1
|
Gupta K, Soni N, Nema RK, Sahu N, Srivastava RK, Ratre P, Mishra PK. Microcystin-LR in drinking water: An emerging role of mitochondrial-induced epigenetic modifications and possible mitigation strategies. Toxicol Rep 2024; 13:101745. [PMID: 39411183 PMCID: PMC11474209 DOI: 10.1016/j.toxrep.2024.101745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Algal blooms are a serious menace to freshwater bodies all over the world. These blooms typically comprise cyanobacterial outgrowths that produce a heptapeptide toxin, Microcystin-LR (MC-LR). Chronic MC-LR exposure impairs mitochondrial-nuclear crosstalk, ROS generation, activation of DNA damage repair pathways, apoptosis, and calcium homeostasis by interfering with PC/MAPK/RTK/PI3K signaling. The discovery of the toxin's biosynthesis pathways paved the way for the development of molecular techniques for the early detection of microcystin. Phosphatase inhibition-based bioassays, high-performance liquid chromatography, and enzyme-linked immunosorbent tests have recently been employed to identify MC-LR in aquatic ecosystems. Biosensors are an exciting alternative for effective on-site analysis and field-based characterization. Here, we present a synthesis of evidence supporting MC-LR as a mitotoxicant, examine various detection methods, and propose a novel theory for the relevance of MC-LR-induced breakdown of mitochondrial machinery and its myriad biological ramifications in human health and disease.
Collapse
Affiliation(s)
- Kashish Gupta
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Nikita Soni
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Ram Kumar Nema
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Neelam Sahu
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Rupesh K. Srivastava
- Department of Biotechnology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Pooja Ratre
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
| | - Pradyumna Kumar Mishra
- Division of Environmental Biotechnology, Genetics & Molecular Biology (EBGMB), ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, India
- Faculty of Medical Research, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Monteil A, Guérineau NC, Gil-Nagel A, Parra-Diaz P, Lory P, Senatore A. New insights into the physiology and pathophysiology of the atypical sodium leak channel NALCN. Physiol Rev 2024; 104:399-472. [PMID: 37615954 DOI: 10.1152/physrev.00014.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Cell excitability and its modulation by hormones and neurotransmitters involve the concerted action of a large repertoire of membrane proteins, especially ion channels. Unique complements of coexpressed ion channels are exquisitely balanced against each other in different excitable cell types, establishing distinct electrical properties that are tailored for diverse physiological contributions, and dysfunction of any component may induce a disease state. A crucial parameter controlling cell excitability is the resting membrane potential (RMP) set by extra- and intracellular concentrations of ions, mainly Na+, K+, and Cl-, and their passive permeation across the cell membrane through leak ion channels. Indeed, dysregulation of RMP causes significant effects on cellular excitability. This review describes the molecular and physiological properties of the Na+ leak channel NALCN, which associates with its accessory subunits UNC-79, UNC-80, and NLF-1/FAM155 to conduct depolarizing background Na+ currents in various excitable cell types, especially neurons. Studies of animal models clearly demonstrate that NALCN contributes to fundamental physiological processes in the nervous system including the control of respiratory rhythm, circadian rhythm, sleep, and locomotor behavior. Furthermore, dysfunction of NALCN and its subunits is associated with severe pathological states in humans. The critical involvement of NALCN in physiology is now well established, but its study has been hampered by the lack of specific drugs that can block or agonize NALCN currents in vitro and in vivo. Molecular tools and animal models are now available to accelerate our understanding of how NALCN contributes to key physiological functions and the development of novel therapies for NALCN channelopathies.
Collapse
Affiliation(s)
- Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nathalie C Guérineau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Antonio Gil-Nagel
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Paloma Parra-Diaz
- Department of Neurology, Epilepsy Program, Hospital Ruber Internacional, Madrid, Spain
| | - Philippe Lory
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- LabEx "Ion Channel Science and Therapeutics," Montpellier, France
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
3
|
Xie Y, Zhao J, Li X, Sun J, Yang H. Effects of Cyfluthrin Exposure on Neurobehaviour, Hippocampal Tissue and Synaptic Plasticity in Wistar Rats. TOXICS 2023; 11:999. [PMID: 38133400 PMCID: PMC10748044 DOI: 10.3390/toxics11120999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
This experiment was conducted to study the effects of Cyfluthrin (Cy) exposure on neurobehaviour, hippocampal tissue and synaptic plasticity in Wistar rats. First, it was found that high-dose Cy exposure could cause nerve injury, resulting in symptoms such as deficits in learning and memory ability, spatial exploration and autonomic motor function. Moreover, it was found that medium- and high-dose Cy exposure could cause an abnormal release of the neurotransmitter Glu. Second, brain tissue pathology showed that the middle and high doses of Cy caused tissue deformation, reduced the number of hippocampal puramidal cells, caused a disorder of these cells, decreased the number of Nissl bodies, and caused pyknosis of the hippocampal cell nuclear membrane and serious damage to organelles, indicating that exposure to these doses of Cy may cause hippocampal tissue damage in rats. Third, as the exposure dose increased, morphological changes in hippocampal synapses, including blurred synaptic spaces, a decreased number of synaptic vesicles and a decreased number of synapses, became more obvious. Moreover, the expression levels of the key synaptic proteins PSD-95 and SYP also decreased in a dose-dependent manner, indicating obvious synaptic damage. Finally, the study found that medium and high doses of Cy could upregulate the expression of A2AR in the hippocampus and that the expression levels of inflammatory factors and apoptosis-related proteins increased in a dose-dependent manner. Moreover, the expression of A2AR mRNA was correlated with neurobehavioural indicators and the levels of inflammatory factors, synaptic plasticity-related factors and apoptosis-related factors, suggesting that Cy may cause nerve damage in rats and that this effect is closely related to A2AR.
Collapse
Affiliation(s)
- Yongxin Xie
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Ji Zhao
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Xiaoyu Li
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Jian Sun
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| | - Huifang Yang
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China; (Y.X.); (J.Z.); (X.L.)
- Key Laboratory of Environmental Factors and Chronic Disease Control, No. 1160, Shengli Street, Xingqing District, Yinchuan 750004, China
| |
Collapse
|
4
|
Xiong R, Du Y, Chen S, Liu T, Ding X, Zhou J, Wang Z, Yang Q. Hypermethylation of the ADIRF promoter regulates its expression level and is involved in NNK-induced malignant transformation of lung bronchial epithelial cells. Arch Toxicol 2023; 97:3243-3258. [PMID: 37777989 DOI: 10.1007/s00204-023-03608-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
The carcinogenic mechanism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a well-known tobacco carcinogen, has not been fully elucidated in epigenetic studies. 5-Methylcytosine (5mC) modification plays a major role in epigenetic regulation. In this study, the 5mC level increased in both BEAS-2B human bronchial epithelium cells treated with 100 mg/L NNK for 24 h and NNK-induced malignant-transformed BEAS-2B cells (2B-NNK cells), suggesting that 5mC modification is associated with the malignant transformation mechanism of NNK. Using a combination of Methylated DNA Immunoprecipitation Sequencing (MeDIP-seq), RNA sequencing (RNA-seq), and bioinformatics analysis of data from the Genomic Data Commons database, we found that the Adipogenesis regulatory factor (ADIRF) promoter region was abnormally hypermethylated, yielding low ADIRF mRNA expression, and that ADIRF overexpression could inhibit the proliferation, migration, and invasion of 2B-NNK cells. This finding suggests that ADIRF plays a tumor suppressor role in the NNK-induced malignant transformation of cells. Subsequently, using 5-Aza-2'-deoxycytidine (5-Aza-2'-dC) and the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Catalytically Dead Cas9 (dCas9 system), we verified that the demethylation of the ADIRF promoter region in 2B-NNK cells inhibited the proliferation, migration, and invasion ability of the cells and increased their apoptosis ability. These results suggest that abnormal 5mC modification of the ADIRF promoter plays a positive regulatory role in the pathogenesis of NNK-induced lung cancer. This study offers a new experimental basis for the epigenetic mechanism of NNK-induced lung cancer.
Collapse
Affiliation(s)
- Rui Xiong
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Yiheng Du
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Sili Chen
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Tao Liu
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Xiangyu Ding
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Jiaxin Zhou
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, People's Republic of China
| | - Zhi Wang
- Key Laboratory of Occupational Environment and Health, Guangzhou Twelfth People's Hospital, 1 Tianqiang St., Huangpu West Ave, Guangzhou, 510620, China
| | - Qiaoyuan Yang
- The Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
5
|
Liu Z, Yan W, Liu S, Liu Z, Xu P, Fang W. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis. Cancer Lett 2023; 565:216225. [PMID: 37182638 DOI: 10.1016/j.canlet.2023.216225] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023]
Abstract
CCDC (coiled-coil domain-containing) is a coiled helix domain that exists in natural proteins. There are about 180 CCDC family genes, encoding proteins that are involved in intercellular transmembrane signal transduction and genetic signal transcription, among other functions. Alterations in expression, mutation, and DNA promoter methylation of CCDC family genes have been shown to be associated with the pathogenesis of many diseases, including primary ciliary dyskinesia, infertility, and tumors. In recent studies, CCDC family genes have been found to be involved in regulation of growth, invasion, metastasis, chemosensitivity, and other biological behaviors of malignant tumor cells in various cancer types, including nasopharyngeal carcinoma, lung cancer, colorectal cancer, and thyroid cancer. In this review, we summarize the involvement of CCDC family genes in tumor pathogenesis and the relevant upstream and downstream molecular mechanisms. In addition, we summarize the potential of CCDC family genes as tumor therapy targets. The findings discussed here help us to further understand the role and the therapeutic applications of CCDC family genes in tumors.
Collapse
Affiliation(s)
- Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China
| | - Shaohua Liu
- Department of General Surgery, Pingxiang People's Hospital, Pingxiang, Jiangxi, 337000, China
| | - Zhan Liu
- Department of Gastroenterology and Clinical Nutrition, The First Affiliated Hospital (People's Hospital of Hunan Province), Hunan Normal University, Changsha, 410002, China
| | - Ping Xu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China; Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China.
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315, Guangzhou, China.
| |
Collapse
|
6
|
Huang L, Liu B, Yu XW, Pan GQ, Xu JY, Yan D, Wang YL, Guo QN. Rat tight junction proteins are disrupted after subchronic exposure to okadaic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62201-62212. [PMID: 36940028 DOI: 10.1007/s11356-023-26471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Okadaic acid (OA), a lipophilic phycotoxin distributed worldwide, causes diarrheic shellfish poisoning and even leads to tumor formation. Currently, the consumption of contaminated seafood is the most likely cause of chronic OA exposure, but there is a serious lack of relevant data. Here, the Sprague-Dawley rats were exposure to OA by oral administration at 100 µg/kg body weight, and the tissues were collected and analyzed to assess the effect of subchronic OA exposure. The results showed that subchronic OA administration disturbed colonic mucosal integrity and induced colitis. The colonic tight junction proteins were disrupted and the cell cycle of colonic epithelial cells was accelerated. It is inferred that disruption of the colonic tight junction proteins might be related to the development of chronic diarrhea by affecting water and ion transport. Moreover, the accelerated proliferation of colonic epithelial cells indicated that subchronic OA exposure might promote the restitution process of gut barrier or induce tumor promoter activity in rat colon.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xiao-Wen Yu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, People's Republic of China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jia-Yi Xu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Dong Yan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Ya-Li Wang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
7
|
Huang X, Su Z, Li J, He J, Zhao N, Nie L, Guan B, Huang Q, Zhao H, Lu GD, Nong Q. Downregulation of LncRNA GCLC-1 Promotes Microcystin-LR-Induced Malignant Transformation of Human Liver Cells by Regulating GCLC Expression. TOXICS 2023; 11:162. [PMID: 36851037 PMCID: PMC9960881 DOI: 10.3390/toxics11020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Microcystin-LR (MCLR) is an aquatic toxin, which could lead to the development of hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are considered important regulatory elements in the occurrence and development of cancer. However, the roles and mechanisms of lncRNAs during the process of HCC, induced by MCLR, remain elusive. Here, we identified a novel lncRNA, namely lnc-GCLC-1 (lncGCLC), which is in close proximity to the chromosome location of glutamate-cysteine ligase catalytic subunit (GCLC). We then investigated the role of lncGCLC in MCLR-induced malignant transformation of WRL68, a human hepatic cell line. During MCLR-induced cell transformation, the expression of lncGCLC and GCLC decreased continuously, accompanied with a consistently high expression of miR-122-5p. Knockdown of lncGCLC promoted cell proliferation, migration and invasion, but reduced cell apoptosis. A xenograft nude mouse model demonstrated that knockdown of lncGCLC promoted tumor growth. Furthermore, knockdown of lncGCLC significantly upregulated miR-122-5p expression, suppressed GCLC expression and GSH levels, and enhanced oxidative DNA damages. More importantly, the expression of lncGCLC in human HCC tissues was significantly downregulated in the high-microcystin exposure group, and positively associated with GCLC level in HCC tissues. Together, these findings suggest that lncGCLC plays an anti-oncogenic role in MCLR-induced malignant transformation by regulating GCLC expression.
Collapse
Affiliation(s)
- Xinglei Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Zhaohui Su
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Jiangheng Li
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Junquan He
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Na Zhao
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Liyun Nie
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Bin Guan
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qiuyue Huang
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Huiliu Zhao
- Department of Clinical Laboratory, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guo-Dong Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China
| | - Qingqing Nong
- Department of Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
8
|
Yan H, Zhang S, Ma S. Hierarchy‐assisted gene expression regulatory network analysis. Stat Anal Data Min 2023. [DOI: 10.1002/sam.11609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Han Yan
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
- Department of Biostatistics Yale School of Public Health New Haven Connecticut USA
| | - Sanguo Zhang
- School of Mathematical Sciences University of Chinese Academy of Sciences Beijing China
- Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
- Pazhou Lab Guangzhou China
| | - Shuangge Ma
- Department of Biostatistics Yale School of Public Health New Haven Connecticut USA
| |
Collapse
|
9
|
He J, Xu J, Chang Z, Yan J, Zhang L, Qin Y. NALCN is a potential biomarker and therapeutic target in human cancers. Front Genet 2023; 14:1164707. [PMID: 37152978 PMCID: PMC10154523 DOI: 10.3389/fgene.2023.1164707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Background: Sodium leak channel non-selective (NALCN), known as a voltage-independent Na+ channel, is increasingly considered to play vital roles in tumorigenesis and metastasis of human cancers. However, no comprehensive pan-cancer analysis of NALCN has been conducted. Our study aims to explore the potential diagnostic, prognostic and therapeutic value of NALCN in human cancers. Methods: Through comprehensive application of datasets from Human Protein Atlas (HPA), The Cancer Genome Atlas (TCGA), Cancer Cell Line Encyclopedia (CCLE), Enhanced Version of Tumor Immune Estimation Resource (TIMER2.0), Tumor and Immune System Interaction Database (TISIDB), The University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cBioPortal, GeneMANIA and Search Tool for the Retrieval of Interaction Gene/Proteins (STRING) databases, we explored the potential roles of NALCN in different cancers. The differential expression, prognostic implications, pathological stages and grades, molecular and immune subtypes, diagnostic accuracy, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR) genes, immune checkpoint genes, chemokine genes, major histocompatibility complex (MHC)-related genes, tumor-infiltrating immune cells (TIICs), promoter methylation, mutations, copy number alteration (CNA), and functional enrichment related to NALCN were analyzed. Results: Most cancers lowly expressed NALCN. Upregulated NALCN expression was associated with poor or better prognosis in different cancers. Moreover, NALCN was correlated with clinicopathological features in multiple cancers. NALCN showed high diagnostic accuracy in 5 caner types. NALCN is highly linked with immune-related biomarkers, immune-related genes and TIICs. Significant methylation changes and genetic alteration of NALCN can be observed in many cancers. Enrichment analysis showed that NALCN is closely related to multiple tumor-related signaling pathways. Conclusion: Our study revealed the vital involvement of NALCN in cancer. NALCN can be used as a prognostic biomarker for immune infiltration and clinical outcomes, and has potential diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Jian He
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiaqin Yan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Limin Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Yanru Qin,
| |
Collapse
|
10
|
Wang X, Zhu Y, Lu W, Guo X, Chen L, Zhang N, Chen S, Ge C, Xu S. Microcystin-LR-induced nuclear translocation of cGAS promotes mutagenesis in human hepatocytes by impeding homologous recombination repair. Toxicol Lett 2022; 373:94-104. [PMID: 36435412 DOI: 10.1016/j.toxlet.2022.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Microcystin-LR (MC-LR) has been recognized as a typical hepatotoxic cyclic peptides produced by cyanobacteria. Nowadays, due to the frequent occurrence of cyanobacterial blooms, the underlying hepatotoxic mechanism of MC-LR has become the focus of attention. In our present work, the mutagenic effect of MC-LR on human normal hepatic (HL-7702) cells regulated by cGAS was mainly studied. Here, we showed that exposure to MC-LR for 1-4 days could activate the cGAS-STING signaling pathway and then trigger immune response in HL-7702 cells. Notably, relative to the treatment with 1 μM MC-LR for 1-3 days, it was observed that when HL-7702 cells were exposed to 1 μM MC-LR for 4 days, the mutation frequency at the Hprt locus was remarkably increased. In addition, cGAS in HL-7702 cells was also found to complete the nuclear translocation after 4-day exposure. Moreover, co-immunoprecipitation and homologous recombination (HR)-directed DSB repair assay were applied to show that homologous recombination repair was inhibited after 4-day exposure. However, the intervention of the nuclear translocation of cGAS by transfecting BLK overexpression plasmid restored homologous recombination repair and reduced the mutation frequency at the Hprt locus in HL-7702 cells exposed to MC-LR. Our study unveiled the distinct roles of cGAS in the cytoplasm and nucleus of human hepatocytes as well as potential mutagenic mechanism under the early and late stage of exposure to MC-LR, and provided a novel insight into the prevention and control measures about the hazards of cGAS-targeted MC-LR.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Yuchen Zhu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Wenzun Lu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Xiaoying Guo
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Science, Hefei 230031, PR China
| | - Liuzeng Chen
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Ning Zhang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, PR China
| | - Chunmei Ge
- School of Biology, Food and Environment, Hefei University, Hefei 230601, PR China.
| | - Shengmin Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
11
|
Qu Y, Lu J, Mei W, Jia Y, Bian C, Ding Y, Guo Y, Cao F, Li F. Prognostic biomarkers of pancreatic cancer identified based on a competing endogenous RNA regulatory network. Transl Cancer Res 2022; 11:4019-4036. [PMID: 36523322 PMCID: PMC9745361 DOI: 10.21037/tcr-22-709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/12/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND Pancreatic cancer is an insidious and heterogeneous malignancy with poor prognosis that is often locally unresectable. Therefore, determining the underlying mechanisms and effective prognostic indicators of pancreatic cancer may help optimize clinical management. This study was conducted to develop a prognostic model for pancreatic cancer based on a competing endogenous RNA (ceRNA) network. METHODS We obtained transcriptomic data and corresponding clinicopathological information of pancreatic cancer samples from The Cancer Genome Atlas (TCGA) database (training set). Based on the ceRNA interaction network, we screened candidate genes to build prediction models. Univariate Cox regression analysis was performed to screen for genes associated with prognosis, and least absolute shrinkage and selection operator (LASSO) regression analysis was conducted to construct a predictive model. A receiver operating characteristic (ROC) curve was drawn, and the C-index was calculated to evaluate the accuracy of the prediction model. Furthermore, we downloaded transcriptomic data and related clinical information of pancreatic cancer samples from the Gene Expression Omnibus database (validation set) to evaluate the robustness of our prediction model. RESULTS Eight genes (ANLN, FHDC1, LY6D, SMAD6, ACKR4, RAB27B, AUNIP, and GPRIN3) were used to construct the prediction model, which was confirmed as an independent predictor for evaluating the prognosis of patients with pancreatic cancer through univariate and multivariate Cox regression analysis. By plotting the decision curve, we found that the risk score model is an independent predictor has the greatest impact on survival compared to pathological stage and targeted molecular therapy. CONCLUSIONS An eight-gene prediction model was constructed for effectively and independently predicting the prognosis of patients with pancreatic cancer. These eight genes identified show potential as diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yuanxu Qu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Jiongdi Lu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Chunjing Bian
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yixuan Ding
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Yulin Guo
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Feng Cao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Center for Acute Pancreatitis, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Gu S, Jiang M, Zhang B. Microcystin-LR in Primary Liver Cancers: An Overview. Toxins (Basel) 2022; 14:toxins14100715. [PMID: 36287983 PMCID: PMC9611980 DOI: 10.3390/toxins14100715] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/17/2022] [Indexed: 12/01/2022] Open
Abstract
The cyanobacterial blooms produced by eutrophic water bodies have become a serious environmental issue around the world. After cellular lysing or algaecide treatment, microcystins (MCs), which are regarded as the most frequently encountered cyanobacterial toxins in fresh water, are released into water. Among all the variants of MCs, MC-LR has been widely studied due to its severe hepatotoxicity. Since 1992, various studies have identified the important roles of MC-LR in the origin and progression of primary liver cancers (PLCs), although few reviews have focused on it. Therefore, this review aims to summarize the major achievements and shortcomings observed in the past few years. Based on the available literature, the mechanisms of how MC-LR induces or promotes PLCs are elucidated in this review. This review aims to enhance our understanding of the role that MC-LR plays in PLCs and provides a rational approach for future applications.
Collapse
Affiliation(s)
- Shen Gu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Correspondence: ; Tel.: +86-0571-56007664
| | - Mingxuemei Jiang
- Institute of Scientific and Technical Information of Zhejiang Province, Hangzhou 310001, China
| | - Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Translational Medicine Research Center, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
13
|
Huang L, Gong J, Hu Y, Tan QL, Liu B, Yu XW, Hao XL, Guo QN. Long-term exposure to low levels of okadaic acid accelerates cell cycle progression in colonic epithelial cells via p53 and Jak/Stat3 signaling pathways. Heliyon 2022; 8:e10444. [PMID: 36105456 PMCID: PMC9465354 DOI: 10.1016/j.heliyon.2022.e10444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
As a major component of diarrheic shellfish poisoning (DSP) toxins, okadaic acid (OA) is widely distributed worldwide, and causes a series of serious public health problems. In colon tissue, previous studies have shown that high doses of OA can affect various intracellular processes, including destroy intercellular communication at gap junctions, induce cell apoptosis and trigger cell cycle arrest. However, there is a scarcity of studies on the effect and mechanism of action of low doses of OA in colonic tissues. In this study, we observed that exposure to low levels of OA altered cell cycle progression in vitro and in vivo. Investigation of the underlying mechanism revealed that OA induced alterations in the cell cycle by inhibiting the p53 signaling pathway or inducing the Jak/Stat3 signaling pathway. In conclusion, this study provides novel insights into the effect and mechanism underlying long-term exposure to low levels of OA. Long-term exposure to low levels of OA accelerates cell cycles in vitro and in vivo OA induced changes in cell cycle by inhibiting the p53 signaling pathway OA induced changes in cell cycle by inducing the Jak/Stat3 signaling pathway
Collapse
|
14
|
Wang S, Wang Y, Lu J, Wang J. LncRNA LINC00665 Promotes Ovarian Cancer Cell Proliferation and Inhibits Apoptosis via Targeting miR-181a-5p/FHDC. Appl Biochem Biotechnol 2022; 194:3819-3832. [PMID: 35524876 DOI: 10.1007/s12010-022-03943-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
Previous reports indicate that long intergenic non-coding RNA LINC00665 naturally occurred vital effects in various cancers. Herein, the role of LINC00665 in ovarian cancer progress was explored. We found that LINC00665 was upregulated in ovarian cancer cell lines. Besides, a series of assays including flow cytometry, wound-healing, transwell, cell counting Kit-8 (CCK-8), and EdU assay confirmed that the knockdown of LINC00665 could reduce the viability, proliferation, and migration of SKOV-3 and OVCAR-3 cells. Accumulating evidence indicates that many lncRNAs can function as endogenous miRNA sponges by competitively binding common miRNAs. In this study, the bioinformatics analysis suggests that LNC00665 specifically binds to miR-181a-5p. LINC00665 downregulated the miR-181a-5p in SKOV-3 and OVCAR-3 cells. The knockdown of miR-181a-5p evidently reverses the inhibitory effect of sh-LINC00662. Besides, FH2 domain containing 1 (FHDC1) has been proved to deed as an effective target of miR-181a-5p. The results reveal the knockdown of LINC00665 facilitates ovarian cancer via development by sponging miR-181a-5p and up-regulating FHDC1 expression. These may contribute to ovarian cancer therapy.
Collapse
Affiliation(s)
- Suli Wang
- Department of Women's Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu Province, China
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing, 210009, Jiangsu Province, China
| | - Yingchun Wang
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, Jiangsu Province, China
| | - Jin Lu
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing, 210009, Jiangsu Province, China
| | - Jinhua Wang
- Department of Gynecological Oncology Surgery, Jiangsu Cancer Hospital (Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital), 42 Baiziting Road, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
15
|
Zou DD, Xu D, Deng YY, Wu WJ, Zhang J, Huang L, He L. Identification of key genes in cutaneous squamous cell carcinoma: a transcriptome sequencing and bioinformatics profiling study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1497. [PMID: 34805359 PMCID: PMC8573448 DOI: 10.21037/atm-21-3915] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/30/2021] [Indexed: 12/19/2022]
Abstract
Background Long-term exposure to ultraviolet (UV) radiation can cause cutaneous squamous cell carcinoma (cSCC), which is one of the most common malignant cancers worldwide. Actinic keratosis (AK) is generally considered a precancerous lesion of cSCC. However, the pathogenesis and oncogenic processes of AK and cSCC remain elusive, especially in the context of photodamage. Methods In this study, transcriptome sequencing was performed on AK, cSCC, normal sun-exposed skin (NES) tissues, and normal non-sun-exposed skin (NNS) from 24 individuals. Bioinformatics analysis to identify the differentially expressed genes (DEGs) of 4 groups, and potential key genes of cSCC were validated by real-time quantitative reverse transcription PCR (qRT-PCR). Results A total of 46,930 genes were differentially expressed in the 4 groups, including 127 genes that were differentially expressed between NES and NNS, 420 DEGs in AK compared to NES, 1,658 DEGs in cSCC compared to NES, and 1,389 DEGs in cSCC compared to AK. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis suggested that the DEGs are involved in multiple pathways, including extracellular matrix (ECM)-receptor interaction, immune, inflammatory, microbial infection, and other related pathways. Finally, 5 new genes (HEPHL1, FBN2, SULF1, SULF2, and TCN1) were confirmed significantly upregulated in cSCC. Conclusions Using transcriptome sequencing and integrated bioinformatical analysis, we have identified key DEGs and pathways in cSCC, which could improve our understanding of the cause and underlying molecular events of AK and cSCC. HEPHL1, FBN2, SULF1, SULF2, and TCN1 may be novel potential biomarkers and therapeutic targets of cSCC.
Collapse
Affiliation(s)
- Dan-Dan Zou
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuan-Yuan Deng
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wen-Juan Wu
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhang
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ling Huang
- Department of Dermatology, First Affiliated Hospital of Dali University, Dali, China
| | - Li He
- Department of Dermatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
16
|
Zhao J, Chen HQ, Yang HF, Li XY, Liu WB. Gene expression network related to DNA methylation and miRNA regulation during the process of aflatoxin B1-induced malignant transformation of L02 cells. J Appl Toxicol 2021; 42:475-489. [PMID: 34561900 DOI: 10.1002/jat.4233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 01/12/2023]
Abstract
Aflatoxin is a secondary metabolite secreted by Aspergillus flavus, parasitic Aspergillus, and other fungi through the polyketone pathway, and it can be detected in many foods. Aflatoxin has strong toxicity and carcinogenicity, and many studies have shown that aflatoxin is highly associated with liver cancer. In the present study, malignant transformation of L02 cells was induced by aflatoxin B1 (AFB1), and the gene expression, miRNA expression, and methylation level were detected by high-throughput sequencing. The gene and miRNA expression results showed that 2547 genes and 315 miRNAs were changed in the AFB1-treated group compared with the DMSO group. Among them, RSAD2 and SCIN were significantly upregulated, whereas TRAPPC3L and UBE2L6 were significantly downregulated. Has-miR-33b-3p was significantly upregulated, whereas Has-miR-3613-5p was significantly downregulated. The methylation results showed that 2832 CpG sites were methylated on the promoter or coding DNA sequence (CDS) of the gene, whereas the expression of DNMT3a and DNMT3b was significantly upregulated. Moreover, hypermethylation occurred in TRAPPC3L, CDH13, and SPINK13. The results of GO and KEGG pathway analyses showed that significantly changed genes and miRNAs were mainly involved in tumor formation, proliferation, invasion, and migration. The results of network map analysis showed that Hsa-miR-3613-5p, Hsa-miR-615-5p, Hsa-miR-615-3p, and Hsa-miR-3158-3p were the key miRNAs for malignant transformation of L02 cells induced by AFB1. In addition, the expression of ONECUT2, RAP1GAP2, and FSTL4 was regulated by DNA methylation and miRNAs. These results suggested that the gene expression network regulated by DNA methylation and miRNAs may play a vital role in AFB1-induced hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hui-Fang Yang
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Xiao-Yu Li
- School of Public Healthy and Management, Ningxia Medical University, Yinchuan, China.,Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.,Department of Environmental Health, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
17
|
Ma Y, Liu H, Du X, Shi Z, Liu X, Wang R, Zhang S, Tian Z, Shi L, Guo H, Zhang H. Advances in the toxicology research of microcystins based on Omics approaches. ENVIRONMENT INTERNATIONAL 2021; 154:106661. [PMID: 34077854 DOI: 10.1016/j.envint.2021.106661] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most widely distributed cyanotoxins, which can be ingested by animals and human body in multiple ways, resulting in a threat to human health and the biodiversity of wildlife. Therefore, the study on toxic effects and mechanisms of MCs is one of the focuses of attention. Recently, the Omics techniques, i.e. genomics, transcriptomics, proteomics and metabolomics, have significantly contributed to the comprehensive understanding and revealing of the molecular mechanisms about the toxicity of MCs. This paper mainly reviews current literature using the Omics approaches to explore the toxicity mechanism of MCs in liver, gonad, spleen, brain, intestine and lung of multiple species. It was found that MCs can exert strong toxic effects on various metabolic activities and cell signal transduction in cell cycle, apoptosis, destruction of cell cytoskeleton and redox disorder, at protein, transcription and metabolism level. Meanwhile, it was also revealed that the alteration of non-coding RNAs (miRNA, circRNA and lncRNA, etc.) and gut microbiota plays an essential regulatory role in the toxic effects of MCs, especially in hepatotoxicity and reproductive toxicity. In addition, we summarized current research gaps and pointed out the future directions for research. The detailed information in this paper shows that the application and development of Omics techniques have significantly promoted the research on MCs toxicity, and it is also a valuable resource for exploring the toxic mechanism of MCs.
Collapse
Affiliation(s)
- Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Ziang Shi
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, PR China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, PR China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, PR China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
18
|
Chen C, Zhou H, Zhang X, Liu Z, Ma X. Identification of ZNF704 as a Novel Oncogene and an Independent Prognostic Marker in Chondrosarcoma. Cancer Manag Res 2021; 13:4911-4919. [PMID: 34188544 PMCID: PMC8232878 DOI: 10.2147/cmar.s313229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The transcription factor zinc finger protein 704 (ZNF704) is implicated in tumorigenesis. However, the underlying role of ZNF704 in the pathogenesis of chondrosarcoma remains not well delineated. This study investigates the expression level, prognostic significance and potential biological function of ZNF704 in human chondrosarcoma. Materials and Methods The mRNA and protein levels of ZNF704 in fresh chondrosarcomas and the paired adjacent non-tumor tissues were evaluated using real-time PCR and immunoblotting, respectively. The protein expression of ZNF704 in chondrosarcoma specimens was detected by immunohistochemistry, and the associations among its expression level, clinicopathological characteristics and prognosis were further investigated. Cell viability, colony formation and apoptosis assay were determined in chondrosarcoma cells and a xenograft model with ZNF704 knockdown. Results The expression levels of ZNF704 mRNA and protein in chondrosarcoma tissues were significantly higher than those in the paired adjacent non-tumor tissues and benign cartilage tumors. Clinicopathological analysis revealed that ZNF704 was expressed at higher levels in chondrosarcoma patients with higher histological grade and advanced MSTS stage. We also found that high expression of ZNF704 significantly correlated with a worse overall survival of chondrosarcoma patients. Multivariate Cox regression analysis indicated that ZNF704 was an independent prognostic marker in chondrosarcoma patients. Our in vitro studies demonstrated that knockdown of ZNF704 markedly inhibited chondrosarcoma cell viability, colony formation and induced apoptosis. In a nude mouse xenograft model, ZNF704 knockdown slowed down chondrosarcoma growth by inducing apoptosis in vivo. Conclusion These findings suggest that ZNF704 may act as a potent oncogene implicated in chondrosarcoma development, and serve as a independent prognostic marker, highlight the potential of ZNF704 as a novel biomarker and therapeutic target for chondrosarcoma.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| | - Hua Zhou
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiaolin Zhang
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| | - Zhongjun Liu
- Department of Orthopaedic Surgery, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xinlong Ma
- Department of Spinal Surgery, Tianjin Hospital, Tianjin, 300211, People's Republic of China
| |
Collapse
|
19
|
Chen HQ, Chen DJ, Li Y, Han F, Jiang X, Cao J, Liu JY, Liu WB. DNA methylation and hydroxymethylation associated with gene expression regulatory network during 3-methylcholanthrene induced lung cell malignant transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144839. [PMID: 33545462 DOI: 10.1016/j.scitotenv.2020.144839] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
3-methylcholanthrene (3-MCA) is a typical representative PAH. It has strong toxicity and is a typical chemical carcinogen. However, the epigenetic mechanisms underlying 3-MCA-induced tumourigenesis are largely unknown. In this study, a model of the 3-MCA-induced malignant transformation of human bronchial epithelial (HBE) cells was established successfully. The profiles of gene expression and DNA methylation and hydroxymethylation were obtained and analysed with an Illumina HiSeq 4000. A total of 707 genes were found to be significantly up-regulated, and 686 genes were found to be significantly down-regulated. Compared to control cells, 8545 mRNA-associated differentially methylated regions and 15,121 mRNA-associated differentially hydroxymethylated regions in promoters were found to be significantly altered in transformed cells. By using mRNA expression and DNA methylation and hydroxymethylation interaction analysis, 99 differentially expressed genes were identified. Among them, CA9 and EGLN3 were verified to be significantly down-regulated, and CARD6 and LCP1 were shown to be significantly up-regulated, and these genes mainly participated in cell growth, migration and invasion, indicating that these genes were key genes involved in the 3-MCA-induced malignant transformation of HBE cells. Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that a large number of differentially expressed genes (DEGs) were involved mainly in RNA polymerase II transcription factor activity, chemical carcinogenesis, base-excision repair (BER), cytokine-cytokine receptor interactions, glycerolipid metabolism, steroid hormone biosynthesis, cAMP signalling pathways and other signalling pathways. Our study suggested that characteristic gene alterations associated with DNA methylation and hydroxymethylation could play important roles in environmental 3-MCA-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; Department of Emergency, Yun Qiao Hospital, Kunming 650224, China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
20
|
Duan B, Fu D, Zhang C, Ding P, Dong X, Xia B. Selective Nonmethylated CpG DNA Recognition Mechanism of Cysteine Clamp Domains. J Am Chem Soc 2021; 143:7688-7697. [PMID: 33983734 DOI: 10.1021/jacs.1c00599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Methylation of DNA at CpG sites is a major mark for epigenetic regulation, but how transcription factors are influenced by CpG methylation is not well understood. Here, we report the molecular mechanisms of how the TCF (T-cell factor) and GEF (glucose transporter 4 enhancer factor) families of proteins selectively target unmethylated DNA sequences with a C-clamp type zinc finger domain. The structure of the C-clamp domain from human GEF family protein HDBP1 (C-clampHDBP1) in complex with DNA was determined using NMR spectroscopy, which adopts a unique zinc finger fold and selectively binds RCCGG (R = A/G) DNA sequences with an "Arg···Trp-Lys-Lys" DNA recognition motif inserted in the major groove. The CpG base pairs are central to the binding due to multiple hydrogen bonds formed with the backbone carbonyl groups of Trp378 and Lys379, as well as the side chain ε-amino groups of Lys379 and Lys380 from C-clampHDBP1. Consequently, methylation of the CpG dinucleotide almost abolishes the binding. Homology modeling reveals that the C-clamp domain from human TCF1E (C-clampTCF1E) binds DNA through essentially the same mechanism, with a similar "Arg···Arg-Lys-Lys" DNA recognition motif. The substitution of tryptophan by arginine makes C-clampHDBP1 prefer RCCGC DNA sequences. The two signature DNA recognition motifs are invariant in the GEF and TCF families of proteins, respectively, from fly to human. The recognition of the CpG dinucleotide through two consecutive backbone carbonyl groups is the same as that of the CXXC type unmethylated CpG DNA binding domains, suggesting a common mechanism shared by unmethylated CpG binding proteins.
Collapse
Affiliation(s)
- Bo Duan
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Dihong Fu
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Chaoqun Zhang
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Pengfei Ding
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| | - Xianzhi Dong
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, College of Chemistry and Molecular Engineering, and School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Xiang S, Li J, Shen J, Zhao Y, Wu X, Li M, Yang X, Kaboli PJ, Du F, Zheng Y, Wen Q, Cho CH, Yi T, Xiao Z. Identification of Prognostic Genes in the Tumor Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:653836. [PMID: 33897701 PMCID: PMC8059369 DOI: 10.3389/fimmu.2021.653836] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The efficacy of immunotherapy usually depends on the interaction of immunomodulation in the tumor microenvironment (TME). This study aimed to explore the potential stromal-immune score-based prognostic genes related to immunotherapy in HCC through bioinformatics analysis. Methods: ESTIMATE algorithm was applied to calculate the immune/stromal/Estimate scores and tumor purity of HCC using the Cancer Genome Atlas (TCGA) transcriptome data. Functional enrichment analysis of differentially expressed genes (DEGs) was analyzed by the Database for Annotation, Visualization, and Integrated Discovery database (DAVID). Univariate and multivariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis were performed for prognostic gene screening. The expression and prognostic value of these genes were further verified by KM-plotter database and the Human Protein Atlas (HPA) database. The correlation of the selected genes and the immune cell infiltration were analyzed by single sample gene set enrichment analysis (ssGSEA) algorithm and Tumor Immune Estimation Resource (TIMER). Results: Data analysis revealed that higher immune/stromal/Estimate scores were significantly associated with better survival benefits in HCC within 7 years, while the tumor purity showed a reverse trend. DEGs based on both immune and stromal scores primarily affected the cytokine–cytokine receptor interaction signaling pathway. Among the DEGs, three genes (CASKIN1, EMR3, and GBP5) were found most significantly associated with survival. Moreover, the expression levels of CASKIN1, EMR3, and GBP5 genes were significantly correlated with immune/stromal/Estimate scores or tumor purity and multiple immune cell infiltration. Among them, GBP5 genes were highly related to immune infiltration. Conclusion: This study identified three key genes which were related to the TME and had prognostic significance in HCC, which may be promising markers for predicting immunotherapy outcomes.
Collapse
Affiliation(s)
- Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xiao Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yuan Zheng
- Neijiang Health and Health Vocational College, Neijiang, China
| | - Qinglian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Shi L, Du X, Liu H, Chen X, Ma Y, Wang R, Tian Z, Zhang S, Guo H, Zhang H. Update on the adverse effects of microcystins on the liver. ENVIRONMENTAL RESEARCH 2021; 195:110890. [PMID: 33617868 DOI: 10.1016/j.envres.2021.110890] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Microcystins (MCs) are the most common cyanobacteria toxins in eutrophic water, which have strong hepatotoxicity. In the past decade, epidemiological and toxicological studies on liver damage caused by MCs have proliferated, and new mechanisms of hepatotoxicity induced by MCs have also been discovered and confirmed. However, there has not been a comprehensive and systematic review of these new findings. Therefore, this paper summarizes the latest advances in studies on the hepatotoxicity of MCs to reveal the effects and mechanisms of hepatotoxicity induced by MCs. Current epidemiological studies have confirmed that symptoms or signs of liver damage appear after human exposure to MCs, and a long time of exposure can even lead to liver cancer. Toxicological studies have shown that MCs can affect the expression of oncogenes by activating cell proliferation pathways such as MAPK and Akt, thereby promoting the occurrence and development of cancer. The latest evidence shows that epigenetic modifications may play an important role in MCs-induced liver cancer. MCs can cause damage to the liver by inducing hepatocyte death, mainly manifested as apoptosis and necrosis. The imbalance of liver metabolic homeostasis may be involved in hepatotoxicity induced by MCs. In addition, the combined toxicity of MCs and other toxins are also discussed in this article. This detailed information will be a valuable reference for further exploring of MCs-induced hepatotoxicity.
Collapse
Affiliation(s)
- Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
23
|
De Novo Profiling of Long Non-Coding RNAs Involved in MC-LR-Induced Liver Injury in Whitefish: Discovery and Perspectives. Int J Mol Sci 2021; 22:ijms22020941. [PMID: 33477898 PMCID: PMC7833382 DOI: 10.3390/ijms22020941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/18/2022] Open
Abstract
Microcystin-LR (MC-LR) is a potent hepatotoxin for which a substantial gap in knowledge persists regarding the underlying molecular mechanisms of liver toxicity and injury. Although long non-coding RNAs (lncRNAs) have been extensively studied in model organisms, our knowledge concerning the role of lncRNAs in liver injury is limited. Given that lncRNAs show low levels of sequence conservation, their role becomes even more unclear in non-model organisms without an annotated genome, like whitefish (Coregonus lavaretus). The objective of this study was to discover and profile aberrantly expressed polyadenylated lncRNAs that are involved in MC-LR-induced liver injury in whitefish. Using RNA sequencing (RNA-Seq) data, we de novo assembled a high-quality whitefish liver transcriptome. This enabled us to find 94 differentially expressed (DE) putative evolutionary conserved lncRNAs, such as MALAT1, HOTTIP, HOTAIR or HULC, and 4429 DE putative novel whitefish lncRNAs, which differed from annotated protein-coding transcripts (PCTs) in terms of minimum free energy, guanine-cytosine (GC) base-pair content and length. Additionally, we identified DE non-coding transcripts that might be 3′ autonomous untranslated regions (3′UTRs) of mRNAs. We found both evolutionary conserved lncRNAs as well as novel whitefish lncRNAs that could serve as biomarkers of liver injury.
Collapse
|
24
|
Pan C, Zhang L, Meng X, Qin H, Xiang Z, Gong W, Luo W, Li D, Han X. Chronic exposure to microcystin-LR increases the risk of prostate cancer and induces malignant transformation of human prostate epithelial cells. CHEMOSPHERE 2021; 263:128295. [PMID: 33297237 DOI: 10.1016/j.chemosphere.2020.128295] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Microcystins-LR (MC-LR) acts as a possible carcinogen for humans and causes a serious risk to public environmental health. The current study aimed to evaluate the interaction between MC-LR exposure and prostate cancer development and elucidate the underlying mechanism. In this study, mice were exposed to MC-LR at various doses for 180 days. MC-LR was able to induce the progression of prostatic intraepithelial neoplasia (PIN) and microinvasion. Furthermore, MC-LR notably increased angiogenesis and susceptibility to prostate cancer in vivo. In vitro, over 25 weeks of MC-LR exposure, normal human prostate epithelial (RWPE-1) cells increased secretion of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and colony formation, features typical for cancer cells. These MC-LR-transformed prostate epithelial cells displayed increased expression of forkhead box M1 (FOXM1) and cyclooxygenase-2 (COX-2); abrogation of FOXM1 or COX-2 activity by specific inhibitors could abolish the invasion and migration of MC-LR-treated cells. In conclusion, we have provided compelling evidence demonstrating the induction of a malignant phenotype in human prostate epithelial cells and the in vivo development of prostate cancer by exposure to MC-LR, which might be a potential tumor promoter in the progression of prostate cancer.
Collapse
Affiliation(s)
- Chun Pan
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Ling Zhang
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiannan Meng
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Haixiang Qin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zou Xiang
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Wenyue Gong
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Wenxin Luo
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory, State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
25
|
Zhang S, Du X, Liu H, Losiewic MD, Chen X, Ma Y, Wang R, Tian Z, Shi L, Guo H, Zhang H. The latest advances in the reproductive toxicity of microcystin-LR. ENVIRONMENTAL RESEARCH 2021; 192:110254. [PMID: 32991922 DOI: 10.1016/j.envres.2020.110254] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is an emerging environmental pollutant produced by cyanobacteria that poses a threat to wild life and human health. In recent years, the reproductive toxicity of MC-LR has gained widespread attention, a large number of toxicological studies have filled the gaps in past research and more molecular mechanisms have been elucidated. Hence, this paper reviews the latest research advances on MC-LR-induced reproductive toxicity. MC-LR can damage the structure and function of the testis, ovary, prostate, placenta and other organs of animals and then reduce their fertility. Meanwhile, MC-LR can also be transmitted through the placenta to the offspring causing trans-generational and developmental toxicity including death, malformation, growth retardation, and organ dysfunction in embryos and juveniles. The mechanisms of MC-LR-induced reproductive toxicity mainly include the inhibition of protein phosphatase 1/2 A (PP1/2 A) activity and the induction of oxidative stress. On the one hand, MC-LR triggers the hyperphosphorylation of certain proteins by inhibiting intracellular PP1/2 A activity, thereby activating multiple signaling pathways that cause inflammation and blood-testis barrier destruction, etc. On the other hand, MC-LR-induced oxidative stress can result in cell programmed death via the mitochondrial and endoplasmic reticulum pathways. It is worth noting that epigenetic modifications are also involved in reproductive cell apoptosis, which may be an important direction for future research. Furthermore, this paper proposes for the first time that MC-LR can produce estrogenic effects in animals as an environmental estrogen. New findings and suggestions in this review could be areas of interest for future research.
Collapse
Affiliation(s)
- Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Michael D Losiewic
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
26
|
Chen HQ, Chen DJ, Li Y, Yuan WB, Fan J, Zhang Z, Han F, Jiang X, Chen JP, Wang DD, Cao J, Liu JY, Liu WB. Epigenetic silencing of TET1 mediated hydroxymethylation of base excision repair pathway during lung carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115860. [PMID: 33120142 DOI: 10.1016/j.envpol.2020.115860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The methylcytosine dioxygenase Ten-eleven translocation 1 (TET1) is an important regulator for the balance of DNA methylation and hydroxymethylation through various pathways. Increasing evidence has suggested that TET1 probably involved in DNA methylation and demethylation dysregulation during chemical carcinogenesis. However, the role and mechanism of TET1 during lung cancer remains unclear. In this study, we found that TET1 expression was significantly down-regulated and the methylation level was significantly up-regulated in 3-methylcholanthrene (3-MCA) induced cell malignant transformation model, rat chemical carcinogenesis model, and human lung cancer tissues. Demethylation experiment further confirmed that DNA methylation negatively regulated TET1 gene expression. TET1 overexpression inhibited cell proliferation, migration and invasion in vitro and in vivo, while knockdown of TET1 resulted in an opposite phenotype. DNA hydroxymethylation level in the promoter region of base excision repair (BER) pathway key genes XRCC1, OGG1, APEX1 significantly decreased and the degree of methylation gradually increased in malignant transformed cells. After differential expression of TET1, the level of hydroxymethylation, methylation and expression of these genes also changed significantly. Furthermore, TET1 binds to XRCC1, OGG1, and APEX1 to maintain them hydroxymethylated. Blockade of BER pathway key gene alone or in combination significantly diminished the effect of TET1. Our study demonstrated for the first time that TET1 expression is regulated by DNA methylation and TET1-mediated hydroxymethylation regulates BER pathway to inhibit the proliferation, migration and invasion during 3-MCA-induced lung carcinogenesis. These results suggested that TET1 gene can be a potential biomarker and therapy target for lung cancer.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Department of Emergency, Yun Qiao Hospital, Kunming, 650224, PR China
| | - Wen-Bo Yuan
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; School of Public Health, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jun Fan
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Zhe Zhang
- Department of Breast and Thyroid Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, 400042, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jian-Ping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
27
|
Wang L, He L, Zeng H, Fu W, Wang J, Tan Y, Zheng C, Qiu Z, Luo J, Lv C, Huang Y, Shu W. Low-dose microcystin-LR antagonizes aflatoxin B1 induced hepatocarcinogenesis through decreasing cytochrome P450 1A2 expression and aflatoxin B1-DNA adduct generation. CHEMOSPHERE 2020; 248:126036. [PMID: 32045972 DOI: 10.1016/j.chemosphere.2020.126036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Aflatoxin B1 (AFB1) and microcystin-LR (MC-LR) co-existed in food and water, and were associated with hepatocellular carcinoma (HCC). AFB1 induced HCC by activating oxidative stress and generating AFB1-DNA adducts, while MC-LR could promote HCC progression. However, whether they have co-effects in HCC progression remains uncertain. In this study, we found the antagonistic effects of MC-LR on AFB1 induced HCC when they were exposed simultaneously. Compared with single exposure to AFB1, co-exposed to MC-LR significantly repressed the AFB1 induced malignant transformation of human hepatic cells and the glutathione S-transferase Pi positive foci formation in rat livers. MC-LR inhibited AFB1 induced upregulation of cytochrome P450 family 1 subfamily A member 2 (CYP1A2) and reduced the AFB1-DNA adducts generation in both human hepatic cells and rat livers. These results suggest that when co-exposure with AFB1, MC-LR might repress hepatocarcinogenicity of AFB1, which might be associated with its repression on AFB1 induced CYP1A2 upregulation and activation.
Collapse
Affiliation(s)
- Lingqiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Lixiong He
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, 100094, China
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wenjuan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chuanfen Zheng
- Department of Health Education, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhiqun Qiu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Chen Lv
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
28
|
Khan H, Belwal T, Efferth T, Farooqi AA, Sanches-Silva A, Vacca RA, Nabavi SF, Khan F, Prasad Devkota H, Barreca D, Sureda A, Tejada S, Dacrema M, Daglia M, Suntar İ, Xu S, Ullah H, Battino M, Giampieri F, Nabavi SM. Targeting epigenetics in cancer: therapeutic potential of flavonoids. Crit Rev Food Sci Nutr 2020; 61:1616-1639. [PMID: 32478608 DOI: 10.1080/10408398.2020.1763910] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irrespective of sex and age, cancer is the leading cause of mortality around the globe. Therapeutic incompliance, unwanted effects, and economic burdens imparted by cancer treatments, are primary health challenges. The heritable features in gene expression that are propagated through cell division and contribute to cellular identity without a change in DNA sequence are considered epigenetic characteristics and agents that could interfere with these features and are regarded as potential therapeutic targets. The genetic modification accounts for the recurrence and uncontrolled changes in the physiology of cancer cells. This review focuses on plant-derived flavonoids as a therapeutic tool for cancer, attributed to their ability for epigenetic regulation of cancer pathogenesis. The epigenetic mechanisms of various classes of flavonoids including flavonols, flavones, isoflavones, flavanones, flavan-3-ols, and anthocyanidins, such as cyanidin, delphinidin, and pelargonidin, are discussed. The outstanding results of preclinical studies encourage researchers to design several clinical trials on various flavonoids to ascertain their clinical strength in the treatment of different cancers. The results of such studies will define the clinical fate of these agents in future.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Porto, Portugal.,Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Department of Toxicology and Pharmacology, The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department, Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - İpek Suntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.,College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Wang X, Li Y, Xiao H, Zhang M, Bao T, Luo X, Chen S. Genotoxicity of microcystin-LR in mammalian cells: Implication from peroxynitrite produced by mitochondria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110408. [PMID: 32179236 DOI: 10.1016/j.ecoenv.2020.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-LR (MC-LR) is a widely known hepatotoxin which could induce the occurrence and metastasis of hepatocellular carcinoma. In recent years, with the frequent outbreak of cyanobacteria, the harm of MC-LR has gradually attracted more attention. Hence, this study focused on the effect of MC-LR on DNA damage in HepG2 cells, identifying the types and sources of free radicals that make an important function on this issue. Our data suggested that MC-LR induced concentration- and time-dependent increasement of DNA double-strand breaks (DSBs). After exposure to 1 μM MC-LR for 3 days, the protein expression and immunofluorescence staining of γ-H2AX was significantly increased. Using a scavenger of mitochondrial O2.- (4-hydroxy-tempo), a inhibitor of mitochondrial NOS (7-nitroindazole), and a scavenger of ONOO- (uric acid), it was revealed that ONOO- originated from mitochondria made a significant contribution to the genotoxicity of MC-LR. Moreover, a significant decreasement of mitochondrial membrane potential (MMP) was observed. These findings suggested that peroxynitrite targeting mitochondria plays a vital role in the MC-LR-induced genotoxic response in mammalian cells.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Yintao Li
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Hourong Xiao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Min Zhang
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Teng Bao
- School of Biology, Food and Environment, Hefei University, Hefei, 230601, China
| | - Xun Luo
- School of Biological Engineering, Huainan Normal University, Huainan, 232001, China
| | - Shaopeng Chen
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
30
|
Cheng A, Zhao S, FitzGerald LM, Wright JL, Kolb S, Karnes RJ, Jenkins RB, Davicioni E, Ostrander EA, Feng Z, Fan JB, Dai JY, Stanford JL. A four-gene transcript score to predict metastatic-lethal progression in men treated for localized prostate cancer: Development and validation studies. Prostate 2019; 79:1589-1596. [PMID: 31376183 PMCID: PMC6715522 DOI: 10.1002/pros.23882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND Molecular studies have tried to address the unmet need for prognostic biomarkers in prostate cancer (PCa). Some gene expression tests improve upon clinical factors for prediction of outcomes, but additional tools for accurate prediction of tumor aggressiveness are needed. METHODS Based on a previously published panel of 23 gene transcripts that distinguished patients with metastatic progression, we constructed a prediction model using independent training and testing datasets. Using the validated messenger RNAs and Gleason score (GS), we performed model selection in the training set to define a final locked model to classify patients who developed metastatic-lethal events from those who remained recurrence-free. In an independent testing dataset, we compared our locked model to established clinical prognostic factors and utilized Kaplan-Meier curves and receiver operating characteristic analyses to evaluate the model's performance. RESULTS Thirteen of 23 previously identified gene transcripts that stratified patients with aggressive PCa were validated in the training dataset. These biomarkers plus GS were used to develop a four-gene (CST2, FBLN1, TNFRSF19, and ZNF704) transcript (4GT) score that was significantly higher in patients who progressed to metastatic-lethal events compared to those without recurrence in the testing dataset (P = 5.7 × 10-11 ). The 4GT score provided higher prediction accuracy (area under the ROC curve [AUC] = 0.76; 95% confidence interval [CI] = 0.69-0.83; partial area under the ROC curve [pAUC] = 0.008) than GS alone (AUC = 0.63; 95% CI = 0.56-0.70; pAUC = 0.002), and it improved risk stratification in subgroups defined by a combination of clinicopathological features (ie, Cancer of the Prostate Risk Assessment-Surgery). CONCLUSION Our validated 4GT score has prognostic value for metastatic-lethal progression in men treated for localized PCa and warrants further evaluation for its clinical utility.
Collapse
Affiliation(s)
- Anqi Cheng
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Shanshan Zhao
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, USA
| | - Liesel M. FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAZ, Australia
| | - Jonathan L. Wright
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington School of Medicine, Seattle, WA, USA
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Robert B. Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ziding Feng
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jian-Bing Fan
- AnchorDx Corporation, Guangzhou, 510300, China
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - James Y. Dai
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
31
|
Zhao J, Chen HQ, Yang HF, Li Y, Chen DJ, Huang YJ, He LX, Zheng CF, Wang LQ, Wang J, Zhang N, Cao J, Liu JY, Shu WQ, Liu WB. Epigenetic silencing of ALX4 regulates microcystin-LR induced hepatocellular carcinoma through the P53 pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:317-330. [PMID: 31132711 DOI: 10.1016/j.scitotenv.2019.05.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/10/2019] [Accepted: 05/11/2019] [Indexed: 06/09/2023]
Abstract
Recent studies have shown that microcystin-LR (MC-LR) is one of the principal factors that cause liver cancer. Previously we have found that Aristaless-like Homeobox 4 (ALX4) was differentially expressed in MC-LR-induced malignant transformed L02 cells. However, the expression regulation, role and molecular mechanism of ALX4 during the process of liver cancer induced by MC-LR are still unclear. The expression of ALX4 was detected by quantitative reverse-transcription PCR and Western blot in MC-LR induced malignantly transformed cell and rat models. Methylation status of ALX4 promoter region was evaluated by methylation-specific PCR and bisulfite genomic sequencing. The anti-tumor effects of ALX4 on MC-LR induced liver cancer were identified in vitro and in vivo. ALX4 expression was progressively down-regulated in MC-LR-induced malignantly transformed L02 cells and the MC-LR exposed rat models. ALX4 promoter regions were highly methylated in malignantly transformed cells, while treatment with demethylation agent 5-aza-dC significantly increased ALX4 expression. Functional studies showed that overexpression of ALX4 inhibits cell proliferation, migration, invasion and metastasis in vitro and in vivo, blocks the G1/S phase and promotes the apoptosis. Conversely, knockdown of ALX4 promotes cell proliferation, migration and invasion. Mechanism study found that ALX4 exerts its antitumor function through the P53 pathway, C-MYC and MMP9. More importantly, ALX4 expression level showed a negative relation with serum MC-LR levels in patients with hepatocellular carcinoma. Our results suggested that ALX4 was inactivated by DNA methylation and played a tumor suppressor function through the P53 pathway in MC-LR induced liver cancer.
Collapse
Affiliation(s)
- Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Hui-Fang Yang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; The Calmette International Hospital, Kunming 650224, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yu-Jing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Li-Xiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Chuan-Fen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Ling-Qiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Na Zhang
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750004, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China
| | - Wei-Qun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, PR China.
| |
Collapse
|
32
|
Chen HQ, Zhao J, Li Y, Huang YJ, Chen DJ, He LX, Wang LQ, Zheng CF, Wang J, Cao J, Shu WQ, Liu JY, Liu WB. Epigenetic inactivation of LHX6 mediated microcystin-LR induced hepatocarcinogenesis via the Wnt/β-catenin and P53 signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:216-226. [PMID: 31151060 DOI: 10.1016/j.envpol.2019.05.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 04/14/2019] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
Microcystins (MCs) have been shown to be carcinogenic by animal and cellular experiments and found to be associated with the development of human hepatocellular carcinoma (HCC) through epidemiological studies. However, the molecular mechanism of microcystin-LR (MC-LR) induced HCC is still unclear. This study is determined to clarify the role and mechanism of LHX6 in MC-LR-induced hepatocarcinogenesis. Using the previously established MC-LR-induced malignant transformation model in L02 cells, we screened out LHX6, homeobox gene that was significantly changed. We found that LHX6 was significantly down-regulated in MC-LR treated L02 cells and the liver tissue of rats treated for 35 weeks with 10 μg/kg body weight of MC-LR. Expression of LHX6 in human tumor tissue was significantly down-regulated in high MC-LR-exposure group. LHX6 was hypermethylated in MC-LR treated L02 cells and up-regulated after treatment with 10 μM of 5-aza-2'-deoxycytidine. Furthermore, overexpression of LHX6 inhibited proliferation, invasion and migration of malignantly transformed L02 cells in vitro and in vivo, while knockdown of LHX6 resulted in an opposite phenotype. In addition, we found that up-regulation of P53 and Bax resulted in apoptosis, and that down-regulation of CTNNB1 and MMP7 led to migration of MC-LR treated L02 cells. Blockade of P53 and CTNNB1 by its inhibitor significantly diminished the effect of LHX6. These genes were working together during the process of MC-LR-induced hepatocarcinogenesis. Our study demonstrated for the first time that LHX6 gene expression is regulated by DNA methylation and can inhibit the proliferation, invasion and migration through Wnt/β-catenin and P53 signaling pathways during the MC-LR-induced hepatocarcinogenesis. This result may suggest that LHX6 gene can be used as a potential target gene and a biomarker for liver cancer treatment.
Collapse
Affiliation(s)
- Hong-Qiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Ji Zhao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Yan Li
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; The Calmette International Hospital, Kunming, 650224, PR China
| | - Yu-Jing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Dong-Jiao Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; College of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, PR China
| | - Li-Xiong He
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Ling-Qiao Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Chuan-Fen Zheng
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Wang
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Wei-Qun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
33
|
Ghasemi A, Hashemy SI, Azimi-Nezhad M, Dehghani A, Saeidi J, Mohtashami M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin Chim Acta 2019; 499:41-53. [PMID: 31476303 DOI: 10.1016/j.cca.2019.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Multiple studies have revealed a direct correlation between obesity and the development of multiple comorbidities, including metabolic diseases, cardiovascular disorders, chronic inflammatory disease, and cancers. However, the molecular mechanism underlying the link between obesity and the progression of these diseases is not completely understood. Adipokines are factors that are secreted by adipocytes and play a key role in whole body homeostasis. Collaboratively, miRNAs are suggested to have key functions in the development of obesity and obesity-related disorders. Based on recently emerging evidence, obesity leads to the dysregulation of both adipokines and obesity-related miRNAs. In the present study, we described the correlations between obesity and its related diseases that are mediated by the mutual regulatory effects of adipokines and miRNAs. METHODS We reviewed current knowledge of the modulatory effects of adipokines on miRNAs activity and their relevant functions in pathological conditions and vice versa. RESULTS Our research reveals the ability of adipokines and miRNAs to control the expression and activity of the other class of molecules, and their effects on obesity-related diseases. CONCLUSIONS This study may help researchers develop a roadmap for future investigations and provide opportunities to develop new therapeutic and diagnostic methods for treating obesity-related diseases.
Collapse
Affiliation(s)
- Ahmad Ghasemi
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohsen Azimi-Nezhad
- Non-communicable Disease Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran; UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment en Physiopathologie Cardiovascular Université de Lorraine, France
| | - Alireza Dehghani
- Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic Science, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| |
Collapse
|
34
|
Meng X, Peng H, Ding Y, Zhang L, Yang J, Han X. A transcriptomic regulatory network among miRNAs, piRNAs, circRNAs, lncRNAs and mRNAs regulates microcystin-leucine arginine (MC-LR)-induced male reproductive toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:563-577. [PMID: 30833255 DOI: 10.1016/j.scitotenv.2019.02.393] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Microcystin-leucine arginine (MC-LR) which is produced by cyanobacteria is a potent toxin for the reproductive system. Our previous work has demonstrated that both acute and chronic reproductive toxicity engendered by MC-LR can result in the decline of sperm quality and damage of testicular structures in male mice. The present study was designed to investigate the impact of chronic low-dose exposure to MC-LR on the regulation of RNA networks including mRNA, microRNA (miRNA), piwi-associated RNA (piRNA), covalently closed circular RNA (circRNA) and long non-coding RNA (lncRNA) in testicular tissues. By high-throughput sequencing analysis, 1091 mRNAs, 21 miRNAs, 644 piRNAs, 278 circRNAs and 324 lncRNAs were identified to be significantly altered in testicular tissues treated with MC-LR. We performed gene ontology (GO) analysis to ascertain the biological functions of differentially expressed genes. Among the altered 21 miRNAs and 644 piRNAs, the miRNA chr13_8977, which is a newly discovered species, and the piRNA mmu_piR_027558 were dramatically down-regulated after exposure to MC-LR. Consistently, both mRNA levels and protein expression levels of their predicted targets were increased significantly when chr13_8977 and mmu_piR_027558 were each down-regulated. Testicular structures, germ cell apoptosis and sperm quality were also affected by the altered expression of chr13_8977 and mmu_piR_027558 severally. We further investigated the differential expression of circRNAs and lncRNAs and their biological functions in testicular tissues following treatment with chronic low-dose exposure to MC-LR. We also constructed a competing endogenous RNA (ceRNA) network to predict the functions of the altered expressed RNAs using MiRanda. Our study suggested a crucial role for the potential network regulation of miRNAs, piRNAs, circRNAs, lncRNAs and mRNAs impacting the cytotoxicity of MC-LR in testicular tissues, which provides new perspectives in the development of diagnosis and treatment strategies for MC-LR-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Xiannan Meng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Haoran Peng
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Yuanzhen Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Ling Zhang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jingping Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China.
| |
Collapse
|
35
|
Down-regulation of GCLC is involved in microcystin-LR-induced malignant transformation of human liver cells. Toxicology 2019; 421:49-58. [DOI: 10.1016/j.tox.2019.03.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/04/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
|
36
|
Yang F, Wen C, Zheng S, Yang S, Chen J, Feng X. Involvement of MAPK/ERK1/2 pathway in microcystin-induced microfilament reorganization in HL7702 hepatocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:1135-1141. [PMID: 30422063 DOI: 10.1080/15287394.2018.1532715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/25/2018] [Accepted: 10/06/2018] [Indexed: 06/09/2023]
Abstract
Several studies previously demonstrated that microcystin (MC)-LR produced cytoskeletal damage, especially to actin filaments. However, the underlying mechanisms of MC-induced cytoskeletal reorganization remain to be determined. The aim of this study was to examine the effects of 5 or 10 µM MC-LR on microfilament depolarization and expression of microRNA-451a (miR-451a) which plays a crucial role in cellular processes including cell proliferation, apoptosis and tumorigenesis in HL7702 liver cells after 24 hr treatment. Data demonstrated that MC-LR increased microfilament depolarization, elevated phosphorylation levels of mitogen-activated protein kinase (MAPK/ERK1/2) and vasodilator-stimulated phosphoprotein (VASP) but lowered miR-451a RNA expression levels. These molecular processes were associated with no marked changes in total protein ERK1/2. Data demonstrate that transfection with miR-451a may not be effective in the presence of MC-LR as evidenced by the inability of excess microRNA to prevent toxin-induced inhibition of threonine protein phosphatases1 (PP1) and 2A (PP2A) and microfilament reorganization in HL7702 cells.
Collapse
Affiliation(s)
- Fei Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
- b Key Laboratory of Environmental Medicine Engineering, Ministry of Education , School of Public Health Southeast University , Nanjing , China
- c Key laboratory of Hunan Province for Water Environment and Agriculture Product Safety , Central South University , Changsha , China
| | - Cong Wen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Shuilin Zheng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Shu Yang
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Jihua Chen
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| | - Xiangling Feng
- a Department of Occupational and Environmental Health, Xiangya School of Public Health , Central South University , Changsha , China
| |
Collapse
|