1
|
Haque F, Akhtar E, Chanda BC, Ara A, Haq MA, Sarker P, Kippler M, Wagatsuma Y, von Ehrenstein OS, Raqib R. Association of chronic arsenic exposure with cellular immune profile in MINIMat adolescents: A birth cohort in Bangladesh. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 112:104583. [PMID: 39481821 DOI: 10.1016/j.etap.2024.104583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Abstract
Chronic arsenic exposure is known to affect the immune system. We aimed to evaluate the association between arsenic exposure and immune cell profile in 15 years old adolescents (n=389) in rural Bangladesh, with chronic exposure to groundwater arsenic. Single blood and urine were collected. Urinary arsenic (U-As) concentration was measured using atomic absorption spectrometry. Peripheral blood mononuclear cells (PBMC) were analyzed by flow cytometry. Non-linear association was found between U-As (median, 24.9 µg/L) and immune cells with a cut-off at U-As 20 µg/L. U-As (<20 µg/L) were significantly associated with increases in CD8+T (21 %), naïve CD8+T (42 %) and early B cells (40 %), and classical monocytes (55 %), but reduction in CD3+T cells (37%) and intermediate-monocytes (56 %). U-As (>20 µg/L) were associated with a 3 % reduction in memory B cells. Arsenic exposure was associated with altered immune cell profile in adolescents likely rendering them vulnerable to adverse health effects in later life.
Collapse
Affiliation(s)
- Farjana Haque
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Evana Akhtar
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | | | - Anjuman Ara
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Md Ahsanul Haq
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Protim Sarker
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh
| | - Maria Kippler
- Institute of Environmental Medicine, Karolinska Institutet, SE, Stockholm 171 77, Sweden
| | - Yukiko Wagatsuma
- Department of Clinical Trial and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukaba, Japan
| | | | - Rubhana Raqib
- Immunobiology Nutrition and Toxicology Laboratory, Nutrition Research Division, icddr,b, Dhaka 1212, Bangladesh.
| |
Collapse
|
2
|
Pradhan S, Ali SA, Rachamalla M, Niyogi S, Datusalia AK. Oral arsenite exposure induces inflammation and apoptosis in pulmonary tissue: acute and chronic evaluation in young and adult mice. Biometals 2024; 37:587-607. [PMID: 38267778 DOI: 10.1007/s10534-023-00577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Inorganic arsenic is a well-known environmental toxicant, and exposure to this metalloid is strongly linked with severe and extensive toxic effects in various organs including the lungs. In the present study, we aimed to investigate the acute and chronic effects of arsenite exposure on pulmonary tissue in young and adult mice. In brief, young and adult female Balb/C mice were exposed to 3 and 30 ppm arsenite daily via drinking water for 30 and 90 days. Subsequently, the animals were sacrificed and various histological and immunohistochemistry (IHC) analyses were performed using lung tissues. Our findings showed arsenite was found to cause dose-dependent pathological changes such as thickening of the alveolar septum, inflammatory cell infiltrations and lung fibrosis in young and adult mice. In addition, arsenite exposure significantly increased the expression of inflammatory markers NF-κB and TNF-α, indicating that arsenite-exposed mice suffered from severe lung inflammation. Moreover, the IHC analysis of fibrotic proteins demonstrated an increased expression of TGF-β1, α-SMA, vimentin and collagen-I in the arsenite-exposed mice compared to the control mice. This was accompanied by apoptosis, which was indicated by the upregulated expression of caspase-3 in arsenite-exposed mice compared to the control. Adult mice were generally found to be more prone to arsenite toxicity during chronic exposure relative to their younger counterparts. Overall, our findings suggest that arsenite in drinking water may induce dose-dependent and age-dependent structural and functional impairment in the lungs through elevating inflammation and fibrotic proteins.
Collapse
Affiliation(s)
- Samata Pradhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India
| | - Syed Afroz Ali
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E2, Canada.
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India.
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Uttar Pradesh, 226002, India.
| |
Collapse
|
3
|
Paul S, Hussain NAS, Lillico DME, Suara MA, Ganiyu SO, Gamal El-Din M, Stafford JL. Examining the immunotoxicity of oil sands process affected waters using a human macrophage cell line. Toxicology 2023; 500:153680. [PMID: 38006929 DOI: 10.1016/j.tox.2023.153680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/27/2023]
Abstract
Oil sands process affected water (OSPW) is produced during the surface mining of the oil sands bitumen deposits in Northern Alberta. OSPW contains variable quantities of organic and inorganic components causing toxic effects on living organisms. Advanced Oxidation Processes (AOPs) are widely used to degrade toxic organic components from OSPW including naphthenic acids (NAs). However, there is no established biological procedure to assess the effectiveness of the remediation processes. Our previous study showed that human macrophage cells (THP-1) can be used as a bioindicator system to evaluate the effectiveness of OSPW treatments through examining the proinflammatory gene transcription levels. In the present study, we investigated the immunotoxicological changes in THP-1 cells following exposure to untreated and AOP-treated OSPW. Specifically, using proinflammatory cytokine protein secretion assays we showed that AOP treatment significantly abrogates the ability of OSPW to induce the secretion of IL-1β, IL-6, IL-8, TNF-α, IL-1Ra and MCP-1. By measuring transcriptional activity as well as surface protein expression levels, we also showed that two select immune cell surface markers, CD40 and CD54, were significantly elevated following OSPW exposure. However, AOP treatments abolished the immunostimulatory properties of OSPW to enhance the surface expression of these immune proteins. Finally, a transcriptome-based approach was used to examine the proinflammatory effects of OSPW as well as the abrogation of immunotoxicity following AOP treatments. Overall, this research shows how a human macrophage cell-based biomonitoring system serves as an effective in vitro tool to study the immunotoxicity of OSPW samples before and after targeted remediation strategies.
Collapse
Affiliation(s)
- Sunanda Paul
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Monsuru A Suara
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
4
|
Liu J, Hermon T, Gao X, Dixon D, Xiao H. Arsenic and Diabetes Mellitus: A Putative Role for the Immune System. ALL LIFE 2023; 16:2167869. [PMID: 37152101 PMCID: PMC10162781 DOI: 10.1080/26895293.2023.2167869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is an enormous public health issue worldwide. Recent data suggest that chronic arsenic exposure is linked to the risk of developing type 1 and type 2 DM, albeit the underlying mechanisms are unclear. This review discusses the role of the immune system as a link to possibly explain some of the mechanisms of developing T1DM or T2DM associated with arsenic exposure in humans, animal models, and in vitro studies. The rationale for the hypothesis includes: (1) Arsenic is a well-recognized modulator of the immune system; (2) arsenic exposures are associated with increased risk of DM; and (3) dysregulation of the immune system is one of the hallmarks in the pathogenesis of both T1DM and T2DM. A better understanding of DM in association with immune dysregulation and arsenic exposures may help to understand how environmental exposures modulate the immune system and how these effects may impact the manifestation of disease.
Collapse
Affiliation(s)
- Jingli Liu
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Tonia Hermon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Xiaohua Gao
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Darlene Dixon
- Molecular Pathogenesis Group, Mechanistic Toxicology Branch, Division of the National Toxicology Program (DNTP), National Institute of Environmental Health Sciences (NIEHS), NIH, DHHS, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
5
|
Li X, Zhao B, Luo L, Zhou Y, Lai D, Luan T. In vitro immunotoxicity detection for environmental pollutants: Current techniques and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Tetra-arsenic tetra-sulfide enhances NK-92MI mediated cellular immunotherapy in all-trans retinoic acid-resistant acute promyelocytic leukemia. Invest New Drugs 2022; 40:1231-1243. [DOI: 10.1007/s10637-022-01313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
7
|
Giles BH, Mann KK. Arsenic as an immunotoxicant. Toxicol Appl Pharmacol 2022; 454:116248. [PMID: 36122737 DOI: 10.1016/j.taap.2022.116248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 10/31/2022]
Abstract
Arsenic is world-wide contaminant to which millions of people are exposed. The health consequences of arsenic exposure are varied, including cancer, cardiometabolic disease, and respiratory disorders. Arsenic is also toxic to the immune system, which may link many of the pathologies associated with arsenic exposure. The immune system can be classified into two interconnected arms: the innate and the adaptive immune responses. Herein, we discuss the effects of arsenic on key cell types within each of these arms, highlighting both in vitro and in vivo responses. These cells include macrophages, neutrophils, dendritic cells, and both B and T lymphocytes. Furthermore, we will explore data from human populations where altered immune status is implicated in disease and identify several data gaps where research is needed to complete our understanding of the immunotoxic effects of arsenic.
Collapse
Affiliation(s)
- Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
De Luca LM, Petrides VH, Darwiche N, Armey L, Palmer A, West KP. Immunodeficiency Accelerates Vitamin A Deficiency. Curr Dev Nutr 2021; 5:nzab129. [PMID: 34870072 PMCID: PMC8634461 DOI: 10.1093/cdn/nzab129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/29/2021] [Accepted: 10/20/2021] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Vitamin A deficiency increases susceptibility to infection caused by impaired immune function. OBJECTIVES We investigated whether immunodeficiency could facilitate the development of vitamin A deficiency. METHODS Vitamin A deficiency was followed in 2 mouse models of immunodeficiency: the athymic nude mouse (nu/nu) and the humoral immunodeficient SENCAR (SENsitive to CARcinogenesis) mouse. Vitamin A deficiency was also monitored in outbred Balb/c and in NIH mice. The monitoring of vitamin A deficiency was done after feeding the mice and their mothers a semisynthetic, vitamin A-deficient diet from birth of the experimental mice. These mice were weaned onto the same deficient diet at 3-4 wk of age, while control groups were fed the same diet containing 3 μg retinoic acid per gram of diet. RESULTS The immunodeficient nu/nu and SENCAR mice developed vitamin A deficiency earlier than either the heterozygous nu/+ controls or the Balb/c and NIH strains. In female mice, symptoms included depletion of liver retinol and retinyl palmitate, squamous metaplasia of the uterus, and death. Male mice lost weight more frequently and sooner than female mice, in which mortality generally occurred in the absence of loss of body weight. Pairwise comparisons using Tukey's honest significant difference test of the nu/nu and SENCAR mice versus the Balb/c and NIH mice showed a faster loss of retinol and retinyl palmitate in all pairs (P ≤ 0.0001) except for retinol when comparing nu/nu and NIH strains (P = 0.3383). CONCLUSIONS Our findings are consistent with an increased usage of liver retinol and retinyl palmitate in the immunocompromised nu/nu and in the immunodeficient SENCAR mice and suggest that compensatory mechanisms dependent on vitamin A utilization are called upon to rescue immunodeficiency both in the T-cell-deficient phenotype of the nu/nu mice and in the humoral immunodeficient SENCAR mice.
Collapse
Affiliation(s)
- Luigi M De Luca
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, MD, USA
| | | | - Nadine Darwiche
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, MD, USA
| | - Laura Armey
- Naval Postgraduate School, Monterey, CA, USA
| | - Amanda Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Keith P West
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
9
|
Li J, Guo Y, Duan X, Li B. Heme oxygenase-1 (HO-1) assists inorganic arsenic-induced immune tolerance in murine dendritic cells. CHEMOSPHERE 2021; 264:128452. [PMID: 33049506 DOI: 10.1016/j.chemosphere.2020.128452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Inorganic arsenic, a well-known human carcinogen, poses a major threat to global health. Given the immunosuppressive potentials of inorganic arsenic as well as limited understanding of this metalloid on antigen-presenting dendritic cells (DCs), we systematically screened the immune targets in response to arsenic treatment, as well as its possible molecular mechanism in cultured murine DCs. Our results denoted that arsenite (As) significantly induced immune tolerance by down-regulating the expression of phenotypic molecules, pro-inflammatory factors and T-lymphocyte helper (Th)1/Th17-inducible cytokines in lipopolysaccharides (LPS)-stimulated myeloid-derived dendritic cells (BMDCs). Inconsistent with dampened phosphorylation of immune-related proteins (nuclear factor kappa-B) NF-κB, p38 and JNK, the metalloid drastically induced the expression of Heme oxygenase-1 (HO-1) protein, which enlightened us to continuously explore the possible roles of HO-1 pathway in As-induced immune tolerance in BMDCs. In this respect, immunosuppressive properties of HO-1 pathway in BMDCs were firstly confirmed through pharmacological overexpression of HO-1 by both CoPP and CORM-2. By contrast, limited HO-1 expression by HO-1 inhibitor ZnPP specifically alleviated As-mediated down-regulation of CD80, chemokine factor C-C chemokine receptor 7 (CCR7), tumor necrosis factor (TNF) -α, Interleukin (IL)-23 and IL-6, which reminds us the peculiarity of HO-1 in As-induced immune tolerance in murine DCs. Based on these experimental findings, we postulated the immunosuppressive property of inorganic arsenic might be mediated partially by HO-1 in DCs, thus contributing to the interactions of DCs-polarized differentiation of T-lymphocyte subtype as well as the development of infections and malignant diseases.
Collapse
Affiliation(s)
- Jinlong Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China; Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuanyuan Guo
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
10
|
Islam MM, Takeyama N. Inorganic arsenic administration suppresses human neutrophil function in vitro. Hum Exp Toxicol 2020; 40:725-734. [PMID: 33063558 DOI: 10.1177/0960327120966040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Arsenic, a major environmental toxicant and pollutant, is a global public health concern. Among its many adverse effects, arsenic is immunotoxic, but its effects on human neutrophil functions are not yet well-defined. In this study, we aimed to evaluate the in vitro effects of acute low-dose NaAsO2 exposure on human polymorphonuclear neutrophils (PMNs) for 12 h on the following innate defense mechanisms: formation of neutrophil extracellular traps (NETs), production of reactive oxygen species (ROS), and phagocytosis. Phorbol myristate acetate (PMA) was added to induce NETs formation, which was quantified by measuring cell-free extracellular DNA (cf-DNA), myeloperoxidase-conjugated (MPO)-DNA and neutrophil elastase-conjugated (NE)-DNA, and confirmed by immunofluorescence labeling and imaging. Extracellular bactericidal activity by NETs was evaluated by co-culturing Escherichia coli and PMNs in the presence of a phagocytic inhibitor. Levels of NETs in the culture medium after PMA stimulation was significantly lower in PMNs pre-exposed to arsenic than those not exposed to arsenic. Immunofluorescence staining and extracellular bactericidal activity by NETs revealed similar results. Phagocytosis and ROS production by PMNs were also significantly reduced by arsenic pre-exposure. Together, our findings provide new insights in arsenic immunotoxicity and suggest how it increases susceptibility to infectious diseases in humans.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Emergency and Critical Care Medicine, 12703Aichi Medical University, Nagakute, Aichi, Japan
| | - Naoshi Takeyama
- Department of Emergency and Critical Care Medicine, 12703Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
11
|
Bahari A, Shahabi-Ghahfarrokhi I, Koolivand D. Kefiran ameliorates malfunctions in primary and functional immune cells caused by lipopolysaccharides. Int J Biol Macromol 2020; 165:619-624. [PMID: 33007323 DOI: 10.1016/j.ijbiomac.2020.09.219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 11/28/2022]
Abstract
Kefiran is a water-soluble polysaccharide well recognized as a bioactive ingredient to enhance nutritional and health-promoting features. Also, some therapeutic properties have made this macromolecule an active ingredient in ointments and oral anti-inflammatory drugs. However, the details of the molecular and cellular aspects of these effects have not been addressed. In this study, lipopolysaccharides (LPS)-induced monocytes, lymphocytes, and monocyte-derived dendritic cells (MDDCs) as representative cells for both innate and adaptive immunity were treated with kefiran for 2 h. Kefiran had an anti-inflammatory effect on monocytes to reduce pro-inflammatory cytokines, interleukin 1 β (IL-1β) & tumor necrosis factor α (TNF-α), as well as nuclear factor kappa b (NF-kb). However, it did not affect lymphocytes. Overexpression of Toll-like receptor 4 (TLR4) in LPS-induced cells was not reduced after kefiran treatment. Kefiran balanced MDDCs secretion of pro/anti-inflammatory cytokines by reducing and enhancing the expression of IL-1β and interleukin 10 (IL-10), respectively. Also, kefiran decreased the number of apoptotic immature MDDCs and promoted dose-dependent phagocytosis capacity of MDDCs. According to the results of the current study, it may be concluded that the immunomodulatory effects of kefiran are due to antagonist against innate immune receptors especially TLR4. The results of this study can be used as a guide to developing kefiran-based non-aggressive anti-inflammatory drugs. Furthermore, understanding the immunobiological effects of kefiran on monocytes and lymphocytes was another outcome of this study.
Collapse
Affiliation(s)
- Abbas Bahari
- Research Institute of Modern Biological Techniques, University of Zanjan, 45371-38791 Zanjan, Iran.
| | - Iman Shahabi-Ghahfarrokhi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Zanjan, 45371-38791 Zanjan, Iran
| | - Davoud Koolivand
- Department of Plant Protection, Faculty of Agriculture, University of Zanjan, 45371-38791 Zanjan, Iran
| |
Collapse
|
12
|
Fattahi N, Bahari A, Ramazani A, Koolivand D. In vitro immunobiological assays of methotrexate-stearic acid conjugate in human PBMCs. Immunobiology 2020; 225:151984. [DOI: 10.1016/j.imbio.2020.151984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/04/2020] [Indexed: 10/23/2022]
|
13
|
Zhao L, Liu X, Xu G, Guo Y, Sun L, Zhang C, Li X, Li B. Arsenic induces mTOR-dependent autophagy, whereas it impairs the autophagy-lysosome pathway and the potential role of TFEB in cultured dendritic cells. Metallomics 2020; 12:1230-1245. [PMID: 32519707 DOI: 10.1039/d0mt00057d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arsenic is a toxic metalloid, which also compromises immunity and causes various immunological disorders. Exposure to arsenic exerts the immunosuppressive properties of dendritic cells (DCs). Autophagy is a self-renewal process of cells, which degrades damaged macromolecules and organelles through the lysosomal pathway. Thus, herein, we attempt to clarify the impacts of autophagy and the autophagy-lysosome pathway on arsenic-exposed DCs. Bone marrow-derived dendritic cells (BMDCs) were exposed to different concentrations of arsenic (0.25, 0.5 and 1 μM) with or without LPS stimulation. Initially, we observed that arsenic induced autophagosome accumulation, significantly enhanced the LC3 II and p62 expressions and down-regulated the p-mTOR protein levels. We also determined that arsenic-induced autophagy occurred via an mTOR pathway. The results further revealed that arsenic inhibited autophagic flux in LPS-stimulated BMDCs using the autophagy inhibitor chloroquine (CQ). Meanwhile, arsenic significantly decreased the number of lysosomes, protein expression of lysosomal-specific markers LAMP1 and LAMP2, and the protein levels of lysosomal cysteine cathepsins (CTSD and CTSL). Moreover, the overexpression of transcription factor EB (TFEB), the master transcriptional regulator of autophagy and lysosome biogenesis, partially relieved arsenic-inhibited lysosomal CTSD and CTSL expressions, recovered the disorder of autophagic flux, promoted the production of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-12, and reduced anti-inflammatory cytokine IL-10 secretion. In summary, our results support the idea that arsenic induces autophagy through an mTOR-dependent pathway in cultured BMDCs. Meanwhile, arsenic weakens the process of autophagic flux, which may be partially due to lysosomal dysfunction. Furthermore, we also suggest that TFEB can positively act on the autophagy-lysosome pathway and influence the expression of immunocytokines in DCs.
Collapse
Affiliation(s)
- Lu Zhao
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ye Y, Gaugler B, Mohty M, Malard F. Old dog, new trick: Trivalent arsenic as an immunomodulatory drug. Br J Pharmacol 2020; 177:2199-2214. [PMID: 32022256 DOI: 10.1111/bph.15011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/19/2019] [Accepted: 01/28/2020] [Indexed: 12/19/2022] Open
Abstract
Trivalent arsenic (As(III)) is recently found to be an immunomodulatory agent. As(III) has therapeutic potential in several autoimmune and inflammatory diseases in vivo. In vitro, it selectively induces apoptosis of immune cells due to different sensitivity. At a non-toxic level, As(III) shows its multifaceted nature by inducing either pro- or anti-inflammatory functions of immune subsets. These effects are exerted by either As(III)-protein interactions or as a consequence of As(III)-induced homeostasis imbalance. The immunomodulatory properties also show synergistic effects of As(III) with cancer immunotherapy. In this review, we summarize the immunomodulatory effects of As(III), focusing on the effects of As(III) on immune subsets in vitro, on mouse models of immune-related diseases, and the role of As(III) in cancer immunotherapy. Updates of the mechanisms of action, the pioneer clinical trials, dosing, and adverse events of therapeutic As(III) are also provided.
Collapse
Affiliation(s)
- Yishan Ye
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Béatrice Gaugler
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Mohamad Mohty
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| | - Florent Malard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France.,AP-HP, Hôpital Saint-Antoine, Service d'Hématologie Clinique et Thérapie Cellulaire, Sorbonne Université, Paris, France
| |
Collapse
|
15
|
Wong CP, Dashner-Titus EJ, Alvarez SC, Chase TT, Hudson LG, Ho E. Zinc Deficiency and Arsenic Exposure Can Act Both Independently or Cooperatively to Affect Zinc Status, Oxidative Stress, and Inflammatory Response. Biol Trace Elem Res 2019; 191:370-381. [PMID: 30635848 PMCID: PMC6625954 DOI: 10.1007/s12011-019-1631-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/01/2019] [Indexed: 12/16/2022]
Abstract
The negative health impact of zinc deficiency overlaps significantly with arsenic exposure, and is associated with increased risk for chronic diseases. Arsenic contamination in the groundwater often co-exists in regions of the world that are prone to zinc deficiency. Notably, low zinc status shares many hallmarks of arsenic exposure, including increased oxidative stress and inflammation. Despite their common targets and frequent co-distribution in the population, little is known regarding the interaction between zinc deficiency and arsenic exposure. In this study, we tested the effect of arsenic exposure at environmentally relevant doses in combination with a physiologically relevant level of zinc deficiency (marginal zinc deficiency) on zinc status, oxidative damage, and inflammation. In cell culture, zinc-deficient THP-1 monocytes co-exposed with arsenic resulted in further reduction in intracellular zinc, as well as further increase in oxidative stress and inflammatory markers. In an animal study, zinc-deficient mice had further decrease in zinc status when co-exposed to arsenic. Zinc deficiency, but not arsenic exposure, resulted in an increase in baseline transcript abundance of inflammatory markers in the liver. Upon lipopolysaccharide challenge to elicit an acute inflammatory response, arsenic exposure, but not zinc deficiency, resulted in an increase in proinflammatory response. In summary, zinc deficiency and arsenic exposure can function independently or cooperatively to affect zinc status, oxidant stress, and proinflammatory response. The results highlight the need to consider both nutritional status and arsenic exposures together when considering their impact on health outcomes in susceptible populations.
Collapse
Affiliation(s)
- Carmen P Wong
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Sandra C Alvarez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Tyler T Chase
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Emily Ho
- School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR, 97331, USA.
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA.
- Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
16
|
Heidari F, Bahari A, Amarlou A, Fakheri BA. Fumaric acids as a novel antagonist of TLR-4 pathway mitigates arsenic-exposed inflammation in human monocyte-derived dendritic cells. Immunopharmacol Immunotoxicol 2019; 41:513-520. [PMID: 31397191 DOI: 10.1080/08923973.2019.1645166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Exposure to environmentally relevant doses of arsenic has several harmful effects on the human immune system. In traditional Eastern medicines, nettle has been used as an anti-inflammatory agent to treat rheumatism and osteoarthritis. Fumaric acid (FA) as a major effective compound in nettle was chosen based on very accurate virtual screening to find antagonist for TLR4/MD structure. In this study, the in vitro therapeutic effects of FA on arsenic-exposed monocytes-derived dendritic cells (MDDCs) were evaluated. All the canonical functions of dendritic cells in bridging innate and adaptive immune system including phagocytosis and antigen-presenting capacity, and also cytokines secretion, were evaluated after exposure to arsenic/FA. FA profoundly over-expressed antigen-presenting capacity of MDDCs after exposure to arsenic through the upregulation of MHCιι. However, phagocytosis capacity of arsenic-exposed MDDCs is not compensated for, by treatment with FA. Arsenic up-regulates pro-inflammatory cytokines independents of TLR4 pathway. FA surprisingly mitigates the up-regulation of IL-1β and TNF-α but not TLR4 and NF-kB. Moreover, FA increases the viability of MDDCs even at a high dose of arsenic. Totally, FA reduced inflammatory factors induced by arsenic. This finding confirmed that nettle and other medicinal plants containing similar structures with FA could be further analyzed as valuable candidates for the reduction of drastic effects of arsenic in human immune systems.
Collapse
Affiliation(s)
- Forouzan Heidari
- Faculty of Agriculture, Department of Plant Breeding and Biotechnology, University of Zabol , Zabol , Iran
| | - Abbas Bahari
- Research Institute of Modern Biological Techniques, University of Zanjan , Zanjan , Iran
| | - Ali Amarlou
- Research Institute of Modern Biological Techniques, University of Zanjan , Zanjan , Iran
| | - Barat Ali Fakheri
- Faculty of Agriculture, Department of Plant Breeding and Biotechnology, University of Zabol , Zabol , Iran
| |
Collapse
|
17
|
Mingxing S, Haiying W, Congsong S, Chunyu Y, Liu C, Wang Q. Acute toxicity of intratracheal arsenic trioxide instillation in rat lungs. J Appl Toxicol 2019; 39:1578-1585. [PMID: 31319442 PMCID: PMC6852324 DOI: 10.1002/jat.3841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
This study investigated the acute toxicity of different concentrations of arsenic trioxide (As2O3; ATO) on rat lungs. In total, 160 Wistar rats were randomly divided into the control, low‐, medium‐ and high‐dose groups, which were exposed to 0, 0.16, 1.60 and 16 μg/kg of ATO by intratracheal instillation, respectively. Samples were collected at 6, 12, 24, 48 and 72 hours after exposure and the dynamic changes indicative of acute lung toxicity were monitored. Compared with the control group, the exposure groups exhibited significant changes such as increased lung water content ratio and protein concentration in the bronchoalveolar lavage fluid, pulmonary interstitial thickening, cell membrane edema, increased inflammatory factor concentration, JNK and P38 were significantly activated, and the degree of phosphorylation was increased. Furthermore, all the changes in the exposure groups were exposure concentration‐dependent. ATO respiratory tract exposure can cause restrictive ventilatory disturbance in rats, and the degree of injury is exposure concentration‐dependent. To investigate the acute toxicity of arsenic trioxide on lungs, 160 Wistar rats were randomly divided into the control group, low‐, medium‐ and high‐dose groups. The results showed that there were significant changes in lung water content ratio, bronchoalveolar lavage fluid protein concentration, pulmonary interstitial thickening, cell membrane edema, inflammatory factor concentration, JNK and p38 phosphorylation in the exposed group. Collectively, acute atmospheric arsenic exposure may be associated with a risk of inflammatory lung injury, which is a health concern that deserves more attention.
Collapse
Affiliation(s)
- Su Mingxing
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Wang Haiying
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Sun Congsong
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Yuan Chunyu
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Chao Liu
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| | - Qiang Wang
- Chinese People's Liberation Army Center of Disease Control and Prevention, Beijing, China
| |
Collapse
|
18
|
Chronic arsenic exposure in drinking water interferes with the balances of T lymphocyte subpopulations as well as stimulates the functions of dendritic cells in vivo. Int Immunopharmacol 2019; 71:115-131. [PMID: 30889423 DOI: 10.1016/j.intimp.2019.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 03/09/2019] [Accepted: 03/09/2019] [Indexed: 12/12/2022]
Abstract
The immunomodulatory properties of arsenic are nowadays supposed be associated with pathological injuries of this toxicant and the details have not been clarified. Our objective was to explore inflammation, differentiation of diverse T cell subsets, as well as the phenotypic molecules and functions of dendritic cells (DCs) by chronic arsenic exposure in vivo. We exposed different concentrations of arsenic (0, 0.1, 1 and 10 mg/L) in drinking water for 6 and 12 months in C57BL/6 mice. We first confirmed that low levels of arsenic induced excess inflammation evidenced by accumulation of macrophages and lymphocytes in bronchoalveolar lavage fluid (BALF), secretion of pro-inflammatory cytokine IL-1β in BALF and serum, as well as histological analysis. Flow cytometry analysis revealed that arsenic disturbed CD4/CD8 T-cell ratio in isolated pneumonocytes and splenocytes, as well as enhanced IFN-γ and reduced IL-4 in spleen. The mRNA expressions of transcription factors (T-bet, GATA3, ROR-γt) and cytokines (IFN-γ, IL-4, IL-10, IL-23, IL-22) showed the imbalanced Th1/Th2/Th17 differentiation in arsenic exposed lung and spleen. We further testified that arsenic enhanced the percentages of CD11c+ DCs, and promoted the expressions of antigen presentation molecule MHC II and cytokine IL-12, co-stimulatory molecules (CD86, CD80), and chemokine receptors (CCR7, CCR5) in vivo. Moreover, arsenic activated the expressions of immune-related MAPKs and NF-κB. Taken together, our study here demonstrated that chronic arsenic exposure could disrupt the immune homeostasis in vivo possibly by interfering with the differentiation of Th1/Th2/Th17 subsets as well as the function of DCs.
Collapse
|
19
|
|