Int Med 2023; 11:265-274. [PMID: 37662886 PMCID: PMC10474888 DOI: 10.2478/jtim-2021-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background and Objectives Triptolide (TP) is known to impair testicular development and spermatogenesis in mammals, but the mechanism of the side effects still needs to be investigated. The aim of the research is to confirm whether TP can cause autophagy in TM3 Leydig cells and the potential molecular pathway in vitro. Methods TM3 Leydig cells are used to investigate the molecular pathway through Western blot, detection of apoptosis, transmission electron microscopy for autophagosomes and so on. Results The data show that TP treatment resulted in the decreasing of the viability of TM3 cells due to the increased apoptosis. Treated with TP, the formation of autophagosomes, the decrease in P62, and the increase in the conversion of LC3-I to LC3-II suggested the induction of autophagy. The induction of autophagy has accompanied the activation of the mTOR/P70S6K signal pathway. The viability of the TM3 cells was further inhibited when they were co-treated with autophagy inhibitor, chloroquine (CQ). Conclusion All these data suggest that autophagy plays a very important role in antagonizing TM3 cell apoptosis during the TP exposure.
Collapse
Affiliation(s)
- Xiaoyun Ye
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| | - Liang Chen
- Medical Center of Reproductive and Genetics, Peking University First Hospital, Beijing100034, China
| |
Collapse
|
4
|
Jiang S, Wan F, Lian H, Lu Z, Li X, Cao D, Jiang Y, Li J. Friend or foe? The dual role of triptolide in the liver, kidney, and heart. Biomed Pharmacother 2023; 161:114470. [PMID: 36868013 DOI: 10.1016/j.biopha.2023.114470] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Triptolide, a controversial natural compound due to its significant pharmacological activities and multiorgan toxicity, has gained much attention since it was isolated from the traditional Chinese herb Tripterygium wilfordii Hook F. However, in addition to its severe toxicity, triptolide also presents powerful therapeutic potency in the same organs, such as the liver, kidney, and heart, which corresponds to the Chinese medicine theory of You Gu Wu Yun (anti-fire with fire) and deeply interested us. To determine the possible mechanisms involved in the dual role of triptolide, we reviewed related articles about the application of triptolide in both physiological and pathological conditions. Inflammation and oxidative stress are the two main ways triptolide exerts different roles, and the cross-talk between NF-κB and Nrf2 may be one of the mechanisms responsible for the dual role of triptolide and may represent the scientific connotation of You Gu Wu Yun. For the first time, we present a review of the dual role of triptolide in the same organ and propose the possible scientific connotation of the Chinese medicine theory of You Gu Wu Yun, hoping to promote the safe and efficient use of triptolide and other controversial medicines.
Collapse
Affiliation(s)
- Shiyuan Jiang
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Feng Wan
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Hui Lian
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhihao Lu
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xueming Li
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Cao
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yangyu Jiang
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jian Li
- Department of Histology and Embryology, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Qi XM, Qiao YB, Zhang YL, Wang AC, Ren JH, Wei HZ, Li QS. PGC-1α/NRF1-dependent cardiac mitochondrial biogenesis: A druggable pathway of calycosin against triptolide cardiotoxicity. Food Chem Toxicol 2022; 171:113513. [PMID: 36436616 DOI: 10.1016/j.fct.2022.113513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022]
Abstract
Mitochondrion-related cardiotoxicity due to cardiotoxin stimuli is closely linked to abnormal activities of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), followed by co-inactivation of nuclear respiratory factor-1(NRF1). Pharmacological interventions targeting mitochondria may be effective for developing agents against cardiotoxicity. Herein, in triptolide-treated H9C2 cardiomyocytes, we observed defective mitochondrial biogenesis and respiration, characterized by depletion of mitochondrial mass and mitochondrial DNA copy number, downregulation of mitochondrial respiratory chain complexes subunits, and disorders of mitochondrial membrane potential and mitochondrial oxidative phosphorylation. Dysregulation of mitochondria led to cardiac pathological features, such as myocardial fiber fracture, intercellular space enlargement, and elevation of serum aspartate aminotransferase, creatine kinase isoenzyme, lactate dehydrogenase, and cardiac troponin I. However, following calycosin treatment, an active compound from Astragali Radix, the mitochondrion-related disorders at both cell and tissue levels were significantly ameliorated, which was facilitated by the activation of PGC-1α via deacetylation, followed by NRF1 co-activation. Calycosin-enhanced PGC-1α deacetylation is impelled by increasing sirtuin-1 expression and NAD+/NADH ratio. PGC-1α/NRF1 signaling in calycosin-mediated mitochondrial biogenesis protection was further confirmed by NRF1 knockdown and PGC-1α inhibition with SR18292. We conclude that calycosin ameliorated triptolide-induced cardiotoxicity by protecting PGC-1α/NRF1-dependent cardiac mitochondrial biogenesis and respiration, which is the druggable pathway for cardiotoxicity mitigation.
Collapse
Affiliation(s)
- Xiao-Ming Qi
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi province, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Yuan-Lin Zhang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Ai-Cheng Wang
- Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Jin-Hong Ren
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi province, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China
| | - Hui-Zhi Wei
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qing-Shan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, Shanxi province, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi province, China.
| |
Collapse
|
6
|
SLC7A11/GPX4 Inactivation-Mediated Ferroptosis Contributes to the Pathogenesis of Triptolide-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3192607. [PMID: 35757509 PMCID: PMC9225845 DOI: 10.1155/2022/3192607] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/18/2022]
Abstract
Triptolide exhibits promising efficacy in various cancers and immune diseases while its clinical application has been strongly restricted by its severe side effects, especially cardiotoxicity. However, the underlying mechanism of triptolide-induced cardiotoxicity (TIC) remains unclear. The RNA-seq analysis of triptolide-injured AC16 human cardiomyocyte cell line hinted that ferroptosis is involved in TIC. Further experimental validations proved that triptolide triggered ferroptosis, as evidenced by significant accumulation of lipid peroxidation (4-HNE and MDA levels) and ferrous iron, as well as depletion of intracellular GSH. Furthermore, triptolide-induced iron overload involved the upregulation of TF/TRFC/DMT1 signal axis and the degradation of ferritin, which contribute to ROS generation via Fenton reaction. In addition, inhibition of the antioxidant Nrf2/HO-1 pathway was observed in TIC, which may also lead to the overproduction of lethal lipid peroxides. Mechanistically, using streptavidin-biotin affinity pull-down assay and computational molecular docking, we unveiled that triptolide directly binds to SLC7A11 to inactivate SLC7A11/GPX4 signal axis. More importantly, employment of a ferroptosis inhibitor Ferrostatin-1 alleviated TIC by partially reversing the inhibitory effects of triptolide on SLC7A11/GPX4 signal. Altogether, our study demonstrated that SLC7A11/GPX4 inactivation-mediated ferroptosis contributed to the pathogenesis of TIC. Combating ferroptosis may be a promising therapeutic avenue to prevent TIC.
Collapse
|
7
|
Deng D, Yan J, Li W, Wu Y, Wu K. Protective Effect of XinJiaCongRongTuSiZiWan on the Reproductive Toxicity of Female Rats Induced by Triptolide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:3642349. [PMID: 35707471 PMCID: PMC9192320 DOI: 10.1155/2022/3642349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/29/2021] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
Background Although triptolide (TP) has been widely used for the treatment of inflammatory, autoimmune diseases, and various kinds of tumors, the long experimental and clinical applications have exhibited severe reproductive system toxicity in TP-treated animals and patients. More importantly, the underlying molecular mechanism involved in TP-induced reproductive system toxicity still needs more research. Methods Adult female Sprague Dawley rats and human ovarian granulosa cell lines were treated with TP and then treated with XinJiaCongRongTuSiZiWan (XJCRTSZW). Histological analysis and follicle count were executed using H&E staining. Hormone (E2, AMH, FSH, LH, and INH B) concentrations, inflammation indicators (IL-1β, IL-6, and TNF-α), oxidative stress indicators (SOD, GSH-Px, and MDA), apoptosis rate, protein distribution and expression (SIRT1, AMPK, and 8-OhdG), cell viability, relative protein levels (beclin-1, LC3-II/LC3-I, p62, procaspase-3, cleaved caspase-3, p-SIRT1, SIRT1, p-AMPKα-1, AMPKα-1, Akt, and p-Akt), autophagosome were detected by ELISA, commercial biochemical detection kits, flow cytometry, immunohistochemistry, CCK-8, western blotting, and transmission electron microscope, respectively. Results XJCRTSZW administration notably improved the TP-treated pathological symptoms, including few mature follicles in the ovary and less granular cell layer, and disordered the arrangement of the follicle, lymphocytes and plasma cells infiltration, and necrosis, shedding, and follicular cystic dilatation of the granular layer follicle cells in the ovarian stroma. Furthermore, XJCRTSZW treatment observably enhanced the TP-induced reduction of primary follicles and secondary follicles numbers and decreased the TP-induced elevation of atretic follicle numbers and the expression of AMPK, SIRT1, and 8-OhdG in GCs in vivo. Moreover, XJCRTSZW application significantly increased the TP-induced diminishment of E2, AMH, and LNH-B concentrations, apoptosis rate, SOD and GSH-Px concentrations, and p62 protein level; however, it declined the TP-induced augmentation of MDA level, the levels of IL-1β, IL-6, and TNF-α, autophagosome, beclin-1, LC3-II/LC3-I, cleaved-caspase-3, p-AMPKα-1, and p-SIRT1 protein levels both in vivo and in vitro. Besides, XJCRTSZW treatment prominently enhanced the TP-induced decrease of cell viability in vitro. Conclusion XJCRTSZW can alleviate TP-induced reproductive toxicity via apoptosis, inflammation, and oxidative stress both in vivo and in vitro. Moreover, XJCRTSZW ameliorates TP-induced reproductive toxicity through AMPK/SIRT and Akt signaling axis mediated autophagy both in vivo and in vitro.
Collapse
Affiliation(s)
- Disi Deng
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Jin Yan
- Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Wanjing Li
- Department of Gynaecology, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Keming Wu
- Department of Gynaecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
8
|
Cheng Y, Zhao Y, Zheng Y. Therapeutic potential of triptolide in autoimmune diseases and strategies to reduce its toxicity. Chin Med 2021; 16:114. [PMID: 34743749 PMCID: PMC8572577 DOI: 10.1186/s13020-021-00525-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/27/2021] [Indexed: 12/18/2022] Open
Abstract
With the increasing epidemiology of autoimmune disease worldwide, there is an urgent need for effective drugs with low cost in clinical treatment. Triptolide, the most potent bioactive compound from traditional Chinese herb Tripterygium Wilfordii Hook F, possesses immunosuppression and anti-inflammatory activity. It is a potential drug for the treatment of various autoimmune diseases, but its clinical application is still restricted due to severe toxicity. In this review, the pharmacodynamic effects and pharmacological mechanisms of triptolide in autoimmune diseases are summarized. Triptolide exerts therapeutic effect by regulating the function of immune cells and the expression of cytokines through inflammatory signaling pathways, as well as maintaining redox balance and gut microbiota homeostasis. Meanwhile, the research progress on toxicity of triptolide to liver, kidney, reproductive system, heart, spleen, lung and gastrointestinal tract has been systematically reviewed. In vivo experiments on different animals and clinical trials demonstrate the dose- and time- dependent toxicity of triptolide through different administration routes. Furthermore, we focus on the strategies to reduce toxicity of triptolide, including chemical structural modification, novel drug delivery systems, and combination pharmacotherapy. This review aims to reveal the potential therapeutic prospect and limitations of triptolide in treating autoimmune diseases, thus providing guiding suggestions for further study and promoting its clinical translation.
Collapse
Affiliation(s)
- Yaxin Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China. .,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, University of Macau, Macau, China.
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
9
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Wang YZ, Ngowi EE, Wang D, Qi HW, Jing MR, Zhang YX, Cai CB, He QL, Khattak S, Khan NH, Jiang QY, Ji XY, Wu DD. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci 2021; 22:2194. [PMID: 33672103 PMCID: PMC7927090 DOI: 10.3390/ijms22042194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/10/2021] [Indexed: 02/08/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been considered as a toxic gas, but as research progressed, the idea has been updated and it has now been shown to have potent protective effects at reasonable concentrations. H2S is an endogenous gas signaling molecule in mammals and is produced by specific enzymes in different cell types. An increasing number of studies indicate that H2S plays an important role in cardiovascular homeostasis, and in most cases, H2S has been reported to be downregulated in cardiovascular diseases (CVDs). Similarly, in preclinical studies, H2S has been shown to prevent CVDs and improve heart function after heart failure. Recently, many H2S donors have been synthesized and tested in cellular and animal models. Moreover, numerous molecular mechanisms have been proposed to demonstrate the effects of these donors. In this review, we will provide an update on the role of H2S in cardiovascular activities and its involvement in pathological states, with a special focus on the roles of exogenous H2S in cardiac protection.
Collapse
Affiliation(s)
- Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam 2329, Tanzania
| | - Di Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Hui-Wen Qi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Mi-Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Chun-Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Qing-Lin He
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Nursing and Health, Henan University, Kaifeng 475004, China
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Nazeer Hussain Khan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng 475004, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China; (Y.-Z.W.); (E.E.N.); (D.W.); (H.-W.Q.); (M.-R.J.); (Y.-X.Z.); (C.-B.C.); (Q.-L.H.); (S.K.); (N.H.K.)
- School of Stomatology, Henan University, Kaifeng 475004, China
| |
Collapse
|
11
|
He WS, Zou MX, Yan YG, Yao NZ, Chen WK, Li Z, Wang WJ, Ouyang ZH. Interleukin-17A Promotes Human Disc Degeneration by Inhibiting Autophagy Through the Activation of the Phosphatidylinositol 3-Kinase/Akt/Bcl2 Signaling Pathway. World Neurosurg 2020; 143:e215-e223. [DOI: 10.1016/j.wneu.2020.07.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
|
12
|
Zheng X, Li S, Li J, Lv Y, Wang X, Wu P, Yang Q, Tang Y, Liu Y, Zhang Z. Hexavalent chromium induces renal apoptosis and autophagy via disordering the balance of mitochondrial dynamics in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111061. [PMID: 32750588 DOI: 10.1016/j.ecoenv.2020.111061] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
The use of hexavalent chromium (Cr(VI)) in many industrial processes has resulted in serious environmental pollution problems. Cr(VI) causes organ toxicity in animals after ingestion or inhalation. However, the exact mechanism by which Cr(VI) produces kidney damage remains elusive. Herein, we investigated whether Cr(VI)-induced kidney damage is related to the disorder of mitochondrial dynamics. In this study, 28 male rats were divided into four groups and intraperitoneally injected with 0, 2, 4, and 6 mg/kg body weight potassium dichromate for 5 weeks. Experiment included analysis of renal histopathology and ultrastructure, determination of biochemical indicators, and measurement of related protein content. The results showed that Cr(VI) induced kidney injury through promotion of oxidative stress, apoptosis, and disorder of mitochondrial dynamics in a dose-dependent manner. The protein levels of the silent information regulator two ortholog 1 (Sirt1), peroxisome proliferation-activated receptor-g coactivator-1a (PGC-1a), and autophagy-related proteins were significantly decreased after Cr(VI) exposure. These findings suggest that Cr(VI) leads to the disorder of mitochondrial dynamics by inhibiting the Sirt1/PGC-1a pathway, which leads to renal apoptosis and autophagy in rats.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yueying Lv
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Xiaoqiao Wang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China
| | - Pengfei Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Qingyue Yang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yuqing Tang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China
| | - Yan Liu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China.
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
13
|
Gao X, Liu Y, Wang L, Sai N, Liu Y, Ni J. Morroniside Inhibits H 2O 2-Induced Podocyte Apoptosis by Down-Regulating NOX4 Expression Controlled by Autophagy In Vitro. Front Pharmacol 2020; 11:533809. [PMID: 33071778 PMCID: PMC7538771 DOI: 10.3389/fphar.2020.533809] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Podocyte apoptosis is the common pathological basis for the progression of various kidney diseases. The overexpression of NOX4, a key enzyme involved in oxidative stress, has been proved to participate in the occurrence of podocyte apoptosis. Autophagy is a kind of adaptive response of cells under stress. However, as a “double-edged sword”, the effect of autophagy on apoptosis in different cells and conditions is complex and variable, which has not been fully explained yet. Morroniside, extracted from the traditional medicinal plant Cornus officinalis, has remarkable antioxidant and anti-apoptosis effects, and has been proven to inhibit the overexpression of NOX4 in kidney tissue. Therefore, H2O2 was used in this study to explore the effects of autophagy on podocyte NOX4 overexpression and apoptosis induced by oxidative stress, as well as the protection mechanism of morroniside in podocytes. The results showed that the autophagy activator rapamycin, as well as the autophagy inhibitor chloroquine, could induce podocyte apoptosis cultured in normal condition, and chloroquine could also significantly increase the NOX4 expression. The NOX4 expression and apoptosis rate of podocytes increased after H2O2 treatment, the expression of LC3-II decreased, and the expressions of p62, mTOR, and p-mTOR increased. The intervention of morroniside and rapamycin improved autophagy activity and inhibited NOX4 overexpression and apoptosis induced by H2O2. And chloroquine reversed the inhibitory effect of morroniside on NOX4 overexpression and podocyte apoptosis. Taken together, our results suggest that the expression level of NOX4 in podocytes is regulated by autophagy activity. Morroniside can reduce oxidative stress induced podocyte apoptosis by restoring the damaged autophagy flux and inhibit the overexpression of NOX4.
Collapse
Affiliation(s)
- Xue Gao
- Beijing University of Chinese Medicine, Beijing, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Sai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yixiu Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
García-Heredia JM, Carnero A. Role of Mitochondria in Cancer Stem Cell Resistance. Cells 2020; 9:E1693. [PMID: 32679735 PMCID: PMC7407626 DOI: 10.3390/cells9071693] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) are associated with the mechanisms of chemoresistance to different cytotoxic drugs or radiotherapy, as well as with tumor relapse and a poor prognosis. Various studies have shown that mitochondria play a central role in these processes because of the ability of this organelle to modify cell metabolism, allowing survival and avoiding apoptosis clearance of cancer cells. Thus, the whole mitochondrial cycle, from its biogenesis to its death, either by mitophagy or by apoptosis, can be targeted by different drugs to reduce mitochondrial fitness, allowing for a restored or increased sensitivity to chemotherapeutic drugs. Once mitochondrial misbalance is induced by a specific drug in any of the processes of mitochondrial metabolism, two elements are commonly boosted: an increment in reactive nitrogen/oxygen species and, subsequently, activation of the intrinsic apoptotic pathway.
Collapse
Affiliation(s)
- José Manuel García-Heredia
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Biología, Universidad de Sevilla, Avda. de la Reina Mercedes 6, 41012 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Avda. Manuel Siurot s/n, 41013 Seville, Spain
- Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
15
|
Zhu N, Ruan J, Yang X, Huang Y, Jiang Y, Wang Y, Cai D, Geng Y, Fang M. Triptolide improves spinal cord injury by promoting autophagy and inhibiting apoptosis. Cell Biol Int 2019; 44:785-794. [PMID: 31774600 DOI: 10.1002/cbin.11273] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Ning Zhu
- Hebei North University Zhangjiakou Hebei 075000 China
- Department of Orthopedics Taizhou Municipal Hospital Taizhou Zhejiang 318000 China
| | - Jianwei Ruan
- Hebei North University Zhangjiakou Hebei 075000 China
- Department of Orthopedics Taizhou Municipal Hospital Taizhou Zhejiang 318000 China
| | - Xinming Yang
- Hebei North University Zhangjiakou Hebei 075000 China
- Department of Orthopaedics First Affiliated Hospital of Hebei North University Zhangjiakou Hebei 075061 China
| | - Yang Huang
- Department of Orthopedics Taizhou Municipal Hospital Taizhou Zhejiang 318000 China
| | - Yuting Jiang
- Institute of Neuroscience Zhejiang University School of Medicine Hangzhou 310058 China
| | - Yucheng Wang
- Department of Orthopedics Taizhou Municipal Hospital Taizhou Zhejiang 318000 China
| | - Danyang Cai
- Department of Orthopedics Taizhou Municipal Hospital Taizhou Zhejiang 318000 China
| | - Yu Geng
- Department of Neurology Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Marong Fang
- Institute of Neuroscience Zhejiang University School of Medicine Hangzhou 310058 China
| |
Collapse
|
16
|
Li Y, Liu X. The inhibitory role of Chinese materia medica in cardiomyocyte apoptosis and underlying molecular mechanism. Biomed Pharmacother 2019; 118:109372. [DOI: 10.1016/j.biopha.2019.109372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 01/04/2023] Open
|
17
|
Lv H, Jiang L, Zhu M, Li Y, Luo M, Jiang P, Tong S, Zhang H, Yan J. The genus Tripterygium: A phytochemistry and pharmacological review. Fitoterapia 2019; 137:104190. [DOI: 10.1016/j.fitote.2019.104190] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
|
18
|
Wei YM, Luan ZH, Liu BW, Wang YH, Chang YX, Xue HQ, Ren JH. Autophagy in Triptolide-Mediated Cytotoxicity in Hepatic Cells. Int J Toxicol 2019; 38:436-444. [PMID: 31342801 DOI: 10.1177/1091581819864518] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triptolide is a major active ingredient isolated from the traditional Chinese herb Tripterygium wilfordii Hook F. However, its use in clinical practice is limited due to its severe hepatotoxicity. Autophagy, a highly conserved intracellular process, is essential for maintaining cytoplasmic homeostasis. Considering that abnormalities in autophagy are closely associated with drug-mediated hepatotoxicity, we applied human normal liver HL7702 cells to elucidate the roles of autophagy in triptolide-induced hepatotoxicity. Our study revealed that triptolide was cytotoxic to HL7702 cells. It markedly increased autophagosome formation and expression of autophagy-related proteins, namely Beclin1 and microtubule-associated protein 1 light chain 3II, and induced oxidative stress. These proautophagic effects were counteracted by pretreatment with N-acetylcysteine, a reactive oxygen species scavenger. Moreover, the pharmacological suppression of autophagy further exacerbated triptolide-elicited decrease in cell viability, increase in lactate dehydrogenase leakage, and activation of apoptosis proteases (caspase 3 and caspase 9). Our findings suggest that triptolide-induced oxidative stress consequently enhances autophagic activity, and autophagy is a cytoprotective mechanism against triptolide-induced cytotoxicity in HL7702 cells.
Collapse
Affiliation(s)
- Yan Ming Wei
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Zhi Hua Luan
- Experimental Management Centre, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Bi Wang Liu
- Experimental Management Centre, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Yong Hui Wang
- Experimental Management Centre, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Yin Xia Chang
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Hui Qing Xue
- Experimental Management Centre, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| | - Jin Hong Ren
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi, People's Republic of China
| |
Collapse
|
19
|
Tang X, Wang C, Hsieh Y, Wang C, Wang J, Han Z, Cong N, Ma R, Chi F. Triptolide induces toxicity in inner ear stem cells via promoting DNA damage. Toxicol In Vitro 2019; 61:104597. [PMID: 31288072 DOI: 10.1016/j.tiv.2019.104597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/16/2019] [Accepted: 07/05/2019] [Indexed: 11/16/2022]
Abstract
Emerging evidence and clinical case reports have observed a risk of cytotoxic effects of triptolide in patients. We aimed to investigate the triptolide-induced toxicity in mouse inner ear stem cells. The utricular sensory epithelium from adult BALB/C6 mice was used for the isolation of inner ear stem cells. Sphere formation assay was applied to examine the stemness of the cells. Cell count kit-8 and Bromodeoxyuridine assays were employed to detect the cell proliferation ability. Cell apoptosis was measured with Annexin V-FITC & propidium iodide Apoptosis kit. The relative expression levels of gamma H2A histone family member X (γH2AX), tumor suppressor p53-binding protein 1 (53BP1) and optic atrophy 1 (OPA-1) were measured by Western Blot. Mitochondrial function was analyzed by the MitoGreen green-fluorescent mitochondrial dye kit. Triptolide significantly inhibited the cell viability and proliferation and suppressed the capability of sphere formation. Furthermore, triptolide induced apoptosis as indicated by increased expression of DNA damage repair markers γH2AX and 53BP1. Moreover, triptolide influenced the function of mitochondria by inducing the cleavage of OPA-1. Our work clarifies the toxicity of triptolide in mouse inner ear stem cells, which provides clues of the toxicology mechanism for future studies and basis for clinical use.
Collapse
Affiliation(s)
- Xuxia Tang
- Department of Otolaryngology, the First Affiliated Hospital of Zhejiang Traditional Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Congpin Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Yuelin Hsieh
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Chengjin Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Jinyu Wang
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Zhao Han
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China.
| | - Ning Cong
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China.
| | - Rui Ma
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| | - Fanglu Chi
- Department of Otology and Skull Base Surgery, Eye Ear Nose & Throat Hospital, Fudan University, Shanghai 200031, China; Shanghai Auditory Medical Center, Shanghai 200000, China; NHC Key laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China; Fudan University, Shanghai 200031, China
| |
Collapse
|
20
|
Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H. Triptolide and Its Derivatives as Cancer Therapies. Trends Pharmacol Sci 2019; 40:327-341. [DOI: 10.1016/j.tips.2019.03.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 11/30/2022]
|
21
|
Ma B, Zhang J, Zhu Z, Zhao A, Zhou Y, Ying H, Zhang Q. Luteolin Ameliorates Testis Injury and Blood–Testis Barrier Disruption through the Nrf2 Signaling Pathway and by Upregulating Cx43. Mol Nutr Food Res 2019; 63:e1800843. [DOI: 10.1002/mnfr.201800843] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/21/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Bo Ma
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Jie Zhang
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Zhiming Zhu
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Ang Zhao
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Yanfen Zhou
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| | - Hanjie Ying
- School of Life Science & Pharmaceutical EngineeringNanjing University of Technology Nanjing 210009 P. R. China
| | - Qi Zhang
- School of Pharmaceutical SciencesNanjing Tech University Nanjing 210009 P. R. China
| |
Collapse
|
22
|
Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:577-634. [PMID: 29943652 DOI: 10.1089/ars.2017.7234] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE In eukaryotes, autophagy represents a highly evolutionary conserved process, through which macromolecules and cytoplasmic material are degraded into lysosomes and recycled for biosynthetic or energetic purposes. Dysfunction of the autophagic process has been associated with the onset and development of many human chronic pathologies, such as cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. Recent Advances: Currently, comprehensive research is being carried out to discover new therapeutic agents that are able to modulate the autophagic process in vivo. Recent evidence has shown that a large number of natural bioactive compounds are involved in the regulation of autophagy by modulating several transcriptional factors and signaling pathways. CRITICAL ISSUES Critical issues that deserve particular attention are the inadequate understanding of the complex role of autophagy in disease pathogenesis, the limited availability of therapeutic drugs, and the lack of clinical trials. In this context, the effects that natural bioactive compounds exert on autophagic modulation should be clearly highlighted, since they depend on the type and stage of the pathological conditions of diseases. FUTURE DIRECTIONS Research efforts should now focus on understanding the survival-supporting and death-promoting roles of autophagy, how natural compounds interact exactly with the autophagic targets so as to induce or inhibit autophagy and on the evaluation of their pharmacological effects in a more in-depth and mechanistic way. In addition, clinical studies on autophagy-inducing natural products are strongly encouraged, also to highlight some fundamental aspects, such as the dose, the duration, and the possible synergistic action of these compounds with conventional therapy.
Collapse
Affiliation(s)
- Francesca Giampieri
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Sadia Afrin
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,2 Area de Nutricion y Salud, Universidad Internacional Iberoamericana , Campeche, Mexico
| | - Massimiliano Gasparrini
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Danila Cianciosi
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Patricia Reboredo-Rodriguez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,3 Departamento de Quimica Analıtica y Alimentaria, Grupo de Nutricion y Bromatologıa, Universidade Vigo , Ourense, Spain
| | - Alfonso Varela-Lopez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Jose L Quiles
- 4 Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Centre, University of Granada , Granada, Spain
| | - Maurizio Battino
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,5 Centre for Nutrition and Health, Universidad Europea del Atlantico (UEA) , Santander, Spain
| |
Collapse
|
23
|
The aggravating effect of selenium deficiency on T-2 toxin-induced damage on primary cardiomyocyte results from a reduction of protective autophagy. Chem Biol Interact 2019; 300:27-34. [DOI: 10.1016/j.cbi.2019.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 01/06/2019] [Indexed: 01/10/2023]
|
24
|
Wang SR, Chen X, Ling S, Ni RZ, Guo H, Xu JW. MicroRNA expression, targeting, release dynamics and early-warning biomarkers in acute cardiotoxicity induced by triptolide in rats. Biomed Pharmacother 2019; 111:1467-1477. [PMID: 30841462 DOI: 10.1016/j.biopha.2018.12.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/21/2022] Open
Abstract
Tripterygium wilfordii Hook. F. is a plant used in traditional Chinese medicine to treat rheumatoid arthritis, lupus erythematosus, and psoriasis in China. However, its main active substance, triptolide, has toxic effects on the heart, liver, and kidneys, which limit its clinical application. Therefore, determining the mechanism of cardiotoxicity in triptolide and identifying effective early-warning biomarkers is beneficial for preventing irreversible myocardial injury. We observed changes in microRNAs and aryl hydrocarbon receptor (AhR) as potential biomarkers in triptolide-induced acute cardiotoxicity by using techniques such as polymerase chain reaction (PCR) assay. The results revealed that triptolide increased the heart/body ratio and caused myocardial fiber breakage, cardiomyocyte hypertrophy, increased cell gaps, and nuclear dissolution in treated male rats. Real-time PCR array detection revealed a more than 2-fold increase in the expression of 108 microRNA genes in the hearts of the male rats; this not only regulated the signaling pathways of ErbB, FOXO, AMPK, Hippo, HIF-1α, mTOR, and PI3K-Akt but also participated in biological processes such as cell adhesion, cell cycling, action potential, locomotory behavior, apoptosis, and DNA binding. Moreover, triptolide reduced the circulatory and cardiac levels of AhR protein as a target of these microRNAs and the messenger RNA expression of its downstream gene CYP1 A1. However, decreases in myocardial lactate dehydrogenase, creatine kinase MB, catalase, and glutathione peroxidase activity and an increase in circulating cardiac troponin I were observed only in male rats. Moreover, plasma microRNAs exhibited dynamic change. These results revealed that circulating microRNAs and AhR protein are potentially early-warning biomarkers for triptolide-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shu-Rong Wang
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaomiao Chen
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Ling
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rong-Zhen Ni
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huining Guo
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Epigenetics Laboratory, Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Shen F, Xiong Z, Kong J, Wang L, Cheng Y, Jin J, Huang Z. Triptolide impairs thioredoxin system by suppressing Notch1-mediated PTEN/Akt/Txnip signaling in hepatocytes. Toxicol Lett 2018; 300:105-115. [PMID: 30394310 DOI: 10.1016/j.toxlet.2018.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/07/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023]
Abstract
Triptolide (TP) is the main ingredient of Chinese herb Tripterygium wilfordii Hook f. (TWHF). Despite of its multifunction in pharmaceutics, accumulating evidences showed that TP caused obvious hepatotoxicity in clinic. The current study investigated the role of Notch1 signaling in TP-induced hepatotoxicity. Our data indicated that TP inhibited the protein expression of Notch1 and its active form Notch intracellular domain (NICD) leading to increased PTEN (phosphatase and tensin homolog deleted on chromosome ten) expression. Moreover, PTEN triggered Txnip (thioredoxin-interacting protein) activation by inhibiting Akt phosphorylation, which resulted in reduction of Trx (thioredoxin). In conclusion, TP caused liver injury through initiating oxidative stress in hepatocyte. This study indicated the potency of Notch1 to protect against TP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhewen Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jiamin Kong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Li Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yisen Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jing Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
26
|
Qian G, Liu D, Hou L, Hamid M, Chen X, Gan F, Song S, Huang K. Ochratoxin A induces cytoprotective autophagy via blocking AKT/mTOR signaling pathway in PK-15 cells. Food Chem Toxicol 2018; 122:120-131. [PMID: 30287338 DOI: 10.1016/j.fct.2018.09.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/21/2018] [Accepted: 09/28/2018] [Indexed: 12/19/2022]
Abstract
Ochratoxin A (OTA) could cause a variety of toxicological effects especially nephrotoxicity in animals and humans. Autophagy is a highly conserved metabolic process that plays an important role in the maintenance of cellular homeostasis under stress. However, the role of autophagy in OTA-induced nephrotoxicity is unknown. In the present study, we demonstrated that OTA treatment at 2.0-8.0 μM could increase cytotoxicity of PK-15 cells by inducing apoptosis as shown by the increased Annexin V/PI staining, increased caspase-3 and PARP cleavage and increased apoptotic nuclei. Meantime, autophagy was triggered when OTA was administrated, as indicated by markedly increased expressions of LC3-II, ATG5 and Beclin-1, accumulation of GFP-LC3 dots and increased double- or single-membrane vesicles. OTA treatment decreased p-AKT and p-mTOR activities, and OTA-induced autophagy was inhibited when insulin was applied. Furthermore, OTA treatments with autophagy inhibitors (3-methyladenine or chloroquine) or knockdown of autophagy-related genes (ATG5 or Beclin-1) resulted in significantly reduced autophagy level and enhanced cytotoxicity. In conclusion, OTA induces cytoprotective autophagy against its cytotoxicity and inactivation of AKT/mTOR axis plays a critical role in autophagy induction.
Collapse
Affiliation(s)
- Gang Qian
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Department of Animal Science and Technology, Jinling Institution of Technology, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Mohammed Hamid
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Suquan Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
27
|
Abstract
As a major active component extracted from traditional Chinese herb Tripterygium wilfordii Hook F, triptolide exhibits multiple pharmacological effects. Autophagy is an evolutionary conserved intracellular catabolic process involved in cytoplasmic materials degradation. Autophagic dysfunction contributes to the pathologies of many human diseases, which makes it a promising therapeutic target. Recent studies have shown that triptolide exerts neuroprotection, anti-tumor activities, organ toxicity, and podocyte protection by modulating autophagy. This article highlights the current information on triptolide-modulated autophagy, analyzes the possible pathways involved, and describes the crosstalk between autophagy and apoptosis modulated by triptolide, in hope of providing implications for the roles of autophagy in pharmacological effects of triptolide and expanding its novel usage as an autophagy modulator.
Collapse
|
28
|
Triptolide induces p53-dependent cardiotoxicity through mitochondrial membrane permeabilization in cardiomyocytes. Toxicol Appl Pharmacol 2018; 355:269-285. [DOI: 10.1016/j.taap.2018.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/12/2022]
|
29
|
Anti-tumor effects of triptolide on angiogenesis and cell apoptosis in osteosarcoma cells by inducing autophagy via repressing Wnt/β-Catenin signaling. Biochem Biophys Res Commun 2018; 496:443-449. [DOI: 10.1016/j.bbrc.2018.01.052] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/01/2023]
|
30
|
Synthesis, Characterization, and Evaluation of Triptolide Cell-Penetrating Peptide Derivative for Transdermal Delivery of Triptolide. Mol Pharm 2018; 15:560-570. [PMID: 29307194 DOI: 10.1021/acs.molpharmaceut.7b00914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Triptolide (TP) has been used as one of the most common systemic treatments for various diseases since the 1960s. However, TP displays diverse side effects on various organs, which limits its clinical application. To overcome this issue, numerous C-14-hydroxyl group derivatives of TP have been synthesized. In this research, the C-14-hydroxyl group of TP is modified by a cell-penetrating peptide polyarginine (R7). The derivative TP-disulfide-CR7 (TP-S-S-CR7) containing a disulfide linkage between TP and R7 possesses less toxicity at various concentrations on the immortal human keratinocyte (HaCaT) cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay compared with free TP. Treating HaCaT cells with TP (100 nM) could increase intracellular ROS (reactive oxygen species) and decrease the activity of SOD (superoxide dismutase). Meanwhile, treating HaCaT cells with equimolar concentration of TP-S-S-CR7 did not cause both of the above TP-induced alterations. In addition, TP-S-S-CR7 did not show significant dermal toxicity on guinea pigs and could efficiently overcome the barrier of corneum and then reach epidermis and dermis within 2 h of transdermal administration. In addition, there was a relatively lower concentration of TP in blood indicating less toxicity on organs. Such results suggest that topical therapy using polyarginine is possible by the transdermal delivery of TP.
Collapse
|
31
|
Xi C, Peng S, Wu Z, Zhou Q, Zhou J. WITHDRAWN: Toxicity of triptolide and the molecular mechanisms involved. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017:S1382-6689(17)30271-5. [PMID: 29037923 DOI: 10.1016/j.etap.2017.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chen Xi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Shaojun Peng
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Zhengping Wu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Qingping Zhou
- Internet and Education Technology Center, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| |
Collapse
|
32
|
Toxicity of triptolide and the molecular mechanisms involved. Biomed Pharmacother 2017; 90:531-541. [DOI: 10.1016/j.biopha.2017.04.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/14/2017] [Accepted: 04/02/2017] [Indexed: 01/27/2023] Open
|
33
|
Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: Involvement of ROS-mediated AMPK/mTOR/ULK1 pathways. Food Chem Toxicol 2016; 100:183-196. [PMID: 28025121 DOI: 10.1016/j.fct.2016.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/11/2022]
Abstract
Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP), an extensively used organophosphorus flame retardant, is frequently detected in the environment and biota. Recent studies have shown that TDCIPP has neurotoxic effects. We hypothesized that the neurotoxicity might occur via the induction of the apoptosis and autophagy pathways. In the present study, we investigated TDCIPP-induced apoptotic death and autophagy in SH-SY5Y cells. Treatment with TDCIPP induced increased reactive oxygen species (ROS) generation and cell apoptosis, as well as autophagy. The autophagy inhibitor 3-methyladenine (3-MA) markedly decreased the expression of the autophagy marker beclin-1, microtubule-associated protein light chain 3-II (LC3II), p62/sequestosome 1 (SQSTM1) degradation, and promoted apoptosis. Conversely, the autophagy inducer rapamycin (Rapa) alleviated TDCIPP-induced apoptosis and markedly increased the expression of the autophagy markers. Pretreatment with N-acetyl cysteine (NAC) eliminated the increased ROS generation, resulting in increased cell viability. For further examination of the signaling pathways involved in TDCIPP-induced autophagy, compound C, a pharmacological inhibitor of adenosine monophosphate activated protein kinase (AMPK) was used. Western blotting showed that compound C markedly reduced the expression of phospho-AMPK (p-AMPK) and phospho-Unc-51-like kinase 1 (p-ULK1), increased phospho-mammalian target of rapamycin (p-mTOR) expression, and decreased beclin-1 and LC3II expression. These results suggested that the AMPK/mTOR/ULK1 signaling pathway was involved in TDCIPP-induced autophagy. The antioxidant NAC antagonized TDCIPP-induced activation of AMPK and autophagy. Taken together, our findings provide the first evidence that TDCIPP promotes apoptosis and autophagy simultaneously and that this process involves the ROS-mediated AMPK/mTOR/ULK1 pathways. Lastly, the induction of autophagy is a protective mechanism against TDCIPP-induced apoptosis.
Collapse
|
34
|
Liu M, Yeh J, Huang Y, Redondo A, Ke J, Yao J, Tan G, Tang W, Chen J. EFFECT OF TRIPTOLIDE ON PROLIFERATION AND APOPTOSIS OF ANGIOTENSIN II-INDUCED CARDIAC FIBROBLASTS IN VITRO: A PRELIMINARY STUDY. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2016; 14:145-154. [PMID: 28480392 PMCID: PMC5411865 DOI: 10.21010/ajtcam.v14i1.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The effect of triptolide (TPL) on cardiac fibroblasts (CFbs) and cardiac fibrosis remain unknown till now. This study was conducted to explore the effects of TPL on proliferation and apoptosis of angiotensin II (Ang II)-induced CFbs. MATERIALS AND METHODS Ang II was used to promote proliferation of CFbs. Two dosages of TPL (10ng/ml and 100ng/ml) were chosen. MTT assay was used to detect cell survival rate in vitro. Flow cytometer was performed to analyze apoptosis of CFbs. Hydroxyproline concentration was detected with hydroxyproline assay kit. Quantitative real-time PCR was used to detect the expression of TGF-β1 and Smad3 mRNA. RESULTS Ang II promoted CFbs proliferation significantly. Compared to Ang II group, TPL markedly reduced the viability of CFbs and its Hydroxyproline concentration (P<0.05). Besides, TPL can significantly promote apoptosis of CFbs (P<0.05). Furthermore, TPL reduced the expressions of TGF-βΙ and Smad3 mRNA in Ang II-induced CFbs (P<0.05). CONCLUSION TPL can inhibit the proliferation of CFbs in rats by down-regulating TGF-β1/Smad3 signaling pathway. TPL might be a promising therapeutic drug for myocardial fibrosis.
Collapse
Affiliation(s)
- Mao Liu
- Department of Cardiology, the Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China.,National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - James Yeh
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - Yin Huang
- Department of Cardiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| | - Alfredo Redondo
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom
| | - Jianting Ke
- Nephrology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| | - Jierong Yao
- Department of Cardiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| | - Guangyi Tan
- Department of Cardiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| | - Wenyi Tang
- Department of Cardiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| | - Jian Chen
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, United Kingdom.,Department of Cardiology, the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, P.R. China
| |
Collapse
|
35
|
Wang W, Yang Y, Xiong Z, Kong J, Fu X, Shen F, Huang Z. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by desensitizing mitochondrial permeability transition. Toxicol Appl Pharmacol 2016; 313:195-203. [PMID: 27751939 DOI: 10.1016/j.taap.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/29/2016] [Accepted: 10/07/2016] [Indexed: 10/20/2022]
Abstract
Triptolide (TP), a diterpene triepoxide, is a major active component of Tripterygium wilfordii extracts, which are prepared as tablets and has been used clinically for the treatment of inflammation and autoimmune disorders. However, TP's therapeutic potential is limited by severe adverse effects. In a previous study, we reported that TP induced mitochondria dependent apoptosis in cardiomyocytes. Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine kinase that plays important roles in the necrosis and apoptosis of cardiomyocytes. Our study aimed to investigate the role of GSK-3β in TP-induced cardiotoxicity. Inhibition of GSK-3β activity by SB 216763, a potent and selective GSK-3 inhibitor, prominently ameliorated the detrimental effects in C57BL/6J mice with TP administration, which was associated with a correction of GSK-3β overactivity. Consistently, in TP-treated H9c2 cells, SB 216763 treatment counteracted GSK-3β overactivity, improved cell viability, and prevented apoptosis by modulating the expression of Bcl-2 family proteins. Mechanistically, GSK-3β interacted with and phosphorylated cyclophilin F (Cyp-F), a key regulator of mitochondrial permeability transition pore (mPTP). GSK-3β inhibition prevented the phosphorylation and activation of Cyp-F, and desensitized mPTP. Our findings suggest that pharmacological targeting of GSK-3β could represent a promising therapeutic strategy for protecting against cardiotoxicity induced by TP.
Collapse
Affiliation(s)
- Wenwen Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yanqin Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Zhewen Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Jiamin Kong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Xinlu Fu
- Laboratory Animals Center, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Feihai Shen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| | - Zhiying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China.
| |
Collapse
|
36
|
Activation of SIRT3 attenuates triptolide-induced toxicity through closing mitochondrial permeability transition pore in cardiomyocytes. Toxicol In Vitro 2016; 34:128-137. [DOI: 10.1016/j.tiv.2016.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/07/2016] [Accepted: 03/28/2016] [Indexed: 01/06/2023]
|
37
|
Das DN, Naik PP, Nayak A, Panda PK, Mukhopadhyay S, Sinha N, Bhutia SK. Bacopa monnieri
-Induced Protective Autophagy Inhibits Benzo[a]pyrene-Mediated Apoptosis. Phytother Res 2016; 30:1794-1801. [DOI: 10.1002/ptr.5682] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/08/2016] [Accepted: 06/20/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Durgesh Nandini Das
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | - Aditi Nayak
- Department of Life Science; National Institute of Technology; Rourkela India
| | | | | | - Niharika Sinha
- Department of Life Science; National Institute of Technology; Rourkela India
| | - Sujit K Bhutia
- Department of Life Science; National Institute of Technology; Rourkela India
| |
Collapse
|
38
|
Zhao F, Huang W, Zhang Z, Mao L, Han Y, Yan J, Lei M. Triptolide induces protective autophagy through activation of the CaMKKβ-AMPK signaling pathway in prostate cancer cells. Oncotarget 2016; 7:5366-82. [PMID: 26734992 PMCID: PMC4868692 DOI: 10.18632/oncotarget.6783] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/05/2015] [Indexed: 01/04/2023] Open
Abstract
Triptolide, an active compound extracted from the Chinese herb thunder god vine (Tripterygium wilfordii Hook F.), has potent anti-tumor activity. Recently, triptolide was found to induce autophagy in cancer cells. However, the effects of triptolide on autophagy in human prostate cancer (PCa) cells have not yet been clearly elucidated. In this study, we demonstrated that triptolide induces autophagy in three PCa cell lines, PC-3, LNCaP and C4-2. Furthermore, we found that triptolide mediates intracellular accumulation of free calcium by stimulating the endoplasmic reticulum (ER) stress response. This activates the CaMKKβ-AMPK signaling pathway, which in turn inhibits mTOR and activates both ULK1 and Beclin 1, finally resulting in autophagy. Moreover, we found that treatment with autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) enhances triptolide-induced PCa cell death and growth inhibition. Using a PC-3-xenografted mouse model, we showed that blocking autophagy with CQ significantly promoted triptolide-induced tumor growth inhibition in vivo. Overall, our results show that triptolide induces protective autophagy through the CaMKKβ-AMPK pathway in PCa cells, implying that a combination of triptolide with autophagy inhibitors may potentially be an effective therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Fei Zhao
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi Province, People's Republic of China
| | - Weiwei Huang
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi Province, People's Republic of China
| | - Zhe Zhang
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi Province, People's Republic of China
| | - Lin Mao
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi Province, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Yangyang Han
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi Province, People's Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Yan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu Province, People's Republic of China
| | - Ming Lei
- College of Life Sciences, Northwest A & F University, Yangling, Shaanxi Province, People's Republic of China
- Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, People's Republic of China
| |
Collapse
|
39
|
Lyakhovich A, Lleonart ME. Bypassing Mechanisms of Mitochondria-Mediated Cancer Stem Cells Resistance to Chemo- and Radiotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:1716341. [PMID: 26697128 PMCID: PMC4677234 DOI: 10.1155/2016/1716341] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 01/03/2023]
Abstract
Cancer stem cells (CSCs) are highly resistant to conventional chemo- and radiotherapeutic regimes. Therefore, the multiple drug resistance (MDR) of cancer is most likely due to the resistance of CSCs. Such resistance can be attributed to some bypassing pathways including detoxification mechanisms of reactive oxygen and nitrogen species (RO/NS) formation or enhanced autophagy. Unlike in normal cells, where RO/NS concentration is maintained at certain threshold required for signal transduction or immune response mechanisms, CSCs may develop alternative pathways to diminish RO/NS levels leading to cancer survival. In this minireview, we will focus on elaborated mechanisms developed by CSCs to attenuate high RO/NS levels. Gaining a better insight into the mechanisms of stem cell resistance to chemo- or radiotherapy may lead to new therapeutic targets thus serving for better anticancer strategies.
Collapse
Affiliation(s)
- Alex Lyakhovich
- International Clinical Research Center, St. Anne's University Hospital, Masaryk University, Kamenice 5/A7, 625 00 Brno, Czech Republic
- Institute of Molecular Biology and Biophysics, Novosibirsk, Russia
| | - Matilde E. Lleonart
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| |
Collapse
|
40
|
Ma B, Qi H, Li J, Xu H, Chi B, Zhu J, Yu L, An G, Zhang Q. Triptolide disrupts fatty acids and peroxisome proliferator-activated receptor (PPAR) levels in male mice testes followed by testicular injury: A GC-MS based metabolomics study. Toxicology 2015. [PMID: 26219505 DOI: 10.1016/j.tox.2015.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Triptolide is the major active ingredient of Tripterygium Glycosides (TG), a traditional Chinese medicine with very potent anti-inflammatory effects and has been used in China for the treatment of rheumatoid arthritis and many other inflammatory diseases. However, clinical application of triptolide is restricted due to its multiple side effects, especially male infertility. The mechanism of triptolide on reproduction toxicity remains unclear. In the present study, a GC-MS based metabolomic approach was employed to evaluate the mechanism of triptolide-induced reproductive toxicity as well as identify potential novel biomarkers for the early detection of spermatogenesis dysfunction. In brief, male mice were divided into two groups with or without triptolide intraperitoneal injection at 60 μg/kg/day for 2 weeks and toxic effect of triptolide on testicular tissues were examined by biochemical indicator analysis, testis histopathologic analysis, and sperm quantity analysis. Metabolomics technology was then performed to evaluate systematically the endogenous metabolites profiling. Our results demonstrated that triptolide suppressed the marker-enzymes of spermatogenesis and testosterone levels, decreased sperm counts, reduced the gonad index and destroyed the microstructure of testis. Multivariate data analysis revealed that mice with triptolide induced testicular toxicity could be distinctively differentiated from normal animals and 35 and 39 small molecule metabolites were changed significantly in testis and serum, respectively (Fold-changes >1.5, P<0.05), in triptolide-treated mice. Abnormal level of fatty acids, an important energy source of sertoli cells with critical role in maintaining normal function of the testis tissue, was observed in triptolide-treated mice. Additionally, the protein expressions of PPAR, a transcription factor known to play a pivotal role in lipid and energy metabolism was significantly decreased in the testis tissue of triptolide-treated mice. In summary, our study represents the first comprehensive GC-MS based metabolomics analysis of triptolide-induced testicular toxicity. We reported for the first time that exposure to triptolide led to marked changes of a panel of endogenous metabolites in both testis and serum. The impairment of spermatogenesis may be caused by abnormal lipid and energy metabolism in testis via the down-regulation of PPARs mediated by triptolide. The presence of research suggested that PPARs and its related fatty acids metabolism may serve as potential targets for intervention or treatment of male infertility induced by triptolide.
Collapse
Affiliation(s)
- Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Huanhuan Qi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Jing Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Hong Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Bo Chi
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Jianwei Zhu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Lisha Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China
| | - Guohua An
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA
| | - Qi Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, People's Republic of China.
| |
Collapse
|