1
|
Yuan Z, Li J, He K, Sun Z, Luo G, Liu H, Dong J, Zhou C, Cui H, Fan C. Endogenous hydrogen sulfide accelerated trauma-induced heterotopic ossification through the Ca 2+/ERK pathway-enhanced aberrant osteogenic activity. Redox Biol 2024; 75:103265. [PMID: 39003920 PMCID: PMC11298937 DOI: 10.1016/j.redox.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Unveiling of the mechanism involved in the occurrence and development of trauma-induced heterotopic ossification (tHO) is highly demanding due to current ineffective clinical treatment for it. Previous studies proposed that hydrogen sulfide (H2S) was vital for fate determination of stem cells, suggesting a potential role in the regulation of tHO development. In the current study, We found that expression of metabolic enzyme within sulfur conversion pathway was enhanced after tendon injury, leading to H2S accumulation within the tHO region. Increased production of endogenous H2S was shown to promote aberrant osteogenic activity of tendon-derived stem cells (TDSCs), which accelerated tHO formation. The inhibition of metabolic enzyme of H2S production or directly absorption of H2S could abolished osteogenic induction of TDSCs and the formation of tHO. Mechanistically, through RNA sequencing combined with rescue experiments, we demonstrated that activation of Ca2+/ERK pathway was the downstream molecular event of H2S-induced osteogenic commitment of TDSCs and tHO. For treatment strategy exploration, zine oxide nanoparticles (ZnO) as an effective H2S elimination material was validated to ideally halt the tHO formation in this study. Furthermore, in terms of chirality of nanoparticles, D-ZnO or L-ZnO nanoparticles showed superiority over R-ZnO nanoparticles in both clearing of H2S and inhibition of tHO. Our study not only revealed the mechanism of tHO through the endogenous gas signaling event from a new perspective, but also presented a applicable platform for elimination of the inordinate gas production, thus aiding the development of clinical treatment for tHO.
Collapse
Affiliation(s)
- Zhengqiang Yuan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Juehong Li
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kuangyu He
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ziyang Sun
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Gang Luo
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Hang Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinlei Dong
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, PR China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haomin Cui
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China; Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai 200233, PR China; Youth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Huang C, Yu X, Bao L, Mai L, Li A. Ammonia negatively impacted egg production and altered the diversity of microbial communities in cage-reared Muscovy ducks. Poult Sci 2024; 103:103938. [PMID: 38908123 PMCID: PMC11246063 DOI: 10.1016/j.psj.2024.103938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024] Open
Abstract
The aim of this study was to examine the effects of NH3 variations across different positions within a cage-reared duck house on the egg production performance and fecal microbiome in Muscovy ducks. Totals of 3,168 female Muscovy ducks (180 ± 2 d) were randomly assigned to 1,056 cages. From d 293 to 300, the egg production rate and levels of NH3, H2S, CO2, temperature, humidity, light intensity, and dust particles were recorded. Two spatial distribution-based experimental classification methods were applied, one grouping ducks into Front, Middle, and End categories, and the other into First, Second, and Third layers. On d 300, serum and feces samples were collected for further analysis. The result showed that both the egg production rate and serum PROG level in the Front were higher than End (P < 0.05). However, no significant differences were found among the First, Second, and Third groups. Among the environmental factors, ammonia (NH3) is a major harmful gas in cage-reared duck houses, with observed concentrations showing a gradient from lower levels in the Front group to higher levels in the Middle group (P < 0.05), and even higher levels in the End group (P < 0.05). Gene sequencing of the 16S rRNA gene revealed a higher relative abundance of Firmicutes in both the Front and Middle groups compared to the End group (P < 0.05). Specifically, within the Firmicutes phylum, the relative abundance of Lactobacillus and Romboutsia was notably higher in the Front group compared to both the Middle and End groups (P < 0.05). What's more, the abundance of Lactobacillus had a negative correlation with NH3 concentration and positive correlation with egg production rate. In conclusion, NH3 concentrations showed variations across different areas of the cage-reared duck house, with higher levels detected at the rear. The elevated NH3 level was identified as the main factor negatively impacting egg production in Muscovy ducks and contributing to a decline in the abundance of Firmicutes, specifically Lactobacillus.
Collapse
Affiliation(s)
- Caiyun Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xuanci Yu
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Bao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lijun Mai
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ang Li
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Buoio E, Cialini C, Costa A. Air Quality Assessment in Pig Farming: The Italian Classyfarm. Animals (Basel) 2023; 13:2297. [PMID: 37508074 PMCID: PMC10376095 DOI: 10.3390/ani13142297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
On 24 September 2019, the Ministry of Health issued an explanatory circular containing clarifications on the implementation methods of the National Improvement Plan for the application of Legislative Decree 122/2011. The Plan states that "In all farms where weaning or fattening pigs are raised and in breeding farms which wean piglets (excluding those for self-consumption), a risk assessment is carried out by the veterinarian on the basis of three levels: insufficient, room for improvement and optimal". ClassyFarm, a risk assessment tool for livestock farming, is applied in Italy to evaluate the level of welfare and management of animals from a variety of points of view. Essentially, the categorization risk introduced by ClassyFarm in pig farming depended on the obligation stated by the EU in Decree 122/2011 to avoid tail docking in piglets and, at the same time, to reduce the stressor aspects able to induce aggressive behavior among pigs, improving the welfare and health status of animals. Since ClassyFarm evaluates many aspects of the management of animal farming, our aims in this review are to discuss the topic from an environmental point of view: (1) to frame the indications of ClassyFarm to make a farm risk assessment based on pigs' welfare; (2) to review environmental quality assessment in pig farms, and its repercussions on animal health and welfare; (3) to describe the most used sampling techniques of air pollutants measurements.
Collapse
Affiliation(s)
- Eleonora Buoio
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Chiara Cialini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Annamaria Costa
- Department of Veterinary Medicine and Animal Science (DIVAS), Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| |
Collapse
|
4
|
Gallo A, Esposito MC, Boni R, Tosti E. Oocyte quality assessment in marine invertebrates: a novel approach by fluorescence spectroscopy. Biol Res 2022; 55:34. [DOI: 10.1186/s40659-022-00403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Background
The assessment of oocyte quality is, nowadays, a major challenge in aquaculture, oocyte cryopreservation, and environmental science. Oocyte quality is a determining factor in fertilization and embryo development; however, there is still a lack of rapid and sensitive cellular markers for its assessment. Currently, its estimation is predominantly based on morphological analysis, which is subjective and does not consistently reflect the developmental competence of the oocytes. Despite several recent studies investigating molecular markers related to oocyte quality, methods currently available for their determination pose various technical challenges and limitations. In this study, we developed a novel approach based on fluorescence spectroscopy to assess different intrinsic physiological parameters that can be employed to evaluate egg quality in marine invertebrates that are widely used as animal models such as sea urchins and mussels.
Results
Different physiological parameters, such as viability, mitochondrial activity, intracellular ROS levels, plasma membrane lipid peroxidation, and intracellular pH, for egg quality evaluation have been successfully assessed in sea urchins and mussels by using specific fluorescent dyes and detecting the fluorescent signals in eggs through fluorescence spectroscopy.
Conclusions
Based on our findings, we propose these physiological markers as useful predictors of egg quality in marine invertebrates; they can be estimated rapidly, selectively, and sensitively by employing this novel approach, which, due to the speed of analysis, the low cost, and easy use can be considered a powerful analytical tool for the egg quality assessment.
Collapse
|
5
|
Han Q, Wang A, Fu Q, Zhou S, Bao J, Xing H. Protective role of selenium on ammonia-mediated nephrotoxicity via PI3K/AKT/mTOR pathway: Crosstalk between autophagy and cytokine release. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113918. [PMID: 35882110 DOI: 10.1016/j.ecoenv.2022.113918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Ammonia (NH3) is a hazardous substance to human and animal health. Selenium (Se) is an essential micronutrient with multiple health benefits. The present study aimed to verify whether and how Se supplementation has a protective role against NH3 mediated-nephrotoxicity in pigs. A Se-NH3 interaction model was established in pigs and the kidney samples were collected after a 30-day treatment period. The results showed that NH3 exposure inhibited the PI3K/AKT/mTOR pathway and enhanced the secretion of inflammatory cytokines to induce autophagy and inflammation. Se can regulate the PI3K/AKT/mTOR pathway and attenuate the secretion of inflammatory cytokines altered by NH3 to reduce autophagy and inflammation. In addition, Se co-treatment inhibited ROS production, elevated the activities of antioxidant systems, and increased the expression of 13 selenoproteins in pig kidneys caused by NH3 exposure. These results implied that L-selenomethionine can moderate NH3-induced nephrotoxicity in pigs. Our study gives new ideas for the specific mechanism of NH3 nephrotoxicity and provides a reference for comparative medicine and clinical medication.
Collapse
Affiliation(s)
- Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Anqi Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qin Fu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Sitong Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Swine Facilities Engineering, Ministry of Agriculture and Rural Affairs, Harbin, China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
6
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
7
|
Cui J, Wu F, Yang X, Liu S, Han S, Chen B. Effects of ammonia on hypothalamic-pituitary-ovarian axis in female rabbits. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112922. [PMID: 34700170 DOI: 10.1016/j.ecoenv.2021.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As one of the most harmful gases in the livestock house, ammonia is recognized as an environmental stressor by Environmental Protection Agency (United States). The study aimed to explore the effect of ammonia on hypothalamic-pituitary-ovarian (HPO) axis of rabbits. A total of ninety two-month-old female IRA rabbits were randomly divided into three groups, and were kept in animal environment control rooms for four weeks at college of animal science and technology, Hebei Agricultural University (Baoding, China). The rabbits in the control group were kept under ammonia concentration of < 3 ppm. The two treatment groups were kept under ammonia concentration of 30 ppm and 50 ppm. Hypothalamus, pituitary, and ovary were collected for hematoxylin and eosin (HE) staining, immunohistochemistry, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Serum was collected for enzyme-linked immunosorbent assay (ELISA). RESULTS Histopathological examination revealed that exposed to excess ammonia damaged the morphology and structure of hypothalamus, pituitary, and ovary. TUNEL assay revealed that apoptosis rate increased in hypothalamus, pituitary, and ovary. The protein expression levels of Bcl-2associated X protein (Bax) and Caspase-9 increased, while B-cell lymphoma-2 (Bcl-2) decreased, resulting in apoptosis. Moreover, the concentration of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), and progesterone (PROG) reduced in plasma. The mRNA expression of FSH and LH in pituitary and follicle-stimulating hormone receptor (FSHR), E2, PROG in ovary as well as decreased, indicated hormone secretion disorder. CONCLUSIONS The results indicated that ammonia exposure damaged hypothalamus, pituitary, and ovary, caused hormone secretion disorder and apoptosis.
Collapse
Affiliation(s)
- Jia Cui
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Fengyang Wu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Xinyu Yang
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Shudong Liu
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Shuaijuan Han
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Baojiang Chen
- Department of Animal Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
8
|
Li W, Zhao H, Zhuang R, Wang Y, Cao W, He Y, Jiang Y, Rui R, Ju S. Fumonisin B 1 exposure adversely affects porcine oocyte maturation in vitro by inducing mitochondrial dysfunction and oxidative stress. Theriogenology 2021; 164:1-11. [PMID: 33529806 DOI: 10.1016/j.theriogenology.2021.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/16/2021] [Indexed: 12/17/2022]
Abstract
Fumonisin B1 (FB1), as the most toxic fumonisin, is a common Fusarium mycotoxin contaminant of feed stuff and food, posing a potential health hazard to animals and humans. FB1 has been reported to cause hepatotoxicity, neurotoxicity, nephrotoxicity, immunotoxicity and embryotoxicity; however, little information is available on whether FB1 has toxic effects on mammalian oocytes. Herein, we adopted porcine oocytes as models to explore the effects and potential mechanisms of FB1 on mammalian oocytes during in vitro maturation. Porcine cumulus oocyte complexes (COCs) were exposed to 0, 20, 30 and 40 μM FB1 for 44 h during in vitro maturation, and the results reported that first polar body (PB1) extrusion was significantly inhibited when the FB1 concentration reached 30 (P < 0.01) or 40 μM (P < 0.001). Further cell cycle analysis revealed that meiotic progression was disrupted, with a larger proportion of the 30 μM FB1-treated oocytes being arrested at the germinal vesicle breakdown (GVBD) stage (P < 0.01). After being treated with 30 μM FB1 for 28 h, the percentage of oocytes with aberrant spindle assembly was observably increased (P < 0.01), and the distribution of actin filaments on the plasma membrane was significantly reduced (P < 0.05). Furthermore, an observably higher rate of abnormal mitochondrial distribution (P < 0.05) and significantly decreased mitochondrial membrane potential (MMP) (P < 0.05) were observed in FB1-exposed oocytes. In addition, ROS generation in FB1-treated oocytes was rapidly increased (P < 0.05), while the transcriptional levels of antioxidant-related genes (CAT, SOD2 and GSH-Px) were sharply decreased compared with those in the control group. Additionally, the incidence of early apoptosis in FB1-treated oocytes was also significantly increased (P < 0.05), suggesting that FB1 exposure induced oxidative stress and further triggered apoptosis in porcine oocytes. Thus, these results suggested that FB1 adversely affected oocyte maturation by disturbing cell cycle progression, destroying cytoskeletal dynamics and damaging mitochondrial function, which eventually induced oxidative stress and apoptosis in porcine oocytes.
Collapse
Affiliation(s)
- Wenhui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Hongyu Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Ruixue Zhuang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yang Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Wei Cao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yijing He
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Yao Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Rong Rui
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China
| | - Shiqiang Ju
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, China.
| |
Collapse
|
9
|
Hu LX, Xiong Q, Shi WJ, Huang GY, Liu YS, Ying GG. New insight into the negative impact of imidazolium-based ionic liquid [C 10mim]Cl on Hela cells: From membrane damage to biochemical alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111629. [PMID: 33396149 DOI: 10.1016/j.ecoenv.2020.111629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 05/08/2023]
Abstract
As an alternative to volatile organic solvents, ionic liquids (ILs) are known as "green solvents", and widely used in industrial applications. However, due to their high solubility and stability, ILs have tendency to persist in the water environment, thus having potential negative impacts on the aquatic ecosystem. For assessing the environmental risks of ILs, a fundamental understanding of the toxic effects and mechanisms of ILs is needed. Here we evaluated the cytotoxicity of 1-methyl-3-decylimidazolium chloride ([C10mim]Cl) and elucidated the main toxic mechanism of [C10mim]Cl in human cervical carcinoma (Hela) cells. Microstructural analysis revealed that [C10mim]Cl exposure caused the cell membrane breakage, swollen and vacuolated mitochondria, and spherical cytoskeletal structure. Cytotoxicity assays found that [C10mim]Cl exposure increased ROS production, decreased mitochondrial membrane potential, induced cell apoptosis and cell cycle arrest. These results indicated that [C10mim]Cl could induce damage to cellular membrane structure, affect the integrity of cell ultrastructure, cause the oxidative damage and ultimately lead to the inhibition of cell proliferation. Moreover, alterations of biochemical information including the increased ratios of unsaturated fatty acid and carbonyl groups to lipid, and lipid to protein, and the decreased ratios of Amide I to Amide II, and α-helix to β-sheet were observed in [C10mim]Cl treated cells, suggesting that [C10mim]Cl could affect the structure of membrane lipid alkyl chain and cell membrane fluidity, promote the lipid peroxidation and alter the protein secondary structure. The findings from this work demonstrated that membrane structure is the key target, and membrane damage is involved in [C10mim]Cl induced cytotoxicity.
Collapse
Affiliation(s)
- Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Qian Xiong
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
10
|
Wang S, Chen Q, Zhang Y, Zheng F, Xue T, Ge X, Ma R, Li X, Wu R, Liang K, Qian Z, Ge Y, Ma J, Yao B. Omega-3 polyunsaturated fatty acids alleviate hydrogen sulfide-induced blood-testis barrier disruption in the testes of adult mice. Reprod Toxicol 2020; 98:233-241. [PMID: 33068716 DOI: 10.1016/j.reprotox.2020.10.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S), a gaseous intracellular signal transducer, participates in multiple physiological and pathological conditions, including reproductive conditions, and disrupts spermatogenesis. The blood-testis barrier (BTB) plays a vital role in spermatogenesis. However, the effect of H2S on the BTB and the underlying mechanism remain unclear. Herein, we examined the effect of H2S and omega-3 polyunsaturated fatty acids (ω-3 PUFAs) on the BTB and testicular functions. ICR male mice were randomly divided into the following groups: control, H2S exposure, and H2S exposure with ω-3 PUFAs intervention. The sperm parameters (sperm concentration and sperm motility) declined in the H2S group and improved in the ω-3 intervention group. BTB integrity was severely disrupted by H2S, and the BTB-related gene levels (ZO-1, Occludin, Claudin 11) decreased; ω-3 supplementation could alleviate BTB disruption by upregulating BTB-related genes, and TM4 Sertoli cells had a similar trend in vitro. p38 MAPK phosphorylation was upregulated in the Na2S treatment group and downregulated after ω-3 cotreatment. These findings suggest that H2S can impair the BTB and that ω-3 PUFAs supplementation can attenuate H2S toxicity in the male reproductive system. Our study elucidated the relationship between a gasotransmitter (H2S) and the BTB and identified the potential therapeutic effect of ω-3 PUFAs.
Collapse
Affiliation(s)
- Shuxian Wang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Qiwei Chen
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Yu Zhang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, 212000, China
| | - Feng Zheng
- Model Animal Research Center of Nanjing University, Nanjing, 210002, China
| | - Tongmin Xue
- Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing 210002, China
| | - Xie Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Rujun Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaoyan Li
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Ronghua Wu
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Kuan Liang
- Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Zhang Qian
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yifeng Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China; Center of Reproductive Medicine, Nanjing Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China; Center of Reproductive Medicine, Nanjing Jinling Hospital, School of Medicine, Jiangsu University, Zhenjiang, 212000, China; Jinling Hospital Department Reproductive Medical Center, Nanjing Medicine University, Nanjing 210002, China.
| |
Collapse
|
11
|
Yang CX, Song ZQ, Pei S, Yu XX, Miao JK, Liang H, Miao YL, Du ZQ. Single cell RNA-seq reveals molecular pathways altered by 7, 12-dimethylbenz[a]anthracene treatment on pig oocytes. Theriogenology 2020; 157:449-457. [PMID: 32882647 DOI: 10.1016/j.theriogenology.2020.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/29/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
Oocytes of better quality and developmental competence are highly demanded, which is affected by many intrinsic and external factors, including environmental pollutants. We have previously demonstrated that 7, 12-dimethylbenz [a]anthracene (DMBA) reduces the developmental competence of porcine oocytes, by desynchronizing nuclear and ooplasmic maturation. However, the underlying molecular mechanism remains obscure. Here we performed single cell RNA-seq to study the transcriptome changes in DMBA-treated porcine MII oocytes, and identified 19 protein-coding genes and 156 novel long non-coding RNAs (lncRNAs) with abundance to be significantly different (P < 0.05), which enriched in signaling pathways such as glycosphingolipid biosynthesis, nicotine addiction, basal transcription factors and nucleotide excision repair. RT-qPCR on oocyte pools confirmed ornithine aminotransferase (Oat) and serine/arginine-rich splicing factor 4 (Srsf4) to be significantly up- and down-regulated, respectively (P < 0.05). Treating porcine COCs with MAPK and PLC pathway inhibitors suppressed DMBA's effects on increasing PB1 extrusion rate. In addition, DMBA co-incubation with 250 μM vitamin C derivative (l-ascorbic acid 2-phosphate sesquimagnesium salt hydrate, AA2P) and 100 μM co-enzyme Q10 (CoQ10) could significantly reduce the DMBA-induced high ROS level, and partially alleviate the DMBA-induced high PB1 rate, whereas the cleavage and blastocyst rates of parthenotes derived from treated mature oocytes remained to be low. Collectively, our findings indicate that single cell RNA-seq can help reveal the dynamics of molecular signaling pathways for porcine oocytes treated by DMBA, and supplement of anti-oxidative reagents could not sufficiently rescue DMBA-induced defects of porcine oocytes.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| | - Zhi-Qiang Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Surui Pei
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 100176, China
| | - Xiao-Xia Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Jia-Kun Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
12
|
Latorraca LB, Feitosa WB, Mariano C, Moura MT, Fontes PK, Nogueira MFG, Paula-Lopes FF. Autophagy is a pro-survival adaptive response to heat shock in bovine cumulus-oocyte complexes. Sci Rep 2020; 10:13711. [PMID: 32792582 PMCID: PMC7426922 DOI: 10.1038/s41598-020-69939-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a physiological mechanism that can be activated under stress conditions. However, the role of autophagy during oocyte maturation has been poorly investigated. Therefore, this study characterized the role of autophagy on developmental competence and gene expression of bovine oocytes exposed to heat shock (HS). Cumulus-oocyte-complexes (COCs) were matured at Control (38.5 °C) and HS (41 °C) temperatures in the presence of 0 and 10 mM 3-methyladenine (3MA; autophagy inhibitor). Western blotting analysis revealed that HS increased autophagy marker LC3-II/LC3-I ratio in oocytes. However, there was no effect of temperature for oocytes matured with 3MA. On cumulus cells, 3MA reduced LC3-II/LC3-I ratio regardless of temperature. Inhibition of autophagy during IVM of heat-shocked oocytes (3MA-41 °C) reduced cleavage and blastocyst rates compared to standard in vitro matured heat-shocked oocytes (IVM-41 °C). Therefore, the magnitude of HS detrimental effects was greater in the presence of autophagy inhibitor. Oocyte maturation under 3MA-41 °C reduced mRNA abundance for genes related to energy metabolism (MTIF3), heat shock response (HSF1), and oocyte maturation (HAS2 and GREM1). In conclusion, autophagy is a stress response induced on heat shocked oocytes. Inhibition of autophagy modulated key functional processes rendering the oocyte more susceptible to the deleterious effects of heat shock.
Collapse
Affiliation(s)
- Lais B Latorraca
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
| | - Weber B Feitosa
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Camila Mariano
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Marcelo T Moura
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil
| | - Patrícia K Fontes
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
| | - Marcelo F G Nogueira
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil
- Department of Biological Sciences, School of Sciences and Languages, UNESP, Assis, São Paulo, Brazil
| | - Fabíola F Paula-Lopes
- Department of Pharmacology, Institute of Bioscience, São Paulo State University (UNESP), District of Rubião Junior S/N, Botucatu, São Paulo, 18618970, Brazil.
- Department of Biological Sciences, Federal University of São Paulo, Diadema, São Paulo, 09972270, Brazil.
| |
Collapse
|
13
|
Chen D, Hu G, Zhang S, Zhang H, Teng X. Ammonia-triggered apoptosis via immune function and metabolic process in the thymuses of chickens by proteomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110619. [PMID: 32344265 DOI: 10.1016/j.ecoenv.2020.110619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3), an environmental pollutant with a pungent odor, is not only an important volatile in fertilizer production and ranching, but also main basic component of haze. In present study, we found that ultrastructural changes and 3167 differentially expressed proteins (DEPs) using proteomics analysis in the thymuses of chickens exposed to NH3 on day 42. Obtained DEPs were enriched using GO and KEGG; and 66 DEPs took part in immune function, metabolic process, and apoptosis in the thymuses of chickens treated with NH3. 9 genes of DEPs were validated using qRT-PCR, and mRNA expression of 2 immune-related genes (CTSG and NFATC2), 3 metabolic process-related genes (APOA1, GOT1, and GOLGA3), and 4 apoptosis-related genes (PIK3CD, CTSS, CAMP, and NSD2) were consistent with DEPs in chicken thymuses. Our results indicated that excess NH3 led to immunosuppression, metabolic disorder, and apoptosis in chicken thymuses. Present study gives a novel insight into the mechanism of NH3 toxicity and demonstrated that immune response, metabolism process, and apoptosis were important in the mechanism of NH3 toxicity of chicken exposure to high concentration of NH3.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Guanghui Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
14
|
Yang LL, Zhang PF, Zhang TY, Shen W, Zhao Y, Yin S. Ortho-phenylphenol exposure impairs porcine sperm motility through AMPK/AKT signaling pathway. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:830-836. [PMID: 31454112 DOI: 10.1002/em.22324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Ortho-phenylphenol (OPP), as an active ingredient of disinfectants, has been worldwide utilized as fungicides and antibacterial agents in hospital, agriculture, wood preservation, and veterinary products. However, little is known about the toxic effects of OPP on male reproduction, especially sperm motility, and the underlying mechanisms. In this study, we chose porcine sperms as in vitro model to investigate the effects and mechanisms of OPP exposure on sperm motility. Our results indicated that porcine sperm motility decreases significantly in a dose-dependent manner after exposed to OPP. Additionally, ATP synthesis deficiency was revealed by downregulation of ATP synthase subunit beta and adenosine 5'-monophosphate-activated protein kinase expression. Furthermore, OPP disturbed the expression of TP53 and PTEN, which contributed to AKT pathway deactivation. OPP exposure also disrupted platelet-derived growth factor receptor A expression, which further inhibited 3-phosphoinositide-dependent protein kinase 1 activation, resulting in protein kinase B and pyruvate dehydrogenase phosphatase catalytic subunit 1 deactivation. In conclusion, these observations suggest that OPP exposure decreases porcine sperm motility by disturbing the AMPK/AKT signaling pathway. Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lei-Lei Yang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Peng-Fei Zhang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Tian-Yu Zhang
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
15
|
Sun YL, Tang SB, Shen W, Yin S, Sun QY. Roles of Resveratrol in Improving the Quality of Postovulatory Aging Oocytes In Vitro. Cells 2019; 8:cells8101132. [PMID: 31547622 PMCID: PMC6829324 DOI: 10.3390/cells8101132] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/21/2019] [Indexed: 01/19/2023] Open
Abstract
After ovulation, mammalian oocytes will undergo a time-dependent process of aging if they are not fertilized. This postovulatory aging (POA) seriously affects the oocyte quality and then impairs the subsequent fertilization and early embryo development, which should be avoided especially in assisted reproductive technology (ART). Resveratrol is an antioxidant substance that can scavenge free radicals and is effective in improving ovary functions. Here, mouse oocytes were used to investigate the effects and mechanisms of resveratrol on POA oocytes in vitro. With 1.0 µM resveratrol treatment during aging process, the rates of fertilization and blastocyst in POA oocytes increased significantly compared with those in the POA group. Resveratrol can reduce the loss of sperm binding sites by stabilizing Juno. Resveratrol can maintain the normal morphology of spindle and mitochondrion distribution and alleviate the levels of ROS and early apoptosis. Additionally, resveratrol can reduce the changes of H3K9me2. Therefore, resveratrol can significantly improve the quality of POA oocytes in vitro to enhance the rates of fertilization and blastocyst, which may be very helpful during the ART process.
Collapse
Affiliation(s)
- Yan-Li Sun
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shou-Bin Tang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China.
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qing-Yuan Sun
- College of Life Sciences, Institute of Reproductive Science, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
16
|
He YT, Wang W, Shen W, Sun QY, Yin S. Melatonin protects against Fenoxaprop-ethyl exposure-induced meiotic defects in mouse oocytes. Toxicology 2019; 425:152241. [DOI: 10.1016/j.tox.2019.152241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/11/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
|
17
|
He YT, Yang LL, Zhao Y, Shen W, Yin S, Sun QY. Fenoxaprop-ethyl affects mouse oocyte quality and the underlying mechanisms. PEST MANAGEMENT SCIENCE 2019; 75:844-851. [PMID: 30152098 DOI: 10.1002/ps.5190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Fenoxaprop-ethyl (FE) is an active ingredient of commercially available herbicide formulations. Its overuse has caused much damage to the environment, livestock breeding, agricultural crops and humans. However, little is known about the effects of FE exposure on female reproductive health and the mechanisms underlying those effects. In this study, we investigated the toxic effects of FE on oocyte quality and their underlying mechanisms in mice fed a diet containing FE. RESULTS Ovary weight and numbers of oocytes were reduced in FE-treated mice. Moreover, oocyte quality was seriously impaired, as shown by the reduced rate of first polar body extrusion and fertilization ability in vivo. In FE-treated mice, oocytes presented reduced actin expression and abnormal meiotic spindle morphology, which indicate that cytoskeletal integrality is disrupted. Also, FE induced mitochondrial dysfunction, reflected by the accumulation of reactive oxygen species (ROS), apoptosis and autophagy, as revealed by fluorescent staining analysis and real-time polymerase chain reaction (qPCR). Finally, FE led to changes in epigenetic modifications such as histone H3K27me3 and H3K9me2 in oocytes. CONCLUSIONS Our results indicate that FE has adverse effects on oocyte quality as assessed by maturation and fertilization potential, due to disrupted cytoskeletal integrality, and mitochondrial dysfunction leading to ROS accumulation, apoptosis and autophagy. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ya-Ting He
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Lei-Lei Yang
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yong Zhao
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qing-Yuan Sun
- College of Animal Science and Technology, College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Wang W, Luo SM, Ma JY, Shen W, Yin S. Cytotoxicity and DNA Damage Caused from Diazinon Exposure by Inhibiting the PI3K-AKT Pathway in Porcine Ovarian Granulosa Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:19-31. [PMID: 30525588 DOI: 10.1021/acs.jafc.8b05194] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Organophosphorus insecticide diazinon (DZN) is diffusely used in agriculture, home gardening, and crop peats. Much work so far has focused on the link between DZN exposure and the occurrence of neurological diseases, while little is known on the reproductive toxicological assessment on DZN exposure. This research aimed to investigate the underlying mechanisms of toxic hazards for DZN exposure on cultured porcine ovarian granulosa cells. We analyzed the oxidative stress, energy metabolism, DNA damage, apoptosis, and autophagy by using high-throughput RNA-seq, immunofluorescence, Western blotting, and real-time PCR. The combined data demonstrated that DZN exposure could cause excessive ROS and DNA damage, which induced apoptosis and autophagy by inhibiting the PI3K-AKT pathway. The down-regulated CYP19A1 protein and granulosa cell deaths increase the risk for developing premature ovarian failure and follicular atresia. In conclusion, DZN exposure has obvious reproductive toxicity by induction of granulosa cell death through pathways connected to DNA damage and oxidative stress by inhibiting the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Wei Wang
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Shi-Ming Luo
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Jun-Yu Ma
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences , Qingdao Agricultural University , Qingdao 266109 , China
| |
Collapse
|
19
|
Yang LL, Cui YX, Ma JY, Ge ZJ, Shen W, Yin S. Tributyltin oxide exposure impairs mouse oocyte maturation and its possible mechanisms. J Cell Biochem 2018; 120:715-726. [PMID: 30191590 DOI: 10.1002/jcb.27429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/12/2018] [Indexed: 11/07/2022]
Abstract
Tributyltin oxide (TBTO) has been widely used as marine antifouling composition, preservative, biocide, and a stabilizer in plastic industry. Previous studies have indicated that TBTO can cause immunotoxicity as an environmental pollutant. However, little is known about its reproductive toxicity, especially on female oocyte maturation and the underlying mechanisms. In this study, mouse oocytes were cultured with different concentrations of TBTO in vitro, and several crucial events during meiotic maturation were evaluated. We found that the first polar body extrusion rate was significantly reduced, which reflected the disruption of meiotic maturation. The rate of abnormal spindle organization increased significantly, accompanied with a higher rate of chromosome misalignment. In addition, TBTO treatment increased reactive oxygen species generation markedly, which also accelerated the early-stage apoptosis. Moreover, heterogeneous mitochondrial distribution, mitochondrial dysfunction, and higher rate of aneuploidy were detected, which consequently disrupted in vitro fertilization. In conclusion, our results indicated that TBTO exposure could impair mouse oocyte maturation by affecting spindle organization, chromosome alignment, mitochondria functions, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Lei-Lei Yang
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Ying-Xue Cui
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jun-Yu Ma
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Zhao-Jia Ge
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Wei Shen
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shen Yin
- Institute of Reproductive Sciences, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|