1
|
Xue J, Liu H, Yin T, Zhou X, Song X, Zou Y, Li L, Jia R, Fu Y, Zhao X, Yin Z. Rat Hepatocytes Protect against Lead-Cadmium-Triggered Apoptosis Based on Autophagy Activation. TOXICS 2024; 12:285. [PMID: 38668508 PMCID: PMC11055059 DOI: 10.3390/toxics12040285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Lead and cadmium are foodborne contaminants that threaten human and animal health. It is well known that lead and cadmium produce hepatotoxicity; however, defense mechanisms against the co-toxic effects of lead and cadmium remain unknown. We investigated the mechanism of autophagy (defense mechanism) against the co-induced toxicity of lead and cadmium in rat hepatocytes (BRL-3A cells). Cultured rat liver BRL-3A cell lines were co-cultured with 10, 20, 40 μM lead and 2.5, 5, 10 μM cadmium alone and in co-culture for 12 h and exposed to 5 mM 3-Methyladenine (3-MA), 10 μM rapamycin (Rapa), and 50 nM Beclin1 siRNA to induce cellular autophagy. Our results show that treatment of BRL-3A cells with lead and cadmium significantly decreased the cell viability, increased intracellular reactive oxygen species levels, decreased mitochondrial membrane potential levels, and induced apoptosis, which are factors leading to liver injury, and cell damage was exacerbated by co-exposure to lead-cadmium. In addition, the results showed that lead and cadmium co-treatment induced autophagy. We further observed that the suppression of autophagy with 3-MA or Beclin1 siRNA promoted lead-cadmium-induced apoptosis, whereas enhancement of autophagy with Rapa suppressed lead-cadmium-induced apoptosis. These results demonstrated that co-treatment with lead and cadmium induces apoptosis in BRL-3A cells. Interestingly, the activation of autophagy provides cells with a self-protective mechanism against induced apoptosis. This study provides insights into the role of autophagy in lead-cadmium-induced apoptosis, which may be beneficial for the treatment of lead-cadmium-induced liver injury.
Collapse
Affiliation(s)
- Junshu Xue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Huimao Liu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianyi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (X.Z.)
| | - Yuping Fu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinghong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Li H, Xia X, Cheng S, Zang J, Wang Z, Du M. Oyster (Crassostrea gigas) ferritin relieves lead-induced liver oxidative damage via regulating the mitophagy. Int J Biol Macromol 2023; 253:126965. [PMID: 37729985 DOI: 10.1016/j.ijbiomac.2023.126965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Lead can induce oxidative stress and increase lipid peroxidation in biofilms, leading to liver damage and physiological dysfunction. This study aimed to investigate how oyster ferritin (GF1) attenuates lead-induced oxidative damage to the liver in vitro and in vivo. Animal experiments have confirmed that lead exposure can lead to oxidative damage and lipid peroxidation of the liver, and ferritin can regulate the activity of antioxidant enzymes and alleviate pathological changes in the liver. At the same time, oyster ferritin can regulate the expression of oxidative stress-related genes and reduce the expression of inflammasome-related genes. In addition, lead can induce apoptosis and mitophagy, leading to overproduction of reactive oxygen species and cell death, which can be effectively alleviated by oyster ferritin. Overall, this study provides a theoretical foundation for the use of oyster ferritin as a means of mitigating and preventing lead-induced damage.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Shuzhen Cheng
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
4
|
Linghu Y, Deng CN, He L, Wu Q, Xu L, Yu YN. Fluoride induces osteoblast autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway in vivo and in vitro. Exp Biol Med (Maywood) 2023; 248:1159-1172. [PMID: 37638639 PMCID: PMC10583752 DOI: 10.1177/15353702231191117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/26/2023] [Indexed: 08/29/2023] Open
Abstract
Fluorosis primarily manifests as bone damage in the form of dental fluorosis and skeletal fluorosis and represents a critical global public health challenge. However, few studies have examined autophagy-related signaling pathways in skeletal fluorosis. This study aimed to investigate the effect of fluoride on autophagy in osteoblasts using comprehensive methods and to explore the role of the PI3K/AKT/mTOR signaling pathway in regulating fluoride-induced autophagy in osteoblasts. Sprague-Dawley (SD) rats were exposed to different concentrations of fluoride (NaF: 5, 50, and 100 mg/L) for six months. Primary osteoblasts were treated with 0.5, 1.0, or 3.0 mM NaF. Hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), immunohistochemistry (IHC), immunofluorescence staining, and western blotting were performed to evaluate morphological changes in bone tissues and autophagosomes and to detect the protein expression of autophagy-related markers and PI3K/AKT/mTOR signaling pathway-related molecules both in vivo and in vitro. The bone tissues of fluoride-exposed rats showed osteosclerosis, autophagosomes and autolysosomes. LC3B immunofluorescence staining revealed an increase in autophagosomes in the primary osteoblasts treated with fluoride. The LC3Ⅱ/Ⅰ ratio and levels of autophagy-related markers (Beclin 1 and Atg7) were increased, whereas P62 levels were decreased in bone tissues and primary osteoblasts in the fluoride groups. Simultaneously, p-AKT and p-mTOR levels were reduced in bone tissues and primary osteoblasts in the fluoride groups. Moreover, a PI3K inhibitor (LY294002) further downregulated p-AKT and p-mTOR protein expression but slightly increased the LC3Ⅱ/Ⅰ ratio in primary osteoblasts. These results demonstrate that fluoride induces autophagy in osteoblasts by inhibiting the PI3K/AKT/mTOR signaling pathway, which deepens our understanding of the molecular mechanisms underlying fluoride-induced bone damage and provides a theoretical basis for the prevention and treatment of skeletal fluorosis.
Collapse
Affiliation(s)
- Yan Linghu
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Chao-Nan Deng
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Li He
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Qi Wu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Lin Xu
- Department of Obstetrics and Gynecology, Guiyang Maternal and Child Health Care Hospital, Guiyang 550004, China
| | - Yan-Ni Yu
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
5
|
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, Wang X. The role of autophagy in bone metabolism and clinical significance. Autophagy 2023:1-19. [PMID: 36858962 PMCID: PMC10392742 DOI: 10.1080/15548627.2023.2186112] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The skeletal system is the basis of the vertebral body composition, which affords stabilization sites for muscle attachment, protects vital organs, stores mineral ions, supplies places to the hematopoietic system, and participates in complex endocrine and immune system. Not surprisingly, bones are constantly reabsorbed, formed, and remodeled under physiological conditions. Once bone metabolic homeostasis is interrupted (including inflammation, tumors, fractures, and bone metabolic diseases), the body rapidly initiates bone regeneration to maintain bone tissue structure and quality. Macroautophagy/autophagy is an essential metabolic process in eukaryotic cells, which maintains metabolic energy homeostasis and plays a vital role in bone regeneration by controlling molecular degradation and organelle renewal. One relatively new observation is that mesenchymal cells, osteoblasts, osteoclasts, osteocytes, chondrocytes, and vascularization process exhibit autophagy, and the molecular mechanisms and targets involved are being explored and updated. The role of autophagy is also emerging in degenerative diseases (intervertebral disc degeneration [IVDD], osteoarthritis [OA], etc.) and bone metabolic diseases (osteoporosis [OP], osteitis deformans, osteosclerosis). The use of autophagy regulators to modulate autophagy has benefited bone regeneration, including MTOR (mechanistic target of rapamycin kinase) inhibitors, AMPK activators, and emerging phytochemicals. The application of biomaterials (especially nanomaterials) to trigger autophagy is also an attractive research direction, which can exert superior therapeutic properties from the material-loaded molecules/drugs or the material's properties such as shape, roughness, surface chemistry, etc. All of these have essential clinical significance with the discovery of autophagy associated signals, pathways, mechanisms, and treatments in bone diseases in the future.Abbreviations: Δψm: mitochondrial transmembrane potential AMPK: AMP-activated protein kinase ARO: autosomal recessive osteosclerosis ATF4: activating transcription factor 4 ATG: autophagy-related β-ECD: β-ecdysone BMSC: bone marrow mesenchymal stem cell ER: endoplasmic reticulum FOXO: forkhead box O GC: glucocorticoid HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha HSC: hematopoietic stem cell HSP: heat shock protein IGF1: insulin like growth factor 1 IL1B/IL-1β: interleukin 1 beta IVDD: intervertebral disc degradation LPS: lipopolysaccharide MAPK: mitogen-activated protein kinase MSC: mesenchymal stem cell MTOR: mechanistic target of rapamycin kinase NP: nucleus pulposus NPWT: negative pressure wound therapy OA: osteoarthritis OP: osteoporosis PTH: parathyroid hormone ROS: reactive oxygen species SIRT1: sirtuin 1 SIRT3: sirtuin 3 SQSTM1/p62: sequestosome 1 TNFRSF11B/OPG: TNF receptor superfamily member 11b TNFRSF11A/RANK: tumor necrosis factor receptor superfamily, member 11a TNFSF11/RANKL: tumor necrosis factor (ligand) superfamily, member 11 TSC1: tuberous sclerosis complex 1 ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jin Cao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Zihan Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China.,School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Liu M, Liu R, Wang R, Ba Y, Yu F, Deng Q, Huang H. Lead-induced neurodevelopmental lesion and epigenetic landscape: Implication in neurological disorders. J Appl Toxicol 2022. [PMID: 36433892 DOI: 10.1002/jat.4419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Lead (Pb) was implicated in multiple genotoxic, neuroepigenotoxic, and chromosomal-toxic mechanisms and interacted with varying synaptic plasticity pathways, likely underpinning previous reports of links between Pb and cognitive impairment. Epigenetic changes have emerged as a promising biomarker for neurological disorders, including cognitive disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). In the present review, special attention is paid to neural epigenetic features and mechanisms that can alter gene expression patterns upon environmental Pb exposure in rodents, primates, and zebrafish. Epigenetic modifications have also been discussed in population studies and cell experiment. Further, we explore growing evidence of potential linkage between Pb-induced disruption of regulatory pathway and neurodevelopmental and neurological disorders both in vivo and in vitro. These findings uncover how epigenome in neurons facilitates the development and function of the brain in response to Pb insult.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| |
Collapse
|
7
|
Meng Y, Zhou M, Wang T, Zhang G, Tu Y, Gong S, Zhang Y, Christiani DC, Au W, Liu Y, Xia ZL. Occupational lead exposure on genome-wide DNA methylation and DNA damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119252. [PMID: 35385786 DOI: 10.1016/j.envpol.2022.119252] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023]
Abstract
Lead (Pb) exposure can induce DNA damage and alter DNA methylation but their inter-relationships have not been adequately determined. Our overall aims were to explore such relationships and to evaluate underlying epigenetic mechanisms of Pb-induced genotoxicity in Chinese workers. Blood Pb levels (BLLs) were determined and used as individual's Pb-exposure dose and the Comet assay (i.e., % tail DNA) was conducted to evaluate DNA damage. In the screening assay, 850 K BeadChip sequencing was performed on peripheral blood from 10 controls (BLLs ≤100 μg/L) and 20 exposed workers (i.e., 10 DNA-damaged and 10 DNA-undamaged workers). Using the technique, differentially methylated positions (DMPs) between the controls and the exposed workers were identified. In addition, DMPs were identified between the DNA-undamaged and DNA-damaged workers (% tail DNA >2.14%). In our validation assay, methylation levels of four candidate genes were measured by pyrosequencing in an independent sample set (n = 305), including RRAGC (Ras related GTP binding C), USP1 (Ubiquitin specific protease 1), COPS7B (COP9 signalosome subunit 7 B) and CHEK1 (Checkpoint kinase 1). The result of comparisons between the controls and the Pb-exposed workers show that DMPs were significantly enriched in genes related to nerve conduction and cell cycle. Between DNA-damaged group and DNA-undamaged group, differentially methylated genes were enriched in the pathways related to cell cycle and DNA integrity checkpoints. Additionally, methylation levels of RRAGC and USP1 were negatively associated with BLLs (P < 0.05), and the former mediated 19.40% of the effect of Pb on the % tail DNA. These findings collectively indicated that Pb-induced DNA damage was closely related to methylation of genes in cell cycle regulation, and methylation levels of RRAGC were involved in Pb-induced genotoxicity.
Collapse
Affiliation(s)
- Yu Meng
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Mengyu Zhou
- The MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuanwei Wang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Guanghui Zhang
- Department of Environmental Health, College of Preventive Medicine, Army Medical University, Chongqing, China; Department of Occupational & Environmental Health, School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Yuting Tu
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Shiyang Gong
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - Yunxia Zhang
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China
| | - David C Christiani
- Environmental Medicine and Epidemiology Program, Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - William Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania, and Shantou University Medical College, Shantou, China
| | - Yun Liu
- The MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhao-Lin Xia
- Department of Occupational Health & Toxicology, School of Public Health, Fudan University, Shanghai, China; School of Public Health, Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
8
|
Zhao Y, Mao A, Zhang R, Guan S, Lu J. SIRT1/mTOR pathway-mediated autophagy dysregulation promotes Pb-induced hepatic lipid accumulation in HepG2 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:549-563. [PMID: 34842334 DOI: 10.1002/tox.23420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Lead (Pb) is a common and toxic metal pollutant in the ecological environment and has drawn significant attention due to its presence in various channels, including the use of lead-based paint, mineral extraction and smelting, exhaust gas from gasoline combustion. Autophagy is an essential catabolic pathway and blocked autophagy may result in abnormal lipid metabolism in liver. A body of evidence demonstrates that Pb exposure causes abnormal lipid droplet (LDs) accumulation in the liver, but the mechanism remains unknown. Here, we investigated whether Pb induced lipid accumulation by regulating autophagy in HepG2 cells. In this study, we found that Pb (50 μM) blocked the autophagy flux mainly by transcription factor EB (TFEB)-mediated impairment of lysosome formation and activity. Then we demonstrated that the dense lipid accumulation was observed upon Pb exposure, and induction of autophagy by the autophagy activator rapamycin (Rap) alleviated Pb-induced lipid accumulation, while suppression of autophagy by chloroquine (CQ) exacerbated Pb-induced lipid accumulation, suggested that Pb-induced autophagy blockage might be responsible for lipid accumulation. Moreover, we demonstrated that the SIRT1/mTOR pathway participated in Pb-induced autophagy dysregulation, leading to Pb-induced hepatic lipid accumulation. In summary, these results revealed a new insight into the relationship between Pb-caused autophagy dysregulation and lipid accumulation for the first time and highlight autophagy as a novel therapeutic target against Pb-induced hepatic lipid accumulation which supplying the theoretical basis and potential strategies for the intervention and treatment of Pb-related disease.
Collapse
Affiliation(s)
- Yanan Zhao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Ankang Mao
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Wang X, Tewari N, Sato F, Tanimoto K, Thangavelu L, Makishima M, Bhawal UK. Biphasic Functions of Sodium Fluoride (NaF) in Soft and in Hard Periodontal Tissues. Int J Mol Sci 2022; 23:ijms23020962. [PMID: 35055148 PMCID: PMC8780524 DOI: 10.3390/ijms23020962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium fluoride (NaF) is widely used in clinical dentistry. However, the administration of high or low concentrations of NaF has various functions in different tissues. Understanding the mechanisms of the different effects of NaF will help to optimize its use in clinical applications. Studies of NaF and epithelial cells, osteoblasts, osteoclasts, and periodontal cells have suggested the significant roles of fluoride treatment. In this review, we summarize recent studies on the biphasic functions of NaF that are related to both soft and hard periodontal tissues, multiple diseases, and clinical dentistry.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Nitesh Tewari
- Centre for Dental Education and Research, Division of Pedodontics and Preventive Dentistry, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Fuyuki Sato
- Shizuoka Cancer Center, Pathology Division, Shizuoka 411-8777, Japan;
| | - Keiji Tanimoto
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan;
| | - Lakshmi Thangavelu
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
| | - Makoto Makishima
- Department of Biochemistry, Nihon University School of Medicine, Tokyo 173-8610, Japan;
- Correspondence: (M.M.); (U.K.B.)
| | - Ujjal K. Bhawal
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India;
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan
- Correspondence: (M.M.); (U.K.B.)
| |
Collapse
|
10
|
Bai L, Liu R, Wang R, Xin Y, Wu Z, Ba Y, Zhang H, Cheng X, Zhou G, Huang H. Attenuation of Pb-induced Aβ generation and autophagic dysfunction via activation of SIRT1: Neuroprotective properties of resveratrol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112511. [PMID: 34273848 DOI: 10.1016/j.ecoenv.2021.112511] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
This study examined the neuroprotective properties of resveratrol (Res) and its target sirtuin1 (SIRT1) against lead (Pb)-mediated toxicity and discovered that both resveratrol treatment and SIRT1 overexpression restored blocked autophagic flux as well as reduced β-amyloid (Aβ) contents. Four-week-old male C57BL/6 mice were employed to consumed 0.2% Pb(Ac)2 solution or deionized water for 3 months followed by 12 months of Res (50 mg/kg BW) or vehicle gavage. In in vitro study, SH-SY5Y cells were pretreated with the SIRT1 activator SRT1720 (2 μM) or the inhibitor EX527 (2 μM) for 2 h, then 25 μM of Pb(Ac)2 was added and incubated for 48 h. Western blotting, RT-qPCR, enzyme-linked immunosorbent assay (ELISA), and Lyso-Tracker Red Staining were next used to estimate the potential alterations of the autophagic pathway as well as BACE1-mediated amyloid processing in response to Pb exposure, respectively. Our data revealed that Res treatment or SIRT1 activation resisted the induction of autophagy by Pb exposure through inhibition of LC3 and Beclin-1 expression and promoted the degradation of Aβ and Tau phosphorylation. Besides, the SIRT1 activator (SRT1720) downregulated the expression of BACE1, the rate-limiting enzyme for Aβ production, by inhibiting the activation of nuclear factor-κB (NF-κB) in Pb-treated SH-SY5Y cells, which resulted in reduced Aβ production. Collectively, we verified the role of Res-SIRT1-autophagy as well as the SIRT1-NF-κB-BACE1 pathway in Pb-induced neuronal cell injury by in vivo or in vitro models. Our findings further elucidate the important role of SIRT1 and Res in counteracting Pb neurotoxicity, which may provide new interventions and targets for the subsequent treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Lin Bai
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yongjuan Xin
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zuntao Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huizhen Zhang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xuemin Cheng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Guoyu Zhou
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China; Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
11
|
Guo YF, Su T, Yang M, Li CJ, Guo Q, Xiao Y, Huang Y, Liu Y, Luo XH. The role of autophagy in bone homeostasis. J Cell Physiol 2021; 236:4152-4173. [PMID: 33452680 DOI: 10.1002/jcp.30111] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Autophagy is an evolutionarily conserved intracellular process and is considered one of the main catabolism pathways. In the process of autophagy, cells are digested nonselectively or selectively to recover nutrients and energy, so it is regarded as an antiaging process. In addition to the essential role of autophagy in cellular homeostasis, autophagy is a stress response mechanism for cell survival. Here, we review recent literature describing the pathway of autophagy and its role in different bone cell types, including osteoblasts, osteoclasts, and osteocytes. Also discussed is the mechanism of autophagy in bone diseases associated with bone homeostasis, including osteoporosis and Paget's disease. Finally, we discuss the application of autophagy regulators in bone diseases. This review aims to introduce autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role and therapeutic potential in the pathogenesis of bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Yi-Fan Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya Liu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Han Q, Zhang W, Guo J, Zhu Q, Chen H, Xia Y, Zhu G. Mitochondrion: a sensitive target for Pb exposure. J Toxicol Sci 2021; 46:345-358. [PMID: 34334556 DOI: 10.2131/jts.46.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Pb exposure is a worldwide environmental contamination issue which has been of concern to more and more people. Exposure to environmental Pb and its compounds through food and respiratory routes causes toxic damage to the digestive, respiratory, cardiovascular and nervous systems, etc. Children and pregnant women are particularly vulnerable to Pb. Pb exposure significantly destroys children's learning ability, intelligence and perception ability. Mitochondria are involved in various life processes of eukaryotes and are one of the most sensitive organelles to various injuries. There is no doubt that Pb-induced mitochondrial damage can widely affect various physiological processes and cause great harm. In this review, we summarized the toxic effects of Pb on mitochondria which led to various pathological processes. Pb induces mitochondrial dysfunction leading to the increased level of oxidative stress. In addition, Pb leads to cell apoptosis via mitochondrial permeability transition pore (MPTP) opening. Also, Pb can stimulate the development of mitochondria-mediated inflammatory responses. Furthermore, Pb triggers the germination of autophagy via the mitochondrial pathway and induces mitochondrial dysfunction, disturbing intracellular calcium homeostasis. In a word, we discussed the effects of Pb exposure on mitochondria, hoping to provide some references for further research and better therapeutic options for Pb exposure.
Collapse
Affiliation(s)
- Qing Han
- The First Clinical Medical College of Nanchang University, China
| | - Wei Zhang
- Department of Anatomy, Medical College of Nanchang University, China
| | - JingChong Guo
- The First Clinical Medical College of Nanchang University, China
| | - Qian Zhu
- Department of Anatomy, Medical College of Nanchang University, China
| | - Hui Chen
- Department of Anatomy, Medical College of Nanchang University, China
| | - YongLi Xia
- Department of Anatomy, Medical College of Nanchang University, China
| | - Gaochun Zhu
- Department of Anatomy, Medical College of Nanchang University, China
| |
Collapse
|
13
|
Gao K, Zhang C, Tian Y, Naeem S, Zhang Y, Qi Y. The role of endoplasmic reticulum stress in lead (Pb)-induced mitophagy of HEK293 cells. Toxicol Ind Health 2020; 36:1002-1009. [PMID: 33169630 DOI: 10.1177/0748233720971882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is well-documented that lead (Pb) toxicity can affect almost all systems in living organisms. It can induce selective autophagy of mitochondria (mitophagy) by triggering reactive oxygen species production. Emerging evidence has suggested that Pb-induced autophagy can also be activated by the endoplasmic reticulum (ER) stress pathway. However, the interplay between ER stress and mitophagy remains to be elucidated. In this study, human embryonic kidney HEK293 cells were employed to investigate the role of ER stress in Pb-induced mitophagy. The results showed that the cell viability was decreased and cell damage was induced after exposure to Pb (0, 0.5, 1, 2, and 4 mM) for 24 h in a dose-dependent manner. Moreover, the expression of LC3-Ⅱ was significantly increased, and the expression of HSP60 was dramatically decreased after exposure to 1 mM and 2 mM Pb, indicating the induction of mitophagy following Pb exposure. Meanwhile, the expressions of activating transcription factor 6, inositol-requiring protein-1α, CCAAT/enhancer binding protein homologous protein, and glucose-regulated protein 78 were dramatically increased after Pb treatment, signifying the initiation of ER stress. Notably, the mitophagic effect was significantly compromised when ER stress was inhibited by 0.5 mM 4-phenylbutyrate, which was evidenced by lesser decreases in HSP60 expression and level of LC3-Ⅱ, suggesting Pb-induced mitophagy may be activated by the ER stress. Taken together, these findings provide a better understanding of Pb toxicity and suggest that Pb-induced ER stress may play a regulatory role in the upstream of mitophagy.
Collapse
Affiliation(s)
- Ke Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, 12426Lanzhou University, Lanzhou, China
| | - Chengfei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, 12426Lanzhou University, Lanzhou, China
| | - Yihong Tian
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, 12426Lanzhou University, Lanzhou, China
| | - Sajid Naeem
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, 12426Lanzhou University, Lanzhou, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, 12426Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, 12426Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Huang Y, Liao Y, Zhang H, Li S. Lead exposure induces cell autophagy via blocking the Akt/mTOR signaling in rat astrocytes. J Toxicol Sci 2020; 45:559-567. [PMID: 32879255 DOI: 10.2131/jts.45.559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lead is a main threat to human health due to its neurotoxicity and the astrocyte is known to be a common deposit site of lead in vivo. However, the detailed mechanisms related to lead exposure in the astrocytes were unclear. In order to deeply investigate this issue, we used Sprague-Dawley (SD) rats and astrocytes isolated from the hippocampus of SD rats to establish the lead-exposed animal and cell models through treating with lead acetate. The expression levels of GFAP, LC3, and p62 in the rat hippocampus were detected by immunofluorescence and Western blot after lead exposure. The effects of autophagy on lead-exposed astrocytes were studied by further autophagy inhibitor 3-methyladenine (3-MA) induction. Transmission electron microscopy was used to observe autophagosomes in astrocytes after lead acetate treatment, followed by assessing related autophagy protein markers. In addition, some inflammatory cytokines and oxidative stress markers were also evaluated after lead exposure and 3-MA administration. We found that lead exposure induced activation of astrocytes, as evidenced by increased GFAP levels and GFAP-positive staining cells in the rat hippocampus. Moreover, lead exposure induced autophagy in astrocytes, as evidenced by increased LC3II and Beclin 1 protein levels and decreased p62 expression in both the rat hippocampus and astrocytes, and it was confirmed that this autophagy was activated through blocking the downstream Akt/target of the rapamycin (mTOR) pathway in astrocytes. Furthermore, it was shown that treatment of lead acetate increased the release of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the accumulation of malondialdehyde (MDA) and myeloperoxidase (MPO) in astrocytes, which could be alleviated by further 3-MA induction. Therefore, we conclude that lead exposure can induce the autophagy of astrocytes via blocking the Akt/mTOR pathway, leading to accelerated release of inflammatory factors and oxidative stress indicators in astrocytes.
Collapse
Affiliation(s)
- Yingying Huang
- Department of Physiology, School of Life Sciences, China Medical University, China.,School of Nursing, Jinzhou Medical University, China
| | - Yingjun Liao
- Department of Physiology, School of Life Sciences, China Medical University, China
| | - Huijun Zhang
- School of Nursing, Jinzhou Medical University, China
| | - Shuyun Li
- School of Nursing, Jinzhou Medical University, China
| |
Collapse
|
15
|
Yin K, Cui Y, Sun T, Qi X, Zhang Y, Lin H. Antagonistic effect of selenium on lead-induced neutrophil apoptosis in chickens via miR-16-5p targeting of PiK3R1 and IGF1R. CHEMOSPHERE 2020; 246:125794. [PMID: 31918102 DOI: 10.1016/j.chemosphere.2019.125794] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Environmental contamination by heavy metals, such as lead (Pb), can lead to severe immune dysfunction. MicroRNAs (miRNAs) are involved in regulating immunity. Whether Pb can regulate neutrophil apoptosis through miRNA, and whether selenium (Se) can antagonize this response are still unknown. We treated neutrophils with 12.5 μM (CH3OO)2Pb and 1 μM Na2SeO3 for 3 h, after which apoptosis was evaluated using acrideine orange/ethidium bromide (AO/EB) dual fluorescent staining and flow cytometry. The results showed that neutrophil apoptosis was significantly increased following Pb exposure, and that this response was prevented upon Se addition. Pb up-regulates miR-16-5p and leads to the subsequent down-regulation of the target genes phosphoinositide-3-kinase regulatory subunit 1 (PiK3R1), insulin-like growth factor 1 receptor (IGF1R), and phosphatidylinositol 3 kinase (Pi3K)-protein kinase B (AKT), followed by activation of the tumor protein P53 (P53)-B-cell lymphoma-2 (Bcl-2)/Bcl-2-Associated X protein (Bax)-cytochrome c (Cytc)-Caspase 9 (mitochondrial apoptotic pathway) and the tumor necrosis factor receptor superfamily member 6 (Fas)-Fas-associated death domain protein (Fadd)-Caspase 8 (death receptor pathway). Pb also triggered oxidative stress and indirectly activated the mitochondrial apoptotic pathway. We conclude that miR-16-5p plays a key role in the apoptosis of neutrophils exposed to Pb by down-regulating the expression of PiK3R1 and IGFR1, thereby activating the mitochondrial apoptotic pathway and death receptor pathway. Se can prevent Pb-induced apoptosis.
Collapse
Affiliation(s)
- Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Sun
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163002, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
16
|
Liu J, Liao G, Tu H, Huang Y, Peng T, Xu Y, Chen X, Huang Z, Zhang Y, Meng X, Zou F. A protective role of autophagy in Pb-induced developmental neurotoxicity in zebrafish. CHEMOSPHERE 2019; 235:1050-1058. [PMID: 31561294 DOI: 10.1016/j.chemosphere.2019.06.227] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Lead (Pb) is one of the most toxic heavy metals and has aroused widespread concern as it can cause severe impairments in the developing nervous system. Autophagy has been proposed as an injury factor in Pb-induced neurotoxicity. In this study, we used zebrafish embryo as a model, measured the general toxic effects of Pb, and investigated the effect of Pb exposure on autophagy, and its role in Pb-induced developmental neurotoxicity. Zebrafish embryos were exposed to Pb at concentrations of 0, 0.1, 1 or 10 μM until 4 days post-fertilization. Our data showed that exposure to 10 μM Pb significantly reduced survival rates and impaired locomotor activity. Uptake of Pb was enhanced as the concentration and duration of exposure increased. Inhibition of lysosomal degradation with bafilomycin A1 treatment abolished the suppression of Lc3-II protein expression by Pb. Furthermore, autophagosome formation was inhibited by Pb in the brain. In addition, mRNA expression of beclin1, one of the critical genes in autophagy, were decreased in Pb exposure groups at 72 h post-fertilization. Whole-mount in situ hybridization assay showed that beclin1 gene expression in the brain was reduced by Pb. Rapamycin, an autophagy inducer, partly resolved developmental neurotoxicity induced by Pb exposure. Our results suggest that autophagy plays a protective role in the developmental neurotoxicity of Pb in zebrafish embryos and larvae.
Collapse
Affiliation(s)
- Jiaxian Liu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Tu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Huang
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaohui Chen
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhibin Huang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res 2019; 7:28. [PMID: 31666998 PMCID: PMC6804951 DOI: 10.1038/s41413-019-0058-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily conserved intracellular process, in which domestic cellular components are selectively digested for the recycling of nutrients and energy. This process is indispensable for cell homeostasis maintenance and stress responses. Both genetic and functional studies have demonstrated that multiple proteins involved in autophagic activities are critical to the survival, differentiation, and functioning of bone cells, including osteoblasts, osteocytes, and osteoclasts. Dysregulation at the level of autophagic activity consequently disturbs the balance between bone formation and bone resorption and mediates the onset and progression of multiple bone diseases, including osteoporosis. This review aims to introduce the topic of autophagy, summarize the understanding of its relevance in bone physiology, and discuss its role in the onset of osteoporosis and therapeutic potential.
Collapse
|
18
|
Pan Y, Li Z, Wang Y, Yan M, Wu J, Beharee RG, Yu J. Sodium fluoride regulates the osteo/odontogenic differentiation of stem cells from apical papilla by modulating autophagy. J Cell Physiol 2019; 234:16114-16124. [PMID: 30767218 DOI: 10.1002/jcp.28269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Fluoride (sodium fluoride) is thought to be essential in the development of tooth, and research shows that fluoride can modulate the differentiation of dental stem cells. However, the effects of fluoride on the committed differentiation of stem cells from apical papilla (SCAPs) and the underlying mechanisms remain unclear. Here, SCAPs were isolated from healthy extracted human third molars with immature roots and then were cultured with NaF conditioned media. Cell Counting Kit-8, EdU staining, and flow cytometry were performed to detected the proliferation activity. Alkaline phosphatase (ALP) activity, Alizarin Red staining, Western blot assay, and real-time reverse-transcription polymerase chain reaction were applied to assess the osteo/odontogenic differentiation NaF-treated SCAPs. Western blot assay and transmission electron microscope were used to evaluate the autophagy involved in the differentiation of SCAPs. ALP activity, ALP protein, and messenger RNA (mRNA) expression showed that 0.5 mM was the optimal concentration for the induction of SCAPs by NaF. 0.5 mM NaF-treated SCAPs induced more mineralized nodules as compared with untreated cells. Moreover, the osteo/odontogenic markers (RUNX2, OSX, DSP, and OCN) in mRNA levels were upregulated while the protein levels of these markers increased considerably in 0.5 mM NaF-treated SCAPs. Furthermore, the autophagy-related proteins (LC3, ATG5, and Beclin1) increased in NaF-treated SCAPs, and the osteo/odontogenic makers significantly decreased while silencing ATG5 to block autophagy. In all, sodium fluoride can regulate the osteo/odontogenic differentiation of SCAPs by modulating autophagy.
Collapse
Affiliation(s)
- Yin Pan
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zehan Li
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanqiu Wang
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yan
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jintao Wu
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Romila Gobin Beharee
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinhua Yu
- Key Laboratory of Oral Diseases of Jiangsu Province, Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Endodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Sun K, Mei W, Mo S, Xin L, Lei X, Huang M, Chen Q, Han L, Zhu X. Lead exposure inhibits osteoblastic differentiation and inactivates the canonical Wnt signal and recovery by icaritin in MC3T3-E1 subclone 14 cells. Chem Biol Interact 2019; 303:7-13. [DOI: 10.1016/j.cbi.2019.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 10/27/2022]
|
20
|
A Review of Metal Exposure and Its Effects on Bone Health. J Toxicol 2018; 2018:4854152. [PMID: 30675155 PMCID: PMC6323513 DOI: 10.1155/2018/4854152] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/28/2018] [Accepted: 11/20/2018] [Indexed: 12/21/2022] Open
Abstract
The presence of metals in the environment is a matter of concern, since human activities are the major cause of pollution and metals can enter the food chain and bioaccumulate in hard and soft tissues/organs, which results in a long half-life of the metal in the body. Metal intoxication has a negative impact on human health and can alter different systems depending on metal type and concentration and duration of metal exposure. The present review focuses on the most common metals found in contaminated areas (cadmium, zinc, copper, nickel, mercury, chromium, lead, aluminum, titanium, and iron, as well as metalloid arsenic) and their effects on bone tissue. Both the lack and excess of these metals in the body can alter bone dynamics. Long term exposure and short exposure to high concentrations induce an imbalance in the bone remodeling process, altering both formation and resorption and leading to the development of different bone pathologies.
Collapse
|
21
|
Gu X, Han M, Du Y, Wu Y, Xu Y, Zhou X, Ye D, Wang HL. Pb disrupts autophagic flux through inhibiting the formation and activity of lysosomes in neural cells. Toxicol In Vitro 2018; 55:43-50. [PMID: 30496793 DOI: 10.1016/j.tiv.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/10/2018] [Accepted: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Lead (Pb) has long been known as a metallic toxin to exert detrimental effects on human health, particularly on the central nervous system (CNS). Misregulated autophagy was regularly associated with multiple cellular dysfunctions and human diseases. However, the role of autophagy underlying Pb-induced neurotoxicity remains to be elucidated. In this study, we demonstrated that Pb promoted the accumulation of autophagosomes in PC12 cells, and subsequent findings revealed that this autophagosome accumulation was primarily caused by the inhibition of autophagic flux. Moreover, the results showed that Pb affected autophagy course through increasing Beclin 1 and ATG5 expression levels. Specifically, by double labeling with LC3-II (a marker of autophagosome) and LAMP-1 (a marker of lysosome), Pb impaired fusion between autophagosomes and lysosomes. Additionally, Pb exposure significantly reduced the number or size of lysosomes via decreasing the level of LAMP1, which is confirmed by the LysoTracker Red staining. Furthermore, the impairment of lysosomal activity was also signaled by the altered pH value of this acidic organelle. Overall, Pb exposure led to injuries of autophagy of neural cells through inhibiting the genesis and activity of lysosomes. The data provides insight with the neurotoxicity of Pb in a novel perspective, autophagy.
Collapse
Affiliation(s)
- Xiaozhen Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Miaomiao Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yang Du
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yulan Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Yi Xu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Xianxuan Zhou
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Danlei Ye
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China
| | - Hui-Li Wang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, PR China.
| |
Collapse
|
22
|
Abstract
Aluminum (Al) exposure has adverse effects on osteoblasts, and the effect might be through autophagy-associated apoptosis. In this study, we showed that aluminum trichloride (AlCl3) could induce autophagy in MC3T3-E1 cells, as demonstrated by monodansylcadaverine (MDC) staining and the expressions of the ATG3, ATG5, and ATG9 genes. We found AlCl3 inhibited MC3T3-E1 cell survival rate and caused apoptosis, as evidenced by CCK-8 assay, Annexin V/PI double staining, and increased expressions of Bcl-2, Bax, and Caspase-3 genes. In addition, increased autophagy induced by rapamycin further attenuated the MC3T3-E1 cell apoptosis rate after AlCl3 exposure. These results support the hypothesis that autophagy plays a protective role in impeding apoptosis caused by AlCl3. Activating autophagy may be a strategy for treatment of Al-induced bone disease.
Collapse
Affiliation(s)
- Xu Yang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Harbin, 150030, China
| | - Jian Zhang
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Harbin, 150030, China
| | - Qiang Ji
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Harbin, 150030, China
| | - Fan Wang
- Heilongjiang Veterinary Drugs and Feed Monitor, Harbin, 150030, China
| | - Miao Song
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Harbin, 150030, China
| | - Yanfei Li
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Road, Harbin, 150030, China.
| |
Collapse
|
23
|
Chu BX, Fan RF, Lin SQ, Yang DB, Wang ZY, Wang L. Interplay between autophagy and apoptosis in lead(II)-induced cytotoxicity of primary rat proximal tubular cells. J Inorg Biochem 2018; 182:184-193. [DOI: 10.1016/j.jinorgbio.2018.02.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
|
24
|
Zhao Y, Li Y, Gao Y, Yuan M, Manthari RK, Wang J, Wang J. TGF-β1 acts as mediator in fluoride-induced autophagy in the mouse osteoblast cells. Food Chem Toxicol 2018; 115:26-33. [DOI: 10.1016/j.fct.2018.02.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/24/2018] [Accepted: 02/28/2018] [Indexed: 11/25/2022]
|
25
|
Gu X, Qi Y, Feng Z, Ma L, Gao K, Zhang Y. Lead (Pb) induced ATM-dependent mitophagy via PINK1/Parkin pathway. Toxicol Lett 2018; 291:92-100. [PMID: 29660402 DOI: 10.1016/j.toxlet.2018.04.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/23/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
Lead (Pb), a widely distributed environmental pollutant, is known to induce mitochondrial damage as well as autophagy in vitro and in vivo. In this study, we found that Pb could trigger mitophagy in both HEK293 cells and the kidney cortex of male Kunming mice. However, whether ataxia telangiectasis mutated (ATM) which is reported to be linked with PTEN-induced putative kinase 1 (PINK1)/Parkin pathway (a well-characterized mitophagic pathway) participates in the regulation of Pb-induced mitophagy and its exact role remains enigmatic. Our results indicated that Pb activated ATM in vitro and in vivo, and further in vitro studies showed that ATM could co-localize with PINK1 and Parkin in cytosol and interact with PINK1. Knockdown of ATM by siRNA blocked Pb-induced mitophagy even under the circumstance of enhanced accumulation of PINK1 and mitochondrial Parkin. Intriguingly, elevation instead of reduction in phosphorylation level of PINK1 and Parkin was observed in response to ATM knockdown and Pb did not contribute to the further increase of their phosphorylation level, implying that ATM indirectly regulated PINK1/Parkin pathway. These findings reveal a novel mechanism for Pb toxicity and suggest the regulatory importance of ATM in PINK1/Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Xueyan Gu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongmei Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zengxiu Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lin Ma
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ke Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
26
|
Zhao D, Zhang X. Selenium Antagonizes the Lead-Induced Apoptosis of Chicken Splenic Lymphocytes In Vitro by Activating the PI3K/Akt Pathway. Biol Trace Elem Res 2018; 182:119-129. [PMID: 28681127 DOI: 10.1007/s12011-017-1088-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/23/2017] [Indexed: 11/25/2022]
Abstract
Lead (Pb) pollution has become one of the most serious global ecological problems. In animals, Pb ingestion induces apoptosis in many tissues. However, the mechanisms by which Pb induces apoptosis in chicken splenic lymphocytes in vitro via the PI3K/Akt pathway and the antagonistic effect of selenium (Se) on Pb remain unclear. Therefore, we established the in vitro Se-Pb interaction model in chicken splenic lymphocytes and examined the frequency of apoptotic cells using acridine orange/ethidium bromide (AO/EB) staining and the TdT-mediated dUTP nick end labeling assay and detected the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS). The expression of PI3K/Akt pathway-related genes was also examined by qRT-PCR and western blotting. MDA and ROS levels were markedly increased, whereas the activities of GPx, SOD, and CAT were significantly decreased; the levels of the PI3K, Akt, and Bcl-2 messenger RNAs (mRNAs) and proteins were decreased; and the levels of the p53, Bax, cytochrome c (Cyt-c), caspase 3, and caspase 9 mRNAs and proteins were increased in the Pb group. In addition, the frequency of apoptotic cells was also significantly increased by the Pb treatment. However, Se supplementation during Pb exposure observably attenuated Pb-induced apoptosis; increased the levels of the PI3K, Akt, and Bcl-2 mRNAs and proteins; and decrease the levels of the p53, Bax, Cyt-c, caspase 3, and caspase 9 mRNAs and proteins in the chicken spleen. In conclusion, Pb exposure causes oxidative stress, inhibits the PI3K/Akt pathway, and subsequently induces apoptosis in chicken splenic lymphocytes in vitro, and these effects are partially attenuated by Se supplementation. To the best of our knowledge, this study is the first to reveal the antagonistic effect of Se on Pb-induced apoptosis of chicken splenic lymphocytes in vitro via the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Da Zhao
- College of Science, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, People's Republic of China
| | - Xinyan Zhang
- College of Science, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, People's Republic of China.
| |
Collapse
|
27
|
Li S, Zhao H, Wang Y, Shao Y, Wang B, Wang Y, Xing M. Regulation of autophagy factors by oxidative stress and cardiac enzymes imbalance during arsenic or/and copper induced cardiotoxicity in Gallus gallus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:125-134. [PMID: 29035754 DOI: 10.1016/j.ecoenv.2017.10.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/05/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Basal autophagy has an indispensable role in the functioning and maintenance of cardiac geometry under physiological conditions. Recently, increasing evidence has demonstrated that arsenic (As)/copper (Cu) play important roles in the autophagy of the heart. The current study was to evaluate whether oxidative damage by As or/and Cu was correlated with autophagy through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway in the heart of birds. Arsenic trioxide (30mg/kg) or/and cupric sulfate (300mg/kg) were administered in a basal diet to male Hy-line chickens (one-day-old) for 12 weeks. The results showed that heart weight/body weight ratio decreased in the As + Cu group only at 4, 8 and 12 weeks. Moreover, we observed that As or/and Cu decreased high-density lipoprotein cholesterol (HDL-C) concentrations, increased total cholesterol (T-CHO) concentrations and cardiac enzymes activities in the serum. On the other hand, As or/and Cu significantly reduced the activities of total antioxidant (T-AOC), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px)) along with decreased nonenzymic antioxidant (glutathione (GSH)) concentrations and increased malondialdehyde (MDA) concentrations in the heart. Furthermore, As or/and Cu could induce autophagy in the heart of chickens through decreased mRNA levels of TORC1, TORC2, microtubule associated light chains 3-I (LC3-I) and increased PI3K, AKT1, Beclin1, autophagy associated gene 4B (Atg4B), microtubule associated light chains 3-II (LC3-II), autophagy associated gene 5 (Atg5) and Dynein. Meanwhile, ultrastructural examinations showed that As/Cu could result in the appearance of autolygosomes, autophagic vacuoles and double-membrane structures in the heart. In conclusion, As or/and Cu induced cardiac damage and autophagy via elevating cardiac enzymes activities, inducing oxidative stress and activating the PI3K/AKT/mTORC pathway in heart of chickens. Moreover, As and Cu had a possible synergistic relationship in the heart of chickens.
Collapse
Affiliation(s)
- Siwen Li
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| | - Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yizhi Shao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Bangyi Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yulong Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| |
Collapse
|
28
|
Zhang S, Liu Y, Liang Q. Low-dose dexamethasone affects osteoblast viability by inducing autophagy via intracellular ROS. Mol Med Rep 2018; 17:4307-4316. [PMID: 29363725 PMCID: PMC5802204 DOI: 10.3892/mmr.2018.8461] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/18/2017] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are closely associated with the progression of GC-induced osteoporosis (GIOP) by inhibiting osteoblast viability. However, endogenous GCs are important for bone development. In addition, previous studies have demonstrated that GCs could induce autophagy, a cytoprotective process that is protective against various stressors. In the present study, the aim is to explore whether osteoblasts exhibited dose-dependent viability in the presence of GCs due to autophagy. hFOB 1.19 osteoblasts were treated with various doses of dexamethasone (DEX; 10−8-10−4 M) for 0, 24, 48 and 72 h. The results revealed a biphasic effect of DEX on the viability of hFOB 1.19 cells; a high dose of DEX (≥10−6 M) accelerated cell apoptosis, while a low dose of DEX (10−8 M) increased cell viability. Furthermore, significantly increased autophagy was observed in the low dose DEX treatment group, as indicated by the expression of the autophagy-associated proteins beclin 1 and microtubule-associated protein light chain 3, and the detection of autophagosomes. Another finding was that DEX upregulated intracellular reactive oxygen species (ROS), which was decreased by the autophagy agonist rapamycin. The increase in autophagy and cell viability associated with low-dose DEX (10−8 M) was suppressed by the ROS scavenger catalase and the autophagy inhibitor 3-methyladenine. In conclusion, the results revealed that GCs affected osteoblast viability in a dose-dependent manner. A low dose of GCs increased osteoblast viability by inducing autophagy via intracellular ROS. The results indicate that autophagy may be a novel mechanism by which osteoblasts survive GC exposure and provide a potential therapeutic target for treating GIOP.
Collapse
Affiliation(s)
- Shaokun Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Yongyi Liu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| | - Qingwei Liang
- Department of Sports Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110000, P.R. China
| |
Collapse
|
29
|
Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 2018; 282:100-108. [DOI: 10.1016/j.toxlet.2017.10.021] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 11/21/2022]
|
30
|
Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells. Int J Biochem Cell Biol 2017; 93:32-40. [DOI: 10.1016/j.biocel.2017.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/10/2017] [Accepted: 10/13/2017] [Indexed: 12/13/2022]
|
31
|
Zhang J, Zhu Y, Shi Y, Han Y, Liang C, Feng Z, Zheng H, Eng M, Wang J. Fluoride-Induced Autophagy via the Regulation of Phosphorylation of Mammalian Targets of Rapamycin in Mice Leydig Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8966-8976. [PMID: 28927274 DOI: 10.1021/acs.jafc.7b03822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Fluoride is known to impair testicular function and decrease testosterone levels, yet the underlying mechanisms remain inconclusive. The objective of this study is to investigate the roles of autophagy in fluoride-induced male reproductive toxicity using both in vivo and in vitro Leydig cell models. Using transmission electron microscopy and monodansylcadaverine staining, we observed increasing numbers of autophagosomes in testicular tissue, especially in Leydig cells of fluoride-exposed mice. Further study revealed that fluoride increased the levels of mRNA and protein expression of autophagy markers LC3, Beclin1, and Atg 5 in primary Leydig cells. Furthermore, fluoride inhibited the phosphorylation of mammalian targets of rapamycin and 4EBP1, which in turn resulted in a decrease in the levels of AKT and PI3K mRNA expression, as well as an elevation of the level of AMPK expression in both testes and primary Leydig cells. Additionally, fluoride exposure significantly changed the mRNA expression of the PDK1, TSC, and Atg13 regulator genes in primary Leydig cells but not in testicular cells. Taken together, our findings highlight the roles of autophagy in fluoride-induced testicular and Leydig cell damage and contribute to the elucidation of the underlying mechanisms of fluoride-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Jianhai Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Yuchen Zhu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Yan Shi
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Yongli Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Chen Liang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Zhiyuan Feng
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| | - Heping Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia , Charlottesville, Virginia 22908, United States
| | - Michelle Eng
- Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania 19140, United States
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University , Taigu, Shanxi 030801, China
| |
Collapse
|
32
|
Zhu C, Bao N, Chen S, Zhao J. Dioscin enhances osteoblastic cell differentiation and proliferation by inhibiting cell autophagy via the ASPP2/NF-κβ pathway. Mol Med Rep 2017; 16:4922-4926. [PMID: 28849197 DOI: 10.3892/mmr.2017.7206] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 02/13/2017] [Indexed: 11/05/2022] Open
Abstract
Dioscin, a typical steroid saponin, has been reported to promote osteoblastic cell differentiation. However, the underling mechanisms remain to be elucidated. In the present study, it was identified that dioscin (0.5, 1, 5, 10 and 25 µg/ml) promoted MC3T3‑E1 cell proliferation and differentiation in a dose‑dependent manner. Western blot analysis showed that dioscin regulated autophagy‑associated protein expression in MC3T3‑E1 cells; it promoted the expression of apoptosis stimulated protein of p53‑2 (ASPP2), and inhibited the expression of nuclear factor (NF)‑κβ and microtubule‑associated protein 1 light chain 3β, in a concentration‑dependent manner. Caffeic acid phenethyl ester (CAPE) was used to inhibit the activation of NF‑κB and examine the effect of the ASPP2/NF‑κβ pathway on osteoblastic cell differentiation, proliferation and autophagy. It was identified that CAPE reversed the regulation of dioscin on osteoblastic cell differentiation, proliferation and autophagy. In conclusion, the present study revealed that dioscin promoted osteoblast proliferation and differentiation by inhibiting cell autophagy via the ASPP2/NF‑κβ pathway. These results are the first, to the best of our knowledge, to reveal the involvement of autophagy in the effects of dioscin on the prevention and therapy of osteoporosis.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Nirong Bao
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Shuo Chen
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jianning Zhao
- Department of Orthopaedic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
33
|
Inhibition of autophagy aggravated 4-nitrophenol-induced oxidative stress and apoptosis in NHPrE1 human normal prostate epithelial progenitor cells. Regul Toxicol Pharmacol 2017; 87:88-94. [DOI: 10.1016/j.yrtph.2017.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/24/2017] [Accepted: 05/01/2017] [Indexed: 12/20/2022]
|
34
|
Song XB, Liu G, Liu F, Yan ZG, Wang ZY, Liu ZP, Wang L. Autophagy blockade and lysosomal membrane permeabilization contribute to lead-induced nephrotoxicity in primary rat proximal tubular cells. Cell Death Dis 2017; 8:e2863. [PMID: 28594408 PMCID: PMC5520918 DOI: 10.1038/cddis.2017.262] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 12/16/2022]
Abstract
Lead (Pb) is a known nephrotoxicant that causes damage to proximal tubular cells. Autophagy has an important protective role in various renal injuries, but the role of autophagy in Pb-elicited nephrotoxicity remains largely unknown. In this study, Pb promoted the accumulation of autophagosomes in primary rat proximal tubular (rPT) cells, and subsequent findings revealed that this autophagosome accumulation was caused by the inhibition of autophagic flux. Moreover, Pb exposure did not affect the autophagosome-lysosome fusion in rPT cells. Next, we found that Pb caused lysosomal alkalinization, may be through suppression of two V-ATPase subunits. Simultaneously, Pb inhibited lysosomal degradation capacity by affecting the maturation of cathepsin B (CTSB) and cathepsin D (CTSD). Furthermore, translocation of CTSB and CTSD from lysosome to cytoplasm was observed in this study, suggesting that lysosomal membrane permeabilization (LMP) occurred in Pb-exposed rPT cells. Meanwhile, Pb-induced caspase-3 activation and apoptosis were significantly but not completely inhibited by CTSB inhibitor (CA 074) and CTSD inhibitor (pepstatin A), respectively, demonstrating that LMP-induced lysosomal enzyme release was involved in Pb-induced apoptosis in rPT cells. In conclusion, Pb-mediated autophagy blockade in rPT cells is attributed to the impairment of lysosomal function. Both inhibition of autophagic flux and LMP-mediated apoptosis contribute to Pb-induced nephrotoxicity in rPT cells.
Collapse
Affiliation(s)
- Xiang-Bin Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Fei Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zhen-Gui Yan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zong-Ping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
35
|
Sahni S, Bae DH, Jansson PJ, Richardson DR. The mechanistic role of chemically diverse metal ions in the induction of autophagy. Pharmacol Res 2017; 119:118-127. [DOI: 10.1016/j.phrs.2017.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
36
|
Liu X, Wang Y, Cao Z, Dou C, Bai Y, Liu C, Dong S, Fei J. Staphylococcal lipoteichoic acid promotes osteogenic differentiation of mouse mesenchymal stem cells by increasing autophagic activity. Biochem Biophys Res Commun 2017; 485:421-426. [PMID: 28216157 DOI: 10.1016/j.bbrc.2017.02.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/11/2017] [Indexed: 01/08/2023]
Abstract
This study sought to explore the effect of staphylococcal lipoteichoic acid (LTA) on autophagy in mouse mesenchymal stem cells (MSCs), and then influence osteogenesis through the change of autophagy. C3H10T1/2 cells were induced by osteogenic medium with the treatment of LTA at different concentrations (1, 5, 10 μg/mL); 3-methyladenine (3-MA) were used as the autophagy inhibitor, and rapamycin (rapamycin, Rap) were used to activate autophagy; the effects on osteogenesis were detected by alkaline phosphatase staining, alizarin red staining, real-time quantitative PCR, and western blotting; autophagic activity was investigated by the expression of LC3-Ⅱand p62 proteins. Compared with control group, the expression of osteogenesis markers was significantly up-regulated with the LTA treatment on the mRNA and protein level; the positive rate of alkaline phosphatase was enhanced in the LTA groups; and the formation of calcium nodules was increased simultaneously. The expression of LC3-Ⅱ protein was increased in LTA groups, while the expression of p62 protein was decreased. Inhibition of autophagy significantly reduced the effect of LTA on osteogenesis of MSCs; the promotion of LTA on osteogenic differentiation was further enhanced when adding rapamycin to activate autophagic activity. It provides new insight of prevention and treatment for bone infection.
Collapse
Affiliation(s)
- Xin Liu
- Center of Trauma of PLA, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Yuan Wang
- Center of Trauma of PLA, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Yun Bai
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Chuan Liu
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing 400038, China.
| | - Jun Fei
- Center of Trauma of PLA, Daping Hospital, Third Military Medical University, Chongqing 400042, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
37
|
Song X, Li Z, Liu F, Wang Z, Wang L. Restoration of autophagy by puerarin in lead-exposed primary rat proximal tubular cells via regulating AMPK-mTOR signaling. J Biochem Mol Toxicol 2016; 31. [DOI: 10.1002/jbt.21869] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Xiangbin Song
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an 271018 People's Republic of China
| | - Zifa Li
- Laboratory Animal Center of Shandong University of Traditional Chinese Medicine; Jinan 250355 People's Republic of China
| | - Fei Liu
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an 271018 People's Republic of China
| | - Zhenyong Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an 271018 People's Republic of China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine; Shandong Agricultural University; Tai'an 271018 People's Republic of China
| |
Collapse
|
38
|
Lu Y, Wang Z, Han W, Li H. Zoledronate induces autophagic cell death in human umbilical vein endothelial cells via Beclin-1 dependent pathway activation. Mol Med Rep 2016; 14:4747-4754. [PMID: 27748838 PMCID: PMC5102043 DOI: 10.3892/mmr.2016.5834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 09/02/2016] [Indexed: 11/17/2022] Open
Abstract
Zoledronate has been reported to exhibit pro-apoptotic and anti-angiogenic effects in endothelial cells, which partially contributes to bisphosphonate-associated osteonecrosis of the jaw (BP-ONJ). Zoledronate can also induce autophagic cell death. The present study hypothesized that Zoledronate may activate autophagy to exert pro-apoptotic effects in endothelial cells and aimed to investigate the effect of Zoledronate on human umbilical vein endothelial cells (HUVECs) and explore the underlying mechanisms. The current study demonstrated that Zoledronate induced autophagy in HUVECs in a dose-dependent manner, as demonstrated by increased levels of microtubule-associated proteins 1A/1B light chain 3B-II (LC3B-II) and Beclin-1, and decreased levels of sequestome 1 (SQSTM1). In addition, treatment with chloroquine further increased LC3B-II and increased SQSTM1 levels, indicating that Zoledronate induces autophagy by increasing autophagic activity. Flow cytometry and Hoechst 33258 staining revealed that inhibition of autophagy with 3-methyladenine markedly attenuated Zoledronate-induced apoptosis. Furthermore, genetic knockdown of Beclin-1 significantly inhibited autophagy and apoptosis induced by Zoledronate. The present study therefore demonstrated that Zoledronate may promote Beclin-1-mediated autophagy to induce endothelial cell apoptosis, and suggests that blocking autophagy may represent a novel approach for the prevention of BP-ONJ in patients receiving Zoledronate.
Collapse
Affiliation(s)
- Yong Lu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhiyong Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | - Hao Li
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
39
|
Pierrefite-Carle V, Santucci-Darmanin S, Breuil V, Gritsaenko T, Vidaud C, Creff G, Solari PL, Pagnotta S, Al-Sahlanee R, Auwer CD, Carle GF. Effect of natural uranium on the UMR-106 osteoblastic cell line: impairment of the autophagic process as an underlying mechanism of uranium toxicity. Arch Toxicol 2016; 91:1903-1914. [DOI: 10.1007/s00204-016-1833-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023]
|