1
|
Vrzal R, Marcalíková A, Krasulová K, Zemánková L, Dvořák Z. Jasmone Is a Ligand-Selective Allosteric Antagonist of Aryl Hydrocarbon Receptor (AhR). Int J Mol Sci 2023; 24:15655. [PMID: 37958638 PMCID: PMC10648586 DOI: 10.3390/ijms242115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Herbal extracts represent a wide spectrum of biologically active ingredients with potential medical applications. By screening minor constituents of jasmine essential oil towards aryl hydrocarbon receptor (AhR) activity using a gene reporter assay (GRA), we found the antagonist effects of jasmone (3-methyl-2-[(2Z)-pent-2-en-1-yl]cyclopent-2-en-1-one). It inhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-, benzo[a]pyrene (BaP)-, and 6-formylindolo[3,2-b]carbazole (FICZ)-triggered AhR-dependent luciferase activity in a concentration-dependent manner. However, the inhibition differed markedly between TCDD, BaP, and FICZ, with the latter being significantly less inhibited. The dose-response analysis confirmed an allosteric type of AhR antagonism. Furthermore, jasmone efficiently inhibited AhR activation by AhR agonists and microbial catabolites of tryptophan (MICTs). TCDD- and FICZ-inducible CYP1A1 expression in primary human hepatocytes was inhibited by jasmone, whereas in the human HepG2 and LS180 cells, jasmone antagonized only TCDD-activated AhR. Jasmone only partially displaced radiolabeled TCDD from its binding to mouse Ahr, suggesting it is not a typical orthosteric ligand of AhR. TCDD-elicited AhR nuclear translocation was not affected by jasmone, whereas downstream signaling events, including the formation of the AhR:ARNT complex and enrichment of the CYP1A1 promoter, were inhibited by jasmone. In conclusion, we show that jasmone is a potent allosteric antagonist of AhR. Such discovery may help to find and/or clarify the use of jasmone in pharmaco- and phytotherapy for conditions where AhR plays a key role.
Collapse
Affiliation(s)
- Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
2
|
Nowak K, Jakopin Ž. In silico profiling of endocrine-disrupting potential of bisphenol analogues and their halogenated transformation products. Food Chem Toxicol 2023; 173:113623. [PMID: 36657698 DOI: 10.1016/j.fct.2023.113623] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Due to its endocrine-disrupting properties, bisphenol A (BPA) is being phased out from plastics, thermal paper and epoxy resins, and its replacements are being introduced into the market. Bisphenols are released into the environment, where they can undergo halogenation. Unlike BPA, the endocrine-disrupting potential of BPA analogues and their halogenated transformation products has not been extensively studied. The aim of this study was to evaluate the endocrine-disrupting potential of 18 BPA analogues and their halogenated derivatives by calculating affinities for 14 human nuclear receptors utilizing the Endocrine Disruptome and VirtualToxLab™ in silico tools. Our simulations identified AR, ERs, and GR as the most favorable targets of bisphenols and their derivatives. Several BPA analogues displayed a higher predicted potential for endocrine disruption than BPA. Our models highlighted BPZ and BPPH as the most hazardous in terms of predicted endocrine activities. Halogenation, in general, was predicted to increase the binding affinity of bisphenols for AR, ERβ, MR, GR, PPARγ, and TRβ. Notably, mono- or 2,2'-di-halogenated bisphenols exhibited the highest potential for endocrine disruption. In vitro corroboration of the obtained results should be the next milestone in evaluating the safety of BPA substitutes and their halogenated transformation products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, University of Ljubljana, Slovenia.
| |
Collapse
|
3
|
Ma M, Zhao W, Tan T, Hitabatuma A, Wang P, Wang R, Su X. Study of eighteen typical bisphenol analogues as agonist or antagonist for androgen and glucocorticoid at sub-micromolar concentrations in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153439. [PMID: 35093365 DOI: 10.1016/j.scitotenv.2022.153439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/18/2022] [Accepted: 01/22/2022] [Indexed: 05/25/2023]
Abstract
Bisphenol A and its substitutions are commonly used to manufacture epoxy resins, plastic materials and different kinds of daily necessities. In this process, a large number of bisphenol analogues (BPs) are continuously released directly/indirectly into the environment. Through the chain of environment-feed-farmed-animals-livestock and poultry products, BPs present the low concentration but chronic exposure for surroundings and environment. In addition, BPs have been revealed by extensive studies as emerging endocrine disruptors, whose effects on androgens/glucocorticoids have rarely been mentioned in previous reports. The (anta-) agonist/antagonist properties of 18 classic BPs were investigated in vitro: We assessed the cytotoxicity and examined the luciferase induction values of BPs in MDA-kb2 cells, incubated single or co-incubated with dihydrotestosterone (DHT), dexamethasone, flutamide and RU486 for 24 h. From the concentration of 10-10 to 10-5 M, BPs had negligible cytotoxicity for MDA-kb2 cells, except for 4,4'-(9-Fluorenylidene)diphenol with the IC50 1.32 μM. All 18 BPs had the response to androgen/glucocorticoid receptors (AR/GR). BPs at nanomolar and trace concentrations are agonists, while BPs at micromolar and higher concentrations are antagonists. Molecular docking showed that BPs interact with AR/GR through hydrophobic bonds, hydrogen bonds, T-type π-stacking and water-bridge. These experimental data demonstrate the universality of the endocrine-disrupting effects of BPs and suggest the urgency of paying attention to the usages of BPs.
Collapse
Affiliation(s)
- Mengmeng Ma
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, People's Republic of China
| | - Wenyu Zhao
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, People's Republic of China
| | - Tianjiao Tan
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, People's Republic of China
| | - Aloys Hitabatuma
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, People's Republic of China
| | - Peilong Wang
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, People's Republic of China
| | - Ruiguo Wang
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, People's Republic of China
| | - Xiaoou Su
- Key Laboratory of Agro-Product Quality and Safety of the Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, NO. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, People's Republic of China.
| |
Collapse
|
4
|
Li CH, Zhang DH, Jiang LD, Qi Y, Guo LH. Binding and activity of bisphenol analogues to human peroxisome proliferator-activated receptor β/δ. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112849. [PMID: 34627044 DOI: 10.1016/j.ecoenv.2021.112849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Several studies have indicated metabolic function disruption effects of bisphenol analogues through peroxisome proliferator-activated receptor (PPAR) alpha and gamma pathways. In the present study, we found for the first time that PPARβ/δ might be a novel cellular target of bisphenol analogues. By using the fluorescence competitive binding assay, we found seven bisphenol analogues could bind to PPARβ/δ directly, among which tetrabromobisphenol A (TBBPA, 18.38-fold) and tetrachlorobisphenol A (TCBPA, 12.06-fold) exhibited stronger binding affinity than bisphenol A (BPA). In PPARβ/δ-mediated luciferase reporter gene assay, the seven bisphenol analogues showed transcriptional activity toward PPARβ/δ. Bisphenol AF (BPAF), bisphenol F (BPF) and bisphenol B (BPB) even showed higher transcriptional activity than BPA, while TBBPA and TCBPA showed comparable activity with BPA. Moreover, in human liver HL-7702 cells, the bisphenol analogues promoted the expression of two PPARβ/δ target genes PDK4 and ANGPTL4. Molecular docking simulation indicated the binding potency of bisphenol analogues to PPARβ/δ might depend on halogenation and hydrophobicity and the transcriptional activity might depend on their binding affinity and hydrogen bond interactions. Overall, the PPARβ/δ pathway may provide a new mechanism for the metabolic function disruption of bisphenol analogues, and TBBPA and TCBPA might exert higher metabolic disruption effects than BPA via PPARβ/δ pathway.
Collapse
Affiliation(s)
- Chuan-Hai Li
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Dong-Hui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Li-Dan Jiang
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Street, Qingdao, Shandong 266071, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
5
|
Bisphenol analogs AF, S and F: Effects on functional characteristics of porcine granulosa cells. Reprod Toxicol 2021; 103:18-27. [PMID: 34019995 DOI: 10.1016/j.reprotox.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/16/2022]
Abstract
In order to replace industrial functions of the restricted endocrine disruptor bisphenol A (BPA), its structural analogs are increasingly employed without adequate assessment of their biological actions. Our study examined effects of the bisphenols AF (BPAF), S (BPS) and F (BPF), on functions of porcine ovarian granulosa cells (GCs) with the focus on viability, steroid production (10-9-10-4M), and expression of factors (10-9-10-5M) important for the follicle development: vascular endothelial growth factor A (VEGFA), matrix metalloproteinase 9 (MMP9), forkhead box O1 (FOXO1), and aryl hydrocarbon receptor (AHR). Cell viability was not impaired by the bisphenol analogs, except for the highest BPAF concentration (10-4M). While the lower concentrations of the bisphenols were without effect, each of them reduced follicle-stimulating hormone (FSH)-induced progesterone synthesis at the highest dose. Estradiol synthesis was sensitive to BPS, inhibitory effects of which were manifested from the concentration of 10-6M. Treatment of GCs with the selected bisphenol concentrations did not result in marked alterations in steroidogenic enzyme expression. Bisphenols did not significantly modulate VEGFA mRNA expression or output either under basal or FSH-stimulated conditions. BPF at 10-5M increased MMP9 expression in FSH-stimulated cells. FSH upregulated FOXO1 expression, however, none of the bisphenols significantly affected FOXO1 levels either in basal or in FSH-stimulated conditions. AHR mRNA expression remained unchanged after bisphenol treatment. Although the significant effects of BPAF, BPS and BPF appeared only at supraphysiological doses, the results obtained indicate that BPA analogs are not inert with regard to ovarian physiology.
Collapse
|
6
|
Malaisé Y, Le Mentec H, Sparfel L, Guzylack-Piriou L. Differential influences of the BPA, BPS and BPF on in vitro IL-17 secretion by mouse and human T cells. Toxicol In Vitro 2020; 69:104993. [PMID: 32911021 DOI: 10.1016/j.tiv.2020.104993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
The endocrine disruptor and food contaminant bisphenol A (BPA) is frequently present in consumer plastics and can produce several adverse health effects participating in the development of inflammatory and autoimmune diseases. Regulatory restrictions have been established to prevent risks for human health, leading to the substitution of BPA by structural analogues, such as bisphenol S (BPS) and F (BPF). In this study, we aimed at comparing the in vitro impact of these bisphenols from 0.05 to 50,000 nM on Th17 differentiation, frequency and function in mouse systemic and intestinal immune T cells and in human blood T cells. This study reports the ability of these bisphenols, at low and environmentally relevant concentration, i.e, 0.05 nM, to increase significantly IL-17 production in mouse T cells but not in human T lymphocytes. The use of an aryl hydrocarbon receptor (AhR) specific inhibitor demonstrated its involvement in this bisphenol-induced IL-17 production. We also observed an increased IL-17 secretion by BPS and BPF, and not by BPA, in mouse naive T cells undergoing in vitro Th17 differentiation. In total, this study emphasizes the link between bisphenol exposures and the susceptibility to develop immune diseases, questioning thus the rational of their use to replace BPA.
Collapse
Affiliation(s)
- Yann Malaisé
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Hélène Le Mentec
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Laurence Guzylack-Piriou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| |
Collapse
|
7
|
Naderi M, Kwong RWM. A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: New insights from in vitro and in vivo models. ENVIRONMENT INTERNATIONAL 2020; 145:106078. [PMID: 32911243 DOI: 10.1016/j.envint.2020.106078] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The normal brain development and function are delicately driven by an ever-changing milieu of steroid hormones arising from fetal, placental, and maternal origins. This reliance on the neuroendocrine system sets the stage for the exquisite sensitivity of the central nervous system to the adverse effects of endocrine-disrupting chemicals (EDCs). Bisphenol A (BPA) is one of the most common EDCs which has been a particular focus of environmental concern for decades due to its widespread nature and formidable threat to human and animal health. The heightened regulatory actions and the scientific and public concern over the adverse health effects of BPA have led to its replacement with a suite of structurally similar but less known alternative chemicals. Bisphenol S (BPS) is the main substitute for BPA that is increasingly being used in a wide array of consumer and industrial products. Although it was considered to be a safe BPA alternative, mounting evidence points to the deleterious effects of BPS on a wide range of neuroendocrine functions in animals. In addition to its reproductive toxicity, recent experimental efforts indicate that BPS has a considerable potential to induce neurotoxicity and behavioral dysfunction. This review analyzes the current state of knowledge regarding the neurobehavioral effects of BPS and discusses its potential mode of actions on several aspects of the neuroendocrine system. We summarize the role of certain hormones and their signaling pathways in the regulation of brain and behavior and discuss how BPS induces neurotoxicity through interactions with these pathways. Finally, we review potential links between BPS exposure and aberrant neurobehavioral functions in animals and identify key knowledge gaps and hypotheses for future research.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
8
|
Grelska A, Noszczyńska M. White rot fungi can be a promising tool for removal of bisphenol A, bisphenol S, and nonylphenol from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:39958-39976. [PMID: 32803603 PMCID: PMC7546991 DOI: 10.1007/s11356-020-10382-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
Endocrine-disrupting chemicals (EDC) are a wide group of chemicals that interfere with the endocrine system. Their similarity to natural steroid hormones makes them able to attach to hormone receptors, thereby causing unfavorable health effects. Among EDC, bisphenol A (BPA), bisphenol S (BPS), and nonylphenol (NP) seem to be particularly harmful. As the industry is experiencing rapid expansion, BPA, BPS, and NP are being produced in growing amounts, generating considerable environmental pollution. White rot fungi (WRF) are an economical, ecologically friendly, and socially acceptable way to remove EDC contamination from ecosystems. WRF secrete extracellular ligninolytic enzymes such as laccase, manganese peroxidase, lignin peroxidase, and versatile peroxidase, involved in lignin deterioration. Owing to the broad substrate specificity of these enzymes, they are able to remove numerous xenobiotics, including EDC. Therefore, WRF seem to be a promising tool in the abovementioned EDC elimination during wastewater treatment processes. Here, we review WRF application for this EDC removal from wastewater and indicate several strengths and limitations of such methods.
Collapse
Affiliation(s)
- Agnieszka Grelska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland
| | - Magdalena Noszczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032, Katowice, Poland.
| |
Collapse
|
9
|
İyİgÜndoĞdu İ, ÜstÜndaĞ A, Duydu Y. Toxicological Evaluation of Bisphenol A and Its Analogues. Turk J Pharm Sci 2020; 17:457-462. [PMID: 32939144 DOI: 10.4274/tjps.galenos.2019.58219] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 12/22/2022]
Abstract
Bisphenol A (BPA) is known as one of the oldest synthetic compounds with endocrine disrupting activity. It is commonly used in the production of epoxy resins, polycarbonates, dental fillings, food storage containers, baby bottles, and water containers. BPA is associated with various health problems such as obesity, diabetes, chronic respiratory diseases, cardiovascular diseases, renal diseases, behavior disorders, breast cancer, tooth development disorders, and reproductive disorders. Increasing health concerns have led the industry to seek alternatives to BPA. As BPA is now being excluded from several consumer products, the use of alternative compounds is increasing. However, the chemicals used to replace BPA are also BP analogues and may have similar or higher toxicological effects on organisms. The aim of this review is to focus on the toxicological profiles of different BP analogues (i.e. BPS and BPF) which are increasingly used today as alternative to BPA.
Collapse
Affiliation(s)
- İrem İyİgÜndoĞdu
- Gazi University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Aylin ÜstÜndaĞ
- Ankara University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Yalçın Duydu
- Ankara University Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| |
Collapse
|
10
|
Liu Q, Shao W, Weng Z, Zhang X, Ding G, Xu C, Xu J, Jiang Z, Gu A. In vitro evaluation of the hepatic lipid accumulation of bisphenol analogs: A high-content screening assay. Toxicol In Vitro 2020; 68:104959. [PMID: 32763284 DOI: 10.1016/j.tiv.2020.104959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Bisphenol A (BPA) has a variety of adverse effects on human health; therefore, BPA analogs are increasingly used as replacements. Notably, recent studies have revealed that BPA exposure induced hepatic lipid accumulation, but few studies are available regarding the similar effects of other bisphenol analogues (BPs). Thus, in the present study, a high-content screening (HCS) assay was performed to simultaneously evaluate the hepatic lipid accumulation of 13 BPs in vitro. The BPs induced lipid deposition in HepG2 cells ranking as below: 4,4'-thiodiphenol (TDP) < bisphenol S (BPS) < 4,4'-dihydroxybenzophenone (DHBP) < tetrabromobisphenol A (TBBPA) < tetrachlorobisphenol A (TCBPA) < bisphenol E (BPE) < bisphenol F (BPF) < bisphenol B (BPB) < bisphenol AF (BPAF) < bisphenol A (BPA) < bisphenol C (BPC) < tetramethylbisphenol A (TMBPA) < bisphenol AP (BPAP). Meanwhile, Oil Red O staining and triacylglycerol detection further validated the lipid accumulation elicited by the latter 8 BPs, which exhibited the more significant effects on lipid deposition. Mechanistically, significantly increased expressions of genes involved in fatty acid synthesis and nuclear receptors and decreased levels of genes associated with fatty acid β-oxidation were observed under BPs treatment. Therefore, the present work is the first to systematically provide direct evidence for BPs-induced hepatic lipid accumulation in vitro via HCS, which can be helpful for safety assessments of BPs.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Wentao Shao
- Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Zhang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Guipeng Ding
- Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaoyan Jiang
- Shanghai East Hospital, Institute of Gallstone Disease, Tongji University School of Medicine, Shanghai 200120, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
11
|
Ženata O, Vrzalová A, Bachleda P, Janečková J, Panáček A, Kvítek L, Vrzal R. The effect of graphene oxide on signalling of xenobiotic receptors involved in biotransformation. CHEMOSPHERE 2020; 253:126753. [PMID: 32464781 DOI: 10.1016/j.chemosphere.2020.126753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Graphene oxide (GO) is an engineered nanomaterial which was demonstrated to have outstanding capacity for adsorption of organic pollutants such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), the ligands and activators of the aryl hydrocarbon receptor (AhR). Due to the partially overlapping ligand capacity of AhR and pregnane X receptor (PXR), we tested the impact of GO particles on their signalling. While reporter gene assay revealed potentiating effect of GO on ligand-activated AhR-dependent luciferase activity, there was no effect for PXR. However, inducible target genes for AhR (CYP1A1) or PXR (ABCB1) were decreased at mRNA as well as protein levels by the presence of GO in HepG2 (for AhR), LS180 (for PXR) or primary human hepatocytes (both receptors). Moreover, the presence of GO diminished PXR and AhR protein levels in primary cultures of human hepatocytes. This was partially reversed by proteasome inhibitor MG132 for AhR but not for PXR. In conclusion, GO decreases ligand-stimulated activities of AhR and PXR in human cells.
Collapse
Affiliation(s)
- Ondřej Ženata
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Aneta Vrzalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
| | - Petr Bachleda
- Department of Surgery, University Hospital, I.P. Pavlova 6, 775 15, Olomouc, Czech Republic
| | - Jana Janečková
- Department of Surgery, University Hospital, I.P. Pavlova 6, 775 15, Olomouc, Czech Republic
| | - Aleš Panáček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Libor Kvítek
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 17. listopadu 12, 771 46, Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University in Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic.
| |
Collapse
|
12
|
Park C, Song H, Choi J, Sim S, Kojima H, Park J, Iida M, Lee Y. The mixture effects of bisphenol derivatives on estrogen receptor and androgen receptor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114036. [PMID: 31995776 DOI: 10.1016/j.envpol.2020.114036] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/23/2019] [Accepted: 01/21/2020] [Indexed: 05/27/2023]
Abstract
Bisphenol A (BPA) is a well-known for endocrine-disrupting chemical (EDC) and is one of the highest amounts of chemicals produced worldwide. Some countries restrict the use of BPA, which is widely used in the production of a variety products. Considering the toxicity and limitations on use of BPA, efforts are needed to find safer alternatives. Increasingly, bisphenol F (BPF) and bisphenol S (BPS) are alternatives of BPA, which is increasing their exposure levels in various environments. There are many ways to assess whether a chemical is an EDC. Here, we evaluated the endocrine-disrupting risks of the bisphenols by investigating their agonist and antagonist activities with the estrogen (ER), androgen (AR), and aryl hydrocarbon (AhR) receptors. Our results showed that BPA, BPS, and BPF (BPs) have estrogen agonist and androgen antagonist activities and decrease the ERα protein level. Interestingly, a mixture of the BPs had ER and anti-AR activity at lower concentrations than BPs alone. The activation of AhR was not a concentration-dependent effect of BPs, although it was increased significantly. In conclusion, BPs have estrogen agonist and androgen antagonist activities, and the effect of exposure to a BPs mixture differs from that of BPs alone.
Collapse
Affiliation(s)
- Choa Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Heewon Song
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Junyeong Choi
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Seunghye Sim
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari, Tobetsu, Hokkaido, 061-0293, Japan; Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Joonwoo Park
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea
| | | | - YoungJoo Lee
- Department of Integrative Bioscience and Biotechnology, College of Life Science, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
13
|
Cavaliere F, Lorenzetti S, Cozzini P. Molecular modelling methods in food safety: Bisphenols as case study. Food Chem Toxicol 2020; 137:111116. [PMID: 31931072 DOI: 10.1016/j.fct.2020.111116] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Bisphenol A (BPA), a synthetic compound widely used as a building block for polycarbonate plastics, has been declared in the European Union (EU) as a substance of very high concern (SVHC). A series of BPA alternatives and derivatives (bisphenols/BPs) with similar physical-chemical properties have been produced and used by companies for substituting it. To evaluate the estrogenic and androgenic binding activity of 26 BPs, a non-statistical in silico approach has been applied. The results of molecular docking analyses applied on six different nuclear receptors (NRs) have revealed that: i) some BPA metabolites could lower the harmful effects of BPA exposure; ii) BPS is a lower interactor for all NRs, but it does not appear safer at all for androgen receptor (AR), for which its binding activity is found similar to a pharmacological anti-androgen; iii) only a BP has been found as a safer compound for all NRs considered. Moreover, molecular dynamic simulation of three BPs on ERα have revealed that the presence of negative hydrophobic interactions could induce a decrease in receptor activity. Overall, the present results demonstrate that in silico methods could be a valid approach to screen estrogenic and androgenic activity of food contact materials (FCMs).
Collapse
Affiliation(s)
- Francesca Cavaliere
- Molecular Modelling Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 17/A, I-43124, Parma, Italy.
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, I-00161, Rome, Italy.
| | - Pietro Cozzini
- Molecular Modelling Lab, Department of Food and Drug, University of Parma, Parco Area Delle Scienze 17/A, I-43124, Parma, Italy.
| |
Collapse
|
14
|
Zhang J, Yang Y, Liu W, Schlenk D, Liu J. Glucocorticoid and mineralocorticoid receptors and corticosteroid homeostasis are potential targets for endocrine-disrupting chemicals. ENVIRONMENT INTERNATIONAL 2019; 133:105133. [PMID: 31520960 DOI: 10.1016/j.envint.2019.105133] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 05/16/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) have received significant concern, since they ubiquitously exist in the environment and are able to induce adverse health effects on human and wildlife. Increasing evidence shows that the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR), members of the steroid receptor subfamily, are potential targets for EDCs. GR and MR mediate the actions of glucocorticoids and mineralocorticoids, respectively, which are two main classes of corticosteroids involved in many physiological processes. The effects of EDCs on the homeostasis of these two classes of corticosteroids have also gained more attention recently. This review summarized the effects of environmental GR/MR ligands on receptor activity, and disruption of corticosteroid homeostasis. More than 130 chemicals classified into 7 main categories were reviewed, including metals, metalloids, pesticides, bisphenol analogues, flame retardants, other industrial chemicals and pharmaceuticals. The mechanisms by which EDCs interfere with GR/MR activity are primarily involved in ligand-receptor binding, nuclear translocation of the receptor complex, DNA-receptor binding, and changes in the expression of endogenous GR/MR genes. Besides directly interfering with receptors, enzyme-catalyzed synthesis and prereceptor regulation pathways of corticosteroids are also important targets for EDCs. The collected evidence suggests that corticosteroids and their receptors should be considered as potential targets for safety assessment of EDCs. The recognition of relevant xenobiotics and their underlying mechanisms of action is still a challenge in this emerging field of research.
Collapse
Affiliation(s)
- Jianyun Zhang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Public Health, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Ye Yang
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Weiping Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
15
|
Qiu W, Zhan H, Hu J, Zhang T, Xu H, Wong M, Xu B, Zheng C. The occurrence, potential toxicity, and toxicity mechanism of bisphenol S, a substitute of bisphenol A: A critical review of recent progress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 173:192-202. [PMID: 30772709 DOI: 10.1016/j.ecoenv.2019.01.114] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 05/20/2023]
Abstract
Bisphenol S (BPS) has been introduced into the industry as a safer alternative to bisphenol A (BPA). The distribution of BPS has recently become an important issue worldwide, but investigations on the toxicity and mechanisms of BPS remain limited. A review of the literature reveals that BPS has widespread presence in environmental media, such as indoor dust, surface water, sediments, and sewage sludge. It has been detected in plants, paper products, some food items, and even in the human body. In addition, compared to BPA, BPS has a lower acute toxicity, similar or less endocrine disruption, similar neurotoxicity and immunotoxicity, and lower reproductive and developmental toxicity. The mechanisms underlying BPS toxicity may be related to the chemical properties of BPS in the human body, including interactions with estrogen receptors, and binding to DNA and some proteins, subsequently including exerting oxidative stress. However, further investigation on the potential risks of BPS to humans and its mechanisms of toxicity should be conducted to better understand and control the risks of such novel chemicals.
Collapse
Affiliation(s)
- Wenhui Qiu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongyan Zhan
- Institute of Water Sciences, College of Engineering, Peking University, Beijing 100871, China
| | - Jiaqi Hu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ting Zhang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Minghung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Consortium on Health, Environment, Education and Research (CHEER), and Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Bentuo Xu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
16
|
Skledar DG, Carino A, Trontelj J, Troberg J, Distrutti E, Marchianò S, Tomašič T, Zega A, Finel M, Fiorucci S, Mašič LP. Endocrine activities and adipogenic effects of bisphenol AF and its main metabolite. CHEMOSPHERE 2019; 215:870-880. [PMID: 30408883 DOI: 10.1016/j.chemosphere.2018.10.129] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol AF (BPAF) is a fluorinated analog of bisphenol A (BPA), and it is a more potent estrogen receptor (ER) agonist. BPAF is mainly metabolized to BPAF-glucuronide (BPAF-G), which has been reported to lack ER agonist activity and is believed to be biologically inactive. The main goal of the current study was to examine the influence of the metabolism of BPAF via glucuronidation on its ER activity and adipogenesis. Also, as metabolites can have different biological activities, the effects of BPAF-G on other nuclear receptors were evaluated. First, in-vitro BPAF glucuronidation was investigated using recombinant human enzymes. Specific reporter-gene assays were used to determine BPAF and BPAF-G effects on estrogen, androgen, glucocorticoid, and thyroid receptor pathways, and on PXR, FXR, and PPARγ pathways. Their effects on lipid accumulation and differentiation were determined in murine 3T3L1 preadipocytes using Nile Red, with mRNA expression analysis of the adipogenic markers adiponectin, Fabp4, Cebpα, and PPARγ. BPAF showed strong agonistic activity for hERα and moderate antagonistic activities for androgen and thyroid receptors, and for PXR. BPAF-G was antagonistic for PXR and PPARγ. BPAF (0.1 μM) and BPAF-G (1.0 μM) induced lipid accumulation and increased expression of key adipogenic markers in murine preadipocytes. BPAF-G is therefore not an inactive metabolite of BPAF. Further toxicological and epidemiological investigations of BPAF effects on human health are warranted, to provide better understanding of the metabolic end-elimination of BPAF.
Collapse
Affiliation(s)
- Darja Gramec Skledar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Adriana Carino
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Jurij Trontelj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Johanna Troberg
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Eleonora Distrutti
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Silvia Marchianò
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Tihomir Tomašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Anamarija Zega
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Moshe Finel
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Stefano Fiorucci
- Dipartimento di Medicina Clinica e Sperimentale, Nuova Facultà di Medicina e Chirurgia, University of Perugia, S. Andrea delle Fratte, 06132 Perugia, Italy
| | - Lucija Peterlin Mašič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
17
|
Zhang J, Wu W, Wang Y, Xing X, Zhong S, Guan T, Zhang T, Hou L, Li T. Estrogen receptor-based fluorescence polarization assay for bisphenol analogues and molecular modeling study of their complexation mechanism. Anal Chim Acta 2018; 1032:107-113. [PMID: 30143207 DOI: 10.1016/j.aca.2018.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/17/2018] [Accepted: 05/10/2018] [Indexed: 02/03/2023]
Abstract
A fluorescence polarization (FP) assay based on estrogen receptor was developed for the determination of bisphenol compounds (BPs). The human estrogen receptor α ligand binding domain (hERα-LBD) and coumestrol were employed as recognition element and fluorescent probe, respectively. Competitive displacement of tracer from receptor suggested that BPs exhibited dose-dependent binding to hERα-LBD. In order to elucidate the structural basis for the interaction between BPs and hERα-LBD, molecular dynamics simulations were performed to explore their complexation mechanism. The docked bisphenol compounds adopted agonist/antagonist conformations with varying positions and orientations in the hydrophobic binding pocket, depending on their structural characteristics of bridging moieties. Interestingly, the calculated binding energies were generally correlated with the experimentally measured affinities, indicating a potential advantage of the molecular modeling approach in predicting the binding potencies of putative ligands. Considering that the real samples may contain more than one BP, the established FP assay can potentially be used as a pre-screening method to determine the total amounts of bisphenol compounds.
Collapse
Affiliation(s)
- Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Wenfu Wu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China
| | - Yongjun Wang
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - XiaoJia Xing
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Shuning Zhong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tianzhu Guan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Ligang Hou
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Tiezhu Li
- Institute of Agricultural Resources and Environment, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
18
|
Ishikawa K, Kobayashi Y, Wakabayashi Y, Watanabe S, Semba K. A highly sensitive trap vector system for isolating reporter cells and identification of responsive genes. Biol Methods Protoc 2018; 3:bpy003. [PMID: 32161797 PMCID: PMC6994077 DOI: 10.1093/biomethods/bpy003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/22/2018] [Accepted: 04/18/2018] [Indexed: 01/03/2023] Open
Abstract
We devised a versatile vector system for efficient isolation of reporter cells responding to a certain condition of interest. This system combines nontoxic GAL4-UAS and piggyBac transposon systems, allowing application to mammalian cells and improved expression of a fluorescent reporter protein for cell sorting. Case studies under conditions of c-MYC gene induction or endoplasmic reticulum (ER) stress with thapsigargin on mouse or human cell lines confirmed easy and efficient isolation of responsive reporter cells. Sequence analyses of the integrated loci of the thapsigargin-responsive clones identified responsive genes including BiP and OSBPL9. OSBPL9 is a novel ER stress-responsive gene and we confirmed that endogenous mRNA expression of OSBPL9 is upregulated by thapsigargin, and is repressed by IRE1α inhibitors, 4μ8C and toyocamycin, but not significantly by a PERK inhibitor, GSK2656157. These results demonstrate that this approach can be used to discover novel genes regulated by any stimuli without the need for microarray analysis, and that it can concomitantly produce reporter cells without identification of stimuli-responsive promoter/enhancer elements. Therefore, this system has a variety of benefits for basic and clinical research.
Collapse
Affiliation(s)
- Kosuke Ishikawa
- Japan Biological Informatics Consortium (JBiC), 2-45 Aomi, Koto-ku, Tokyo 135-8073, Japan
| | - Yuta Kobayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Yutaro Wakabayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.,Translational Research Center, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| |
Collapse
|