1
|
Pifferi A, Chiaino E, Fernandez-Abascal J, Bannon AC, Davey GP, Frosini M, Valoti M. Exploring the Regulation of Cytochrome P450 in SH-SY5Y Cells: Implications for the Onset of Neurodegenerative Diseases. Int J Mol Sci 2024; 25:7439. [PMID: 39000543 PMCID: PMC11242626 DOI: 10.3390/ijms25137439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, β-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following β-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alice Pifferi
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Elda Chiaino
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Jesus Fernandez-Abascal
- Andalusian Centre for Developmental Biology (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Carretera de Utrera km 1, 41013 Sevilla, Spain;
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Seville, Spain
| | - Aoife C. Bannon
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Gavin P. Davey
- School of Biochemistry and Immunology, Trinity College Dublin, 3533645 Dublin, Ireland;
| | - Maria Frosini
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università di Siena, Viale A. Moro 2, 53100 Siena, Italy; (A.P.); (E.C.); (A.C.B.); (M.V.)
| |
Collapse
|
2
|
Gerlach S, Maruf AA, Shaheen SM, McCloud R, Heintz M, McAusland L, Arnold PD, Bousman CA. Effect of CYP2D6 genetic variation on patient-reported symptom improvement and side effects among children and adolescents treated with amphetamines. Pharmacogenet Genomics 2024; 34:149-153. [PMID: 38517706 DOI: 10.1097/fpc.0000000000000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
OBJECTIVES Amphetamine-based medications are recommended as a first-line pharmacotherapy for the treatment of attention-deficit/hyperactivity disorder in children and adolescents. However, the efficacy and tolerability of these medications vary across individuals, which could be related to interindividual differences in amphetamine metabolism. This study examined if genotype-predicted phenotypes of the cytochrome P450 isozyme CYP2D6 were associated with self-reported side effects and symptom improvement in youth treated with amphetamines. METHODS Two hundred fourteen participants aged 6-24 who had a history of past or current amphetamine treatment were enrolled from Western Canada. Amphetamine dose and duration information was collected from the participants along with questions regarding adherence, concomitant medications, symptom improvement and side effects. DNA was extracted from saliva samples and genotyped for CYP2D6 . Binomial logistic regression models were used to determine the effect of CYP2D6 metabolizer phenotype with and without correction for phenoconversion on self-reported symptom improvement and side effects. RESULTS Genotype-predicted CYP2D6 poor metabolizers had significantly higher odds of reporting symptom improvement when compared to intermediate metabolizers (OR = 3.67, 95% CI = 1.15-11.7, P = 0.029) after correction for phenoconversion and adjusting for sex, age, dose, duration, and adherence. There was no association between CYP2D6 metabolizer phenotype and self-reported side effects. CONCLUSION Our findings indicate that phenoconverted and genotype-predicted CYP2D6 poor metabolizer phenotype is significantly associated with higher odds of symptom improvement in children and adolescents treated with amphetamine. If replicated, these results could inform the development of future dosing guidelines for amphetamine treatment in children and adolescents.
Collapse
Affiliation(s)
- Samuel Gerlach
- Cumming School of Medicine, University of Calgary, Calgary, AB
| | - Abdullah Al Maruf
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
- Department of Psychiatry, University of Calgary
| | - Sarker M Shaheen
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
- Department of Psychiatry, University of Calgary
| | - Ryden McCloud
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
| | - Madison Heintz
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
- Department of Medical Genetics, University of Calgary
| | - Laina McAusland
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
- Department of Psychiatry, University of Calgary
- Department of Medical Genetics, University of Calgary
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
- Department of Psychiatry, University of Calgary
- Department of Medical Genetics, University of Calgary
- Alberta Children's Hospital Research Institute, University of Calgary
| | - Chad A Bousman
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary
- Department of Psychiatry, University of Calgary
- Department of Medical Genetics, University of Calgary
- Department of Physiology and Pharmacology, University of Calgary
- Alberta Children's Hospital Research Institute, University of Calgary
- Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Rajan RK, Engels M, Ramanathan M. Predicting phase-I metabolism of piceatannol: an in silico study. In Silico Pharmacol 2024; 12:52. [PMID: 38854674 PMCID: PMC11153392 DOI: 10.1007/s40203-024-00228-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/28/2024] [Indexed: 06/11/2024] Open
Abstract
Piceatannol is a natural compound found in plants and can be derived from resveratrol. While resveratrol has been extensively researched for its effects and how the body processes it, there are concerns about its use. These concerns include its limited absorption in the body, the need for specific dosages, potential interactions with other drugs, lack of standardization, and limited clinical evidence to support its benefits. Interestingly, Piceatannol, another compound derived from resveratrol, has received less attention from researchers but appears to offer advantages. It has better bioavailability and seems to have a more favorable therapeutic profile compared to resveratrol. Surprisingly, no previous attempts have been made to explore or predict the metabolites of piceatannol when it interacts with the enzyme cytochrome P450. This study aims to fill that gap by predicting how piceatannol is metabolized by cytochrome P450 and assessing any potential toxicity associated with its metabolites. This research is interesting because it's the first of its kind to investigate the metabolic fate of piceatannol, especially in the context of cytochrome P450. The findings have the potential to significantly contribute to the field of piceatannol research, particularly in the food industry where this compound has applications and implications. Graphical abstract
Collapse
Affiliation(s)
- Ravi Kumar Rajan
- Department of Pharmacology, School of Pharmaceutical Sciences, Girijananda Chowdhury University, Tezpur Campus, Tezpur, Assam India
- Present Address: Department of Pharmacology, Himalayan Pharmacy Institute, Majitar, East Sikkim 737136 India
| | - Maida Engels
- Department of Pharmaceutical Chemistry, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| | - Muthiah Ramanathan
- Department of Pharmacology, PSG College of Pharmacy, Coimbatore, Tamil Nadu India
| |
Collapse
|
4
|
Ding L, Zhang CM. Occurrence, ecotoxicity and ecological risks of psychoactive substances in surface waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171788. [PMID: 38499097 DOI: 10.1016/j.scitotenv.2024.171788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Psychoactive substances (PSs) represent a subset of emerging contaminants. Their widespread production and utilization contribute to a growing ecological burden and risk on a global scale. Conventional wastewater treatment methods have proven insufficient in adequately removing psychoactive substances, leading to their occurrence in surface water ecosystems worldwide. As of present, however, a thorough understanding of their geographical prevalence and distribution patterns remains elusive. Further, in the existing literature, there is a scarcity of comprehensive overviews that systematically summarize the toxicity of various psychoactive substances towards aquatic organisms. Through summarizing almost 140 articles, the present study provides an overview of the sources, pollution status, and biotoxicity of psychoactive substances in surface waters, as well as an assessment of their ecological risks. Concentrations of several psychoactive substances in surface waters were found to be as high as hundreds or even thousands of ng·L-1. In parallel, accumulation of psychoactive substances in the tissues or organs of aquatic organisms was found to potentially cause certain adverse effects, including behavioral disorders, organ damage, and DNA changes. Oxidative stress was found to be a significant factor in the toxic effects of psychoactive substances on organisms. The application of the risk quotient approach indicated that psychoactive substances posed a medium to high risk in certain surface water bodies, as well as the need for sustained long-term attention and management strategies.
Collapse
Affiliation(s)
- Lin Ding
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Chong-Miao Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
5
|
Carneiro P, Ferreira M, Marisa Costa V, Carvalho F, Capela JP. Protective effects of amphetamine and methylphenidate against dopaminergic neurotoxicants in SH-SY5Y cells. Curr Res Toxicol 2024; 6:100165. [PMID: 38562456 PMCID: PMC10982568 DOI: 10.1016/j.crtox.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Full treatment of the second most common neurodegenerative disorder, Parkinson's disease (PD), is still considered an unmet need. As the psychostimulants, amphetamine (AMPH) and methylphenidate (MPH), were shown to be neuroprotective against stroke and other neuronal injury diseases, this study aimed to evaluate their neuroprotective potential against two dopaminergic neurotoxicants, 6-hydroxydopamine (6-OHDA) and paraquat (PQ), in differentiated human dopaminergic SH-SY5Y cells. Neither cytotoxicity nor mitochondrial membrane potential changes were seen following a 24-hour exposure to either therapeutic concentration of AMPH or MPH (0.001-10 μM). On the other hand, a 24-hour exposure to 6-OHDA (31.25-500 μM) or PQ (100-5000 μM) induced concentration-dependent mitochondrial dysfunction, assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and lysosomal damage, evaluated by the neutral red uptake assay. The lethal concentrations 25 and 50 retrieved from the concentration-toxicity curves in the MTT assay were 99.9 µM and 133.6 µM for 6-OHDA, or 422 µM and 585.8 µM for PQ. Both toxicants caused mitochondrial membrane potential depolarization, but only 6-OHDA increased reactive oxygen species (ROS). Most importantly, PQ-induced toxicity was partially prevented by 1 μM of AMPH or MPH. Nonetheless, neither AMPH nor MPH could prevent 6-OHDA toxicity in this experimental model. According to these findings, AMPH and MPH may provide some neuroprotection against PQ-induced neurotoxicity, but further investigation is required to determine the exact mechanism underlying this protection.
Collapse
Affiliation(s)
- Patrícia Carneiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Mariana Ferreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - João Paulo Capela
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| |
Collapse
|
6
|
Nguyen K, Sanchez CL, Brammer-Robbins E, Pena-Delgado C, Kroyter N, El Ahmadie N, Watkins JM, Aristizabal-Henao JJ, Bowden JA, Souders CL, Martyniuk CJ. Neurotoxicity assessment of QoI strobilurin fungicides azoxystrobin and trifloxystrobin in human SH-SY5Y neuroblastoma cells: Insights from lipidomics and mitochondrial bioenergetics. Neurotoxicology 2022; 91:290-304. [PMID: 35700754 DOI: 10.1016/j.neuro.2022.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/01/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
Strobilurin fungicides are quinone outside inhibitors (QoI) used to treat fungal pathogens for agricultural and residential use. Here, we compared the potential for neurotoxicity of the widely used strobilurins, azoxystrobin (AZS) and trifloxystrobin (TFS), in differentiated human SH-SY5Y cells. Fungicides did not include cytotoxicity up to 200 µM but both induced loss of cell viability at 48 h, with TFS showing slightly higher toxicity that AZS. Caspase 3/7 activity was induced in SH-SY5Y cells by both fungicides at 48 h (50 µM for AZS and 25 µM for TFS). ATP levels were reduced following a 24-hour exposure to > 25 µM AZS and > 6.25 µM TFS and both fungicides rapidly impaired oxidative respiration (~12.5 µM for AZS and ~3.125 µM TFS) and decreased oligomycin-induced ATP production, maximal respiration, and mitochondrial spare capacity. AZS at 100 µM showed a continual impairment of mitochondrial membrane potential (MMP) between 4 and 48 h while TFS at > 50 µM decreased MMP at 24 h. Taken together, TFS exerted higher mitochondrial toxicity at lower concentrations compared to AZS in SH-SY5Y cells. To discern toxicity mechanisms of strobilurin fungicides, lipidomics was conducted in SH-SY5Y cells following exposure to 6.25 µM and 25 µM AZS, and a total of 1595 lipids were detected, representing 49 different lipid classes. Lipid classes with the largest proportion of lipids detected in SH-SY5Y cells included triglycerides (17%), phosphatidylethanolamines (8%), ether-linked triglycerides (8%), phosphatidylcholines (7%), ether-linked phosphatidylethanolamines (6%), and diacylglycerols (5%). Together, these 5 lipid classes accounted for over 50% of the total lipids measured in SH-SY5Y cells. Lipids that were increased by AZS included acyl carnitine, which plays a role in long chain fatty acid utilization for mitochondrial β-oxidation, as well as non-modified, ether linked, and oxidized triacylglycerols, suggesting compensatory upregulation of triglyceride biosynthesis. The ceramide HexCer-NS, linked to neurodegenerative diseases, was decreased in abundance following AZS exposure. In summary, strobilurin fungicides rapidly inhibit mitochondrial oxidative respiration and alter the abundance of several lipids in neuronal cells, relevant for understanding environmental exposure risks related to their neurotoxicity.
Collapse
Affiliation(s)
- Khaai Nguyen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Christina L Sanchez
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Brammer-Robbins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Carlos Pena-Delgado
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Noa Kroyter
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Nader El Ahmadie
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Jacqueline M Watkins
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Juan J Aristizabal-Henao
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; BERG LLC, 500 Old Connecticut Path, Framingham, MA 01701, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Christopher L Souders
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA; UF Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Chen L, Guo C, Sun Z, Xu J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. ENVIRONMENTAL RESEARCH 2021; 200:111362. [PMID: 34048744 DOI: 10.1016/j.envres.2021.111362] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 05/23/2023]
Abstract
Drugs of abuse are a group of emerging contaminants. As the prevalence of manufacture and consumption, there is a growing global environmental burden and ecological risk from the continuous release of these contaminants into environment. The widespread occurrence of drugs of abuse in waste wasters and surface waters is due to the incomplete removal through traditional wastewater treatment plants in different regions around the world. Although their environmental concentrations are not very high, they can potentially influence the aquatic organisms and ecosystem function. This paper reviews the occurrence of drugs of abuse and their metabolites in waste waters and surface waters, their bioaccumulation in aquatic plants, fishes and benthic organisms and even top predators, and the toxicological effects such as genotoxic effect, cytotoxic effect and even behavioral effect on aquatic organisms. In summary, drugs of abuse occur widely in aquatic environment, and may exert adverse impact on aquatic organisms at molecular, cellular or individual level, and even on aquatic ecosystem. It necessitates the monitoring and risk assessment of these compounds on diverse aquatic organisms in the further study.
Collapse
Affiliation(s)
- Like Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhenyu Sun
- Jiangsu Rainfine Environmental Science and Technology Co.,Ltd, Henan Branch Zhengzhou, 450000, China
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
8
|
Altered metabolic pathways elucidated via untargeted in vivo toxicometabolomics in rat urine and plasma samples collected after controlled application of a human equivalent amphetamine dose. Arch Toxicol 2021; 95:3223-3234. [PMID: 34414480 PMCID: PMC8448701 DOI: 10.1007/s00204-021-03135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/11/2021] [Indexed: 10/28/2022]
Abstract
Amphetamine is widely consumed as drug of abuse due to its stimulating and cognitive enhancing effects. Since amphetamine has been on the market for quite a long time and it is one of the most commonly used stimulants worldwide, to date there is still limited information on its effects on the metabolome. In recent years, untargeted toxicometabolomics have been increasingly used to study toxicity-related pathways of such drugs of abuse to find and identify important endogenous and exogenous biomarkers. In this study, the acute effects of amphetamine intake on plasma and urinary metabolome in rats were investigated. For this purpose, samples of male Wistar rats after a single dose of amphetamine (5 mg/kg) were compared to a control group using an untargeted metabolomics approach. Analysis was performed using normal and reversed phase liquid chromatography coupled to high-resolution mass spectrometry using positive and negative ionization mode. Statistical evaluation was performed using Welch's two-sample t test, hierarchical clustering, as well as principal component analysis. The results of this study demonstrate a downregulation of amino acids in plasma samples after amphetamine exposure. Furthermore, four new potential biomarkers N-acetylamphetamine, N-acetyl-4-hydroxyamphetamine, N-acetyl-4-hydroxyamphetamine glucuronide, and amphetamine succinate were identified in urine. The present study complements previous data and shows that several studies are necessary to elucidate altered metabolic pathways associated with acute amphetamine exposure.
Collapse
|
9
|
Magalingam KB, Radhakrishnan AK, Somanath SD, Md S, Haleagrahara N. Influence of serum concentration in retinoic acid and phorbol ester induced differentiation of SH-SY5Y human neuroblastoma cell line. Mol Biol Rep 2020; 47:8775-8788. [PMID: 33098048 DOI: 10.1007/s11033-020-05925-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.
Collapse
Affiliation(s)
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Nagaraja Haleagrahara
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia.
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
10
|
Takahashi N, Nishimura T, Harada T, Okumura A, Choi D, Iwabuchi T, Kuwabara H, Takagai S, Nomura Y, Newcorn JH, Takei N, Tsuchiya KJ. Polygenic risk score analysis revealed shared genetic background in attention deficit hyperactivity disorder and narcolepsy. Transl Psychiatry 2020; 10:284. [PMID: 32801330 PMCID: PMC7429956 DOI: 10.1038/s41398-020-00971-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Attention deficit hyperactive disorder (ADHD) is a highly heritable neurodevelopmental disorder, and excessive daytime sleepiness is frequently observed in ADHD patients. Excessive daytime sleepiness is also a core symptom of narcolepsy and essential hypersomnia (EHS), which are also heritable conditions. Psychostimulants are effective for the symptomatic control of ADHD (primary recommended intervention) and the two sleep disorders (frequent off-label use). However, the common biological mechanism for these disorders has not been well understood. Using a previously collected genome-wide association study of narcolepsy and EHS, we calculated polygenic risk scores (PRS) for each individual. We investigated a possible genetic association between ADHD and narcolepsy traits in the Hamamatsu Birth Cohort for mothers and children (HBC study) (n = 876). Gene-set enrichment analyses were used to identify common pathways underlying these disorders. Narcolepsy PRS were significantly associated with ADHD traits both in the hyperactivity domain (e.g., P-value threshold < 0.05, β [SE], 5.815 [1.774]; P = 0.002) and inattention domain (e.g., P-value threshold < 0.05, β [SE], 5.734 [1.761]; P = 0.004). However, EHS PRS was not significantly associated with either domain of ADHD traits. Gene-set enrichment analyses revealed that pathways related to dopaminergic signaling, immune systems, iron metabolism, and glial cell function involved in both ADHD and narcolepsy. Findings indicate that ADHD and narcolepsy are genetically related, and there are possible common underlying biological mechanisms for this relationship. Future studies replicating these findings would be warranted to elucidate the genetic vulnerability for daytime sleepiness in individuals with ADHD.
Collapse
Affiliation(s)
- Nagahide Takahashi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan.
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan.
- Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomoko Nishimura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Taeko Harada
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Akemi Okumura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Damee Choi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Toshiki Iwabuchi
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shu Takagai
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoko Nomura
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Queens College and Graduate Center, City University of New York, New York, NY, USA
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nori Takei
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
- Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kenji J Tsuchiya
- Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| |
Collapse
|
11
|
Ferdous N, Kudumala S, Sossi S, Carvelli L. Prolonged Amphetamine Treatments Cause Long-Term Decrease of Dopamine Uptake in Cultured Cells. Neurochem Res 2019; 45:1399-1409. [PMID: 31883055 PMCID: PMC7260268 DOI: 10.1007/s11064-019-02938-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 11/24/2022]
Abstract
Amphetamine (AMPH) is a systemic stimulant used to treat a variety of diseases including Attention Deficit Hyperactive Disorder, narcolepsy and obesity. Previous data showed that by binding to catecholamine transporters, AMPH prevents the reuptake of the neurotransmitters dopamine (DA) and norepinephrine (NE). Because AMPH, either used therapeutically at final concentrations of 1–10 µM or abused as recreational drug (50–200 µM), is taken over long periods of time, we investigated the prolonged effects of this drug on the uptake of DA. We found that, in LLC-PK1 cells stably expressing the human DA transporter (hDAT), pretreatments with 1 or 50 µM AMPH caused significant reduction in DA uptake right after the 15-h pretreatment. Remarkably, after 50 but not 1 µM AMPH pretreatment, we observed a significant reduction in DA uptake also after one, two or three cell divisions. To test whether these long-term effects induced by AMPH where conserved in a model comparable to primordial neuronal cells and native neurons, we used the human neuroblastoma cell line SH-SY5Y cells, which were reported to endogenously express both hDAT and the NE transporter. Pretreatments with 50 µM AMPH caused a significant reduction of DA uptake both right after 15 h and 3 cell divisions followed by neuro-differentiation with retinoic acid (RA) for 5 days. Under these same conditions, AMPH did not change the intracellular concentrations of ATP, ROS and cell viability suggesting, therefore, that the reduction in DA uptake was not cause by AMPH-induced toxicity. Interestingly, while 1 µM AMPH did not cause long-term effects in the LLC-PK1 cells, in the SH-SY5Y cells, it decreased the DA uptake after one, two, but not three, cell divisions and 5-day RA differentiation. These data show that besides the well-known acute effects, AMPH can also produce long-term effects in vitro that are maintained during cell division and transmitted to the daughter cells.
Collapse
Affiliation(s)
- Nafisa Ferdous
- Department of Biomedical Science, University of North Dakota, Grand Forks, ND, USA
| | - Sirisha Kudumala
- Harriet L. Wilkes Honors College, Florida Atlantic University, FL, Jupiter, USA
| | - Serena Sossi
- Integrated Biology Program, Florida Atlantic University, FL, Boca Raton, USA
| | - Lucia Carvelli
- Brain Institute, Florida Atlantic University, Jupiter, FL, USA. .,Harriet L. Wilkes Honors College, Florida Atlantic University, FL, Jupiter, USA. .,Integrated Biology Program, Florida Atlantic University, FL, Boca Raton, USA.
| |
Collapse
|
12
|
Soares J, Costa VM, Gaspar H, Santos S, de Lourdes Bastos M, Carvalho F, Capela JP. Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells. Neurotoxicology 2019; 75:158-173. [DOI: 10.1016/j.neuro.2019.08.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 10/26/2022]
|
13
|
Chierrito D, Villas-Boas CB, Tonin FS, Fernandez-Llimos F, Sanches AC, de Mello JC. Using Cell Cultures for the Investigation of Treatments for Attention Deficit Hyperactivity Disorder: A Systematic Review. Curr Neuropharmacol 2019; 17:916-925. [PMID: 31079591 PMCID: PMC7052832 DOI: 10.2174/1570159x17666190409143155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/01/2019] [Accepted: 03/29/2019] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Advances in basic and molecular biology have promoted the use of cell cultures in a wide range of areas, including the evaluation of drug efficacy, safety and toxicity. OBJECTIVE This article aims to provide a general overview of the methodological parameters of cell cultures used to investigate therapeutic options for Attention Deficit Hyperactivity Disorder. METHOD A systematic search was performed in the electronic databases PubMed, Scopus, and DOAJ. In vitro experimental studies using cell cultures were included. RESULTS A total of 328 studies were initially identified, with 16 included for qualitative synthesis. Seven studies used neuronal cells (SH-SY5Y neuroblastoma and PC12 cell line) and nine used nonneuronal cells. All the studies described the culture conditions, but most studies were inconsistent with regard to reporting results and raw data. Only one-third of the studies performed cell viability assays, while a further 30% conducted gene expression analysis. Other additional tests included electrophysiological evaluation and transporter activity. More than 50% of the studies evaluated the effects of drugs such as methylphenidate and atomoxetine, while plant extracts were assessed in four studies and polyunsaturated fatty acids in one. CONCLUSION We suggested a flowchart to guide the planning and execution of studies, and a checklist to be completed by authors to allow the standardized reporting of results. This may guide the elaboration of laboratory protocols and further in vitro studies.
Collapse
Affiliation(s)
| | | | | | | | | | - João C.P. de Mello
- Address correspondence to this author at the Department of Pharmacy, Universidade Estadual de Maringá, Maringá, PR, Brazil; Tel/Fax: +55 44 30114627; E-mail:
| |
Collapse
|
14
|
Post-mortem distribution of the synthetic cannabinoid MDMB-CHMICA and its metabolites in a case of combined drug intoxication. Int J Legal Med 2018; 132:1645-1657. [PMID: 30219927 DOI: 10.1007/s00414-018-1911-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/13/2018] [Indexed: 10/28/2022]
Abstract
This case report centres on the post-mortem distribution of the synthetic cannabinoid MDMB-CHMICA and its metabolites in the case of a 27-year-old man found dead after falling from the 24th floor of a high-rise building. Toxicological analysis of post-mortem samples confirmed, besides consumption of the synthetic cannabinoids MDMB-CHMICA (1.7 ng/mL femoral blood) and EG-018, the abuse of THC (9.3 ng/mL femoral blood), amphetamine (1050 ng/mL femoral blood), MDMA (275 ng/mL femoral blood), and cocaine. Regarding EG-018 and cocaine, only traces were detected in heart blood as well as in the brain (EG-018) and urine (cocaine), respectively, which is why no quantification was conducted in the femoral blood sample. It was concluded from femoral blood analysis that, at the time of death, the man was under the influence of the synthetic cannabinoid MDMB-CHMICA, THC, amphetamine and MDMA. Comprehensive screenings of all post-mortem specimens were conducted to elucidate the post-mortem distribution of MDMB-CHMICA and its metabolites. The MDMB-CHMICA concentrations ranged between 0.01 ng/mL (urine) and 5.5 ng/g (brain). Comparably low concentrations were detected in cardiac and femoral blood (2.1 ng/mL and 1.7 ng/mL, respectively) as well as in the psoas major muscle (1.2 ng/g). Higher concentrations were found in the lung (2.6 ng/g), liver (2.6 ng/g), and kidney (3.8 ng/g). Gastric content yielded a MDMB-CHMICA concentration of 2.4 ng/g (1.1 μg absolute). Screening for MDMB-CHMICA metabolites resulted in the detection of mainly monohydroxylated metabolites in the blood, kidney, and liver specimens. Results indicated that monohydroxylated metabolites of MDMB-CHMICA are appropriate target analytes for detecting MDMB-CHMICA intake.
Collapse
|
15
|
Almeida D, Pinho R, Correia V, Soares J, Bastos MDL, Carvalho F, Capela JP, Costa VM. Mitoxantrone is More Toxic than Doxorubicin in SH-SY5Y Human Cells: A 'Chemobrain' In Vitro Study. Pharmaceuticals (Basel) 2018; 11:ph11020041. [PMID: 29734752 PMCID: PMC6027466 DOI: 10.3390/ph11020041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/20/2022] Open
Abstract
The potential neurotoxic effects of anticancer drugs, like doxorubicin (DOX) and mitoxantrone (MTX; also used in multiple sclerosis), are presently important reasons for concern, following epidemiological data indicating that cancer survivors submitted to chemotherapy may suffer cognitive deficits. We evaluated the in vitro neurotoxicity of two commonly used chemotherapeutic drugs, DOX and MTX, and study their underlying mechanisms in the SH-SY5Y human neuronal cell model. Undifferentiated human SH-SY5Y cells were exposed to DOX or MTX (0.13, 0.2 and 0.5 μM) for 48 h and two cytotoxicity assays were performed, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction and the neutral red (NR) incorporation assays. Phase contrast microphotographs, Hoechst, and acridine orange/ethidium bromide stains were performed. Mitochondrial membrane potential was also assessed. Moreover, putative protective drugs, namely the antioxidants N-acetyl-l-cysteine (NAC; 1 mM) and 100 μM tiron, the inhibitor of caspase-3/7, Ac-DEVD-CHO (100 μM), and a protein synthesis inhibitor, cycloheximide (CHX; 10 nM), were tested to prevent DOX- or MTX-induced toxicity. The MTT reduction assay was also done in differentiated SH-SY5Y cells following exposure to 0.2 μM DOX or MTX. MTX was more toxic than DOX in both cytotoxicity assays and according to the morphological analyses. MTX also evoked a higher number of apoptotic nuclei than DOX. Both drugs, at the 0.13 μM concentration, caused mitochondrial membrane potential depolarization after a 48-h exposure. Regarding the putative neuroprotectors, 1 mM NAC was not able to prevent the cytotoxicity caused by either drug. Notwithstanding, 100 μM tiron was capable of partially reverting MTX-induced cytotoxicity in the NR uptake assay. One hundred μM Ac-DEVD-CHO and 10 nM cycloheximide (CHX) also partially prevented the toxicity induced by DOX in the NR uptake assay. MTX was more toxic than DOX in differentiated SH-SY5Y cells, while MTX had similar toxicity in differentiated and undifferentiated SH-SY5Y cells. In fact, MTX was the most neurotoxic drug tested and the mechanisms involved seem dissimilar among drugs. Thus, its toxicity mechanisms need to be further investigated as to determine the putative neurotoxicity for multiple sclerosis and cancer patients.
Collapse
Affiliation(s)
- Daniela Almeida
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Rita Pinho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Verónica Correia
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- FP-ENAS (Unidade de Investigação UFP em Energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
16
|
Li L, Cui J, Liu Z, Zhou X, Li Z, Yu Y, Jia Y, Zuo D, Wu Y. Silver nanoparticles induce SH-SY5Y cell apoptosis via endoplasmic reticulum- and mitochondrial pathways that lengthen endoplasmic reticulum-mitochondria contact sites and alter inositol-3-phosphate receptor function. Toxicol Lett 2018; 285:156-167. [PMID: 29306025 DOI: 10.1016/j.toxlet.2018.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 12/25/2022]
Abstract
Silver nanoparticles (AgNPs) have many medical and commercial applications, but their effects on human health are poorly understood. The aim of this study was to assess the effect of AgNPs on the human neuroblastoma cell line SH-SY5Y and to explore their potential mechanisms of action. We found that AgNPs decreased SH-SY5Y cell viability in a dose- and time-dependent manner. Exposure to AgNPs activated endoplasmic reticulum (ER) stress, as reflected by upregulated expression of glucose-regulated protein 78 (GRP78), phosphorylated PKR-like endoplasmic reticulum kinase (p-PERK), phosphorylated eukaryotic translation initiation factor 2α (p-eIF2α), C/EBP homology protein (CHOP), spliced X-box binding protein-1 (XBP1), and phosphorylated inositol-requiring enzyme (p-IRE), all of which are involved in the cellular unfolded protein response. Prolonged exposure of cells to AgNPs damaged calcium (Ca2+) homeostasis, increased the length of contact sites between the ER and mitochondria, altered IP3R function by the increased levels of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in the ER and enhanced mitochondrial Ca2+ uptake. Finally, Ca2+ overload and disrupted homeostasis in the mitochondria triggered apoptotic cell death. Our results suggest that caution should be exercised in the use of AgNPs in humans.
Collapse
Affiliation(s)
- Lin Li
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Jiahui Cui
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zi Liu
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Xuejiao Zhou
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Zengqiang Li
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yang Yu
- Liaoning Medical Device Test Institute, Shenyang 110179, PR China
| | - Yuanyuan Jia
- Safety Evaluation Center of Shenyang Research Institute of Chemical Industry Ltd., Shenyang 110021, PR China
| | - Daiying Zuo
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| | - Yingliang Wu
- Department of pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China.
| |
Collapse
|