1
|
Shiri Aghbash P, Sadri Nahand J, Rahbar Farzam O, Hosseini SMR, Bayat M, Entezari Maleki T, Bannazadeh Baghi H. Combination of Vitex pseudo-negundo methanolic-extract with cisplatin can induce antioxidant activity and apoptosis in HeLa and Caski cells. Front Pharmacol 2024; 15:1476152. [PMID: 39697540 PMCID: PMC11653208 DOI: 10.3389/fphar.2024.1476152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Background Cisplatin-based chemotherapy as a common therapeutic regimen for cervical cancer patients, is becoming more and more ineffective due to high resistance. This urges the need for introducing novel metabolics such as botanical drugs with the capacity to increase the cisplatin effectiveness. In that regard, here we investigated the anticancer effects of the Cisplatin-Vitex pseudo-Negundo combination in cervical cancer cell lines. Method and Material V. pseudo-Negundo fruits were dried and extracted methanolic fraction. The MTT assay was performed to evaluate cytotoxicity of both drugs in CaSki and HeLa cells. Then, apoptosis, ROS production, and cell cycling were assessed by flow cytometry assay in cells treated with V. pseudo-Negundo and Cisplatin and their combination. Also, the rate of cell migration and colony formation were measured, using wound healing and colony formation assay, respectively. Also, the expression level of related genes (CD133, BAX, BCL2, Casp-3/8/9, MMP-3) was evaluated using the RT-PCR method. Results The obtained results established that the V. pseudo-Negundo plant has medicinal properties to induce apoptotic and antioxidant signals. The combination treatment of methanol extraction and Cisplatin had a cytotoxic effect on cervical cancer cell lines (HeLa and CaSki) compared to monotherapy. Also, combination therapy resulted in an increased apoptosis rate and diminished ROS production in both CaSki and HeLa cell lines. Furthermore, V. pseudo-Negundo and Cisplatin combination therapy leads to cell cycle arrest in the G2-M and G0-G1 phase in HeLa and CaSki cell lines, respectively. Moreover, combination therapy decreased the colony formation and cell motility in both cell lines and upregulated caspases gene expression. Conclusion The combination of V. pseudo-Negundo with Cisplatin therapy results in a significant anti-cancer and antioxidant effect compared to cisplatin, representing a promising candidate for future clinical investigations.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari Maleki
- Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Lin SY, Chang CL, Liou KT, Kao YK, Wang YH, Chang CC, Kuo TBJ, Huang HT, Yang CCH, Liaw CC, Shen YC. The protective role of Achyranthes aspera extract against cisplatin-induced nephrotoxicity by alleviating oxidative stress, inflammation, and PANoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117097. [PMID: 37648176 DOI: 10.1016/j.jep.2023.117097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Achyranthes aspera, a widely recognized medicinal plant, is used in various cultures for treating different ailments, including renal dysfunction; however, there is a lack of comprehensive understanding of its protective effects and the underlying signaling networks involved. AIM OF THE STUDY This study aimed to investigate the molecular mechanisms of the action of A. aspera by employing an integrative approach including functional and tissue imaging as well as comprehensive genomics analysis. MATERIALS AND METHODS Cisplatin-induced nephrotoxicity is a well-established animal model for acute kidney injury (AKI). In this study, we investigated the protective effects and underlying mechanisms of the action of A. aspera water-soluble extract (AAW) on a murine model of cisplatin-induced AKI. The evaluation includes measurements of blood urea nitrogen (BUN) and serum creatinine (SCr) levels, histology examination, and transcriptome analysis using RNA sequencing. RESULTS In male ICR mice, oral administration of AAW at doses of 0.5-1.0 g/kg significantly reduced cisplatin-induced nephrotoxicity. This effect included the amelioration of tubular injury, renal fibrosis, and the lowering of BUN and SCr levels. AAW also effectively decreased oxidative markers, such as malondialdehyde (MDA) and nitrotyrosine (NT), along with inflammation markers, including COX-2, iNOS, NLRP3, and pP65NFκB. Moreover, AAW administration induced a dose-dependent increase in the expression of two protective factors, Nrf2 and BcL2, and suppressed apoptosis, as evidenced by reduced levels of truncated caspase 3 (t-Casp3). To explore the underlying molecular mechanisms and signaling networks, next-generation sequencing (NGS) analysis was employed. The results revealed that AAW mitigated apoptosis, necroptosis, and PANoptosis pathways by inhibiting inflammation signaling pathways, such as the TNFα-, NFκB-, NETs-, and leukocyte transendothelial migration pathways. Additionally, AAW was found to enhance protective signaling pathways, including the cGMP/PKG-, cAMP-, AMPK-, and mTOR-dependent activation of autophagy and mitophagy pathways. The primary bioactive compound found in AAW was identified as 20-hydroxyecdysone (0.36%). CONCLUSION Our study demonstrates that AAW reduces cisplatin-induced nephrotoxicity. The protective effects of AAW are attributed to its modulation of multiple molecular signaling networks. Specifically, AAW downregulates genes and signaling pathways associated with oxidative stress and endoplasmic reticulum (ER) stress, inflammation, and PANoptosis. Simultaneously, it upregulates genes and signaling pathways associated with cell survival, including autophagy and mitophagy pathways.
Collapse
Affiliation(s)
- Song-Yi Lin
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City, 112304, Taiwan.
| | - Chia-Lin Chang
- Department of Senior Citizen Welfare and Long-term Care Business, HungKuang University, Taichung City, 43302, Taiwan; Department of Animal Healthcare, HungKuang University, Taichung City, 43302, Taiwan; Department of Biotechnology, HungKuang University, Taichung City, 43302, Taiwan.
| | - Kuo-Tong Liou
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112304, Taiwan; Department of Medicine, Mackay Medical College, New Taipei City, 25245, Taiwan; Department of Chinese Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, 114202, Taiwan.
| | - Yao-Kai Kao
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City, 112304, Taiwan.
| | - Yea-Hwey Wang
- National Taipei University of Nursing and Health Science, Taipei City, 112304, Taiwan.
| | - Cher-Chia Chang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei City, 112304, Taiwan.
| | - Terry B J Kuo
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City, 112304, Taiwan.
| | - Hung-Tse Huang
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112304, Taiwan.
| | - Cheryl C H Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei City, 112304, Taiwan.
| | - Chia-Ching Liaw
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112304, Taiwan.
| | - Yuh-Chiang Shen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei City, 112304, Taiwan; National Taipei University of Nursing and Health Science, Taipei City, 112304, Taiwan.
| |
Collapse
|
3
|
Yalcın T, Kaya S, Kuloğlu T. Resveratrol may dose-dependently modulate nephrin and OTULIN levels in a doxorubicin-induced nephrotoxicity model. Toxicol Mech Methods 2024; 34:98-108. [PMID: 37807854 DOI: 10.1080/15376516.2023.2268717] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
One of the most important side effects of Doxorubicin (DOX), a chemotherapeutic agent, is nephrotoxicity. The purpose of this study is to determine whether different doses of natural polyphenol Resveratrol (RSV) show antioxidative, anti-inflammatory or antiapoptotic effects in kidney tissue in DOX-induced nephrotoxicity and to detect how nephrin and OTULIN levels are affected in this process. A total of six equal groups made up of the 42 Sprague-Dawley rats utilized in the study (n = 7) were randomly assigned. Except for the control group (no treatment), all treatments were given intraperitoneally to the DOX (15 mg/kg), DOX + RSV I (15 mg/kg DOX+ 1 mg/kg/day RSV), DOX + RSV II (15 mg/kg DOX+ 5 mg/kg/day RSV), RSV I and RSV II groups. Kidney tissues taken from rats sacrificed on the fifteenth day were analyzed biochemically, histologically and immunohistochemically. Accordingly, it was determined that nephrin and OTULIN levels decreased in kidney tissue in DOX-induced nephrotoxicity. Furthermore, DOX caused oxidative stress, inflammation, and apoptosis, as well as histopathological changes in kidney tissue. However, it was observed that DOX-induced changes were regulated by RSV application. RSV was demonstrated to have antioxidant, anti-inflammatory and anti-apoptotic properties in dose-dependent DOX-induced nephrotoxicity. RSV may exert nephroprotective effects by modulating DOX-induced altered nephrin and OTULIN levels.
Collapse
Affiliation(s)
- Tuba Yalcın
- Vocational School of Healthcare Studies, Batman University, Batman, Turkey
| | - Sercan Kaya
- Vocational School of Healthcare Studies, Batman University, Batman, Turkey
| | - Tuncay Kuloğlu
- Department of Histology and Embryology, Faculty of Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
4
|
Protective Effect of Natural Antioxidants on Reducing Cisplatin-Induced Nephrotoxicity. DISEASE MARKERS 2022; 2022:1612348. [PMID: 36419843 PMCID: PMC9678481 DOI: 10.1155/2022/1612348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
Abstract
The clinical application of cisplatin is limited by its adverse events, of which nephrotoxicity is the most commonly observed. In a cisplatin-induced pathological response, oxidative stress is one of the upstream reactions which inflicts different degrees of damages to the intracellular material components. Reactive oxygen species (ROS) are also one of the early signaling molecules that subsequently undergo a series of pathological reactions, such as apoptosis and necrosis. This review summarizes the mechanism of intracellular ROS generation induced by cisplatin, mainly from the consumption of endogenous antioxidants, destruction of antioxidant enzymes, induction of mitochondrial crosstalk between the endoplasmic reticulum by ROS and Ca2+, and destruction of the cytochrome P450 (CYP) system in the endoplasmic reticulum, all of which result in excessive accumulation of intracellular ROS and oxidative stress. In addition, studies demonstrated that natural antioxidants can protect against the cisplatin-induced nephrotoxicity, by reducing or even eliminating excess free radicals and also affecting other nonredox pathways. Therefore, this review on the one hand provides theoretical support for the research and clinical application of natural antioxidants and on the other hand provides a new entry point for the detailed mechanism of cisplatin nephrotoxicity, which may lay a solid foundation for the future clinical use of cisplatin.
Collapse
|
5
|
Tian M, Wang L, Dong Z, Wang X, Qin X, Wang C, Wang J, Huang Q. Preparation, structural characterization, antioxidant activity and protection against cisplatin-induced acute kidney injury by polysaccharides from the lateral root of Aconitum carmichaelii. Front Pharmacol 2022; 13:1002774. [PMID: 36339535 PMCID: PMC9632954 DOI: 10.3389/fphar.2022.1002774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 03/19/2024] Open
Abstract
Response surface methodology (RSM) and Box- Behnken design (BBD) based on one-way experiments were used to optimize the extraction parameters of the lateral root polysaccharides of Aconitum carmichaelii. The extracted polysaccharides were named as refined fucose polysaccharide. The optimal conditions included a water to raw material ratio of 43, an extraction time of 2 h, and an extraction temperature of 90°C. The shape of RFP was shown by infrared spectroscopy (IR) and scanning electron microscopy (SEM) analysis. The monosaccharide composition and molecular weight of RFP was determined by high-performance liquid chromatography (HPLC). Furthermore, RFP exhibited moderate antioxidant activity by analyzing the scavenging rates of 2,2-diphenyl-1-picrylhydrazyl radical, superoxide anion radical, hydroxyl radical, and ABTS + radical. RFP exerted cytoprotective effects against hydrogen peroxide (H2O2)-induced injury in the rat renal tubular epithelial cell line rat renal tubular epithelial cells (NRK-52E) and inhibited apoptosis. In addition, researches found that RFP could alleviate cisplatin-induced acute kidney injury in mice by enhancing the levels of glutathione (GSH) and glutathione peroxidase-4 (GPX-4), decreasing the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), reducing lipid peroxidation, and thus inhibiting ferroptosis. In conclusion, this study provides a good strategy for obtaining bioactive polysaccharides from Fuzi.
Collapse
Affiliation(s)
- Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Wang
- Sichuan Integrated Traditional Chinese and Western Medicine Hospital, Chengdu, China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Fathy M, Darwish MA, Abdelhamid ASM, Alrashedy GM, Othman OA, Naseem M, Dandekar T, Othman EM. Kinetin Ameliorates Cisplatin-Induced Hepatotoxicity and Lymphotoxicity via Attenuating Oxidative Damage, Cell Apoptosis and Inflammation in Rats. Biomedicines 2022; 10:biomedicines10071620. [PMID: 35884925 PMCID: PMC9312964 DOI: 10.3390/biomedicines10071620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Though several previous studies reported the in vitro and in vivo antioxidant effect of kinetin (Kn), details on its action in cisplatin-induced toxicity are still scarce. In this study we evaluated, for the first time, the effects of kinetin in cisplatin (cp)- induced liver and lymphocyte toxicity in rats. Wistar male albino rats were divided into nine groups: (i) the control (C), (ii) groups 2,3 and 4, which received 0.25, 0.5 and 1 mg/kg kinetin for 10 days; (iii) the cisplatin (cp) group, which received a single intraperitoneal injection of CP (7.0 mg/kg); and (iv) groups 6, 7, 8 and 9, which received, for 10 days, 0.25, 0.5 and 1 mg/kg kinetin or 200 mg/kg vitamin C, respectively, and Cp on the fourth day. CP-injected rats showed a significant impairment in biochemical, oxidative stress and inflammatory parameters in hepatic tissue and lymphocytes. PCR showed a profound increase in caspase-3, and a significant decline in AKT gene expression. Intriguingly, Kn treatment restored the biochemical, redox status and inflammatory parameters. Hepatic AKT and caspase-3 expression as well as CD95 levels in lymphocytes were also restored. In conclusion, Kn mitigated oxidative imbalance, inflammation and apoptosis in CP-induced liver and lymphocyte toxicity; therefore, it can be considered as a promising therapy.
Collapse
Affiliation(s)
- Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Mostafa A. Darwish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Al-Shaimaa M. Abdelhamid
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Gehad M. Alrashedy
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Othman Ali Othman
- Department of Chemistry, Biochemistry Division, Faculty of Science, Minia University, Minia 61519, Egypt; (A.-S.M.A.); (G.M.A.); (O.A.O.)
| | - Muhammad Naseem
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| | - Eman M. Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
- Department of Bioinformatics, Biocenter, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Correspondence: (T.D.); (E.M.O.)
| |
Collapse
|
7
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
8
|
Guerreiro Í, Ferreira-Pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022; 11:foods11071060. [PMID: 35407148 PMCID: PMC8997953 DOI: 10.3390/foods11071060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
Collapse
Affiliation(s)
- Íris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Diogo Carregosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - João G. Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- Correspondence:
| |
Collapse
|
9
|
Polydatin Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9947191. [PMID: 35075382 PMCID: PMC8783728 DOI: 10.1155/2022/9947191] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
Cisplatin is widely used in the treatment of solid tumors, but its application is greatly limited due to its nephrotoxicity; thus, there is still no effective medicine for the treatment of cisplatin-induced acute kidney injury (Cis-AKI). We previously identified that polydatin (PD) exerts nephroprotective effects by antioxidative stress in AKI models. Recent evidence suggests that oxidative stress-induced molecular events overlap with the process of ferroptosis and that there are common molecular targets, such as glutathione (GSH) depletion and lipid peroxidation. Nevertheless, whether the nephroprotective effect of PD is related to anti-ferroptosis remains unclear. In this study, the inhibitory effect of PD on ferroptosis was observed in both cisplatin-treated HK-2 cells (20 μM) in vitro and a Cis-AKI mouse model (20 mg/kg, intraperitoneally) in vivo, characterized by the reversion of excessive intracellular free iron accumulation and reactive oxygen species (ROS) generation, a decrease in malondialdehyde (MDA) content and GSH depletion, and an increase in glutathione peroxidase-4 (GPx4) activity. Remarkably, PD dose-dependently alleviated cell death induced by the system Xc− inhibitor erastin (10 μM), and the effect of the 40 μM dose of PD was more obvious than that of ferrostatin-1 (1 μM) and deferoxamine (DFO, 100 μM), classical ferroptosis inhibitors. Our results provide insight into nephroprotection with PD in Cis-AKI by inhibiting ferroptosis via maintenance of the system Xc−-GSH-GPx4 axis and iron metabolism.
Collapse
|
10
|
Zhang JJ, Zhou YD, Liu YB, Wang JQ, Li KK, Gong XJ, Lin XH, Wang YP, Wang Z, Li W. Protective Effect of 20(R)-Ginsenoside Rg3 Against Cisplatin-Induced Renal Toxicity via PI3K/AKT and NF-[Formula: see text]B Signaling Pathways Based on the Premise of Ensuring Anticancer Effect. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1739-1756. [PMID: 34461812 DOI: 10.1142/s0192415x21500828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although the protective effect of ginsenoside on cisplatin-induced renal injury has been extensively studied, whether ginsenoside interferes with the antitumor effect of cisplatin has not been confirmed. In this paper, we verified the main molecular mechanism of 20(R)-ginsenoside Rg3 (R-Rg3) antagonizing cisplatin-induced acute kidney injury (AKI) through the combination of in vivo and in vitro models. It is worth mentioning that the two cell models of HK-2 and HepG2 were used simultaneously for the first time to explore the effect of the activation site of tumor-associated protein p53 on apoptosis and tumor suppression. The results showed that a single injection of cisplatin (20 mg/kg) led to weight loss, the kidney index of the mice increased, and creatinine (CRE) and blood urea nitrogen (BUN) levels in mice sharply increased. Continuous administration of R-Rg3 at doses of 10 and 20 mg/kg for 10 days could significantly alleviate this symptom. Similarly, R-Rg3 treatment reduced oxidative stress damage caused by cisplatin. Moreover, R-Rg3 could observably reduce the apoptosis and inflammatory infiltration of renal tubular cells induced by cisplatin. We used western blotting analysis to demonstrate that R-Rg3 restored cisplatin-induced AKI might be related to PI3K/AKT and NF-[Formula: see text]B mediated apoptosis and inflammation pathways. In the meantime, we also verified that R-Rg3 could activate different sites of p53 to control renal cell apoptosis induced by cisplatin without affecting its antitumor effect.
Collapse
Affiliation(s)
- Jun-Jie Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yan-Dan Zhou
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Yong-Bo Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China
| | - Jian-Qiang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Ke-Ke Li
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Minzu University, Dalian 116600, P. R. China
| | - Xiao-Jie Gong
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Minzu University, Dalian 116600, P. R. China
| | - Xiang-Hui Lin
- Liaoning XIFENG Pharmaceutical Group Co., Ltd., Huanren 117200, P. R. China
| | - Ying-Ping Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, P. R. China.,National & Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun 130118, P. R. China.,Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Minzu University, Dalian 116600, P. R. China
| |
Collapse
|
11
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Darwish MA, Abo-Youssef AM, Messiha BAS, Abo-Saif AA, Abdel-Bakky MS. Resveratrol inhibits macrophage infiltration of pancreatic islets in streptozotocin-induced type 1 diabetic mice via attenuation of the CXCL16/NF-κΒ p65 signaling pathway. Life Sci 2021; 272:119250. [PMID: 33631174 DOI: 10.1016/j.lfs.2021.119250] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
AIM Despite CXC chemokine ligand 16 (CXCL16) contributes to the pathogenesis of many inflammatory disorders, the mechanism by which CXCL16 is involved in T1DM remains unclear. In this study, we examined the role of the CXCL16/NF-κΒ p65 signaling pathway in the progression of this disease and the possible protective effect of resveratrol (RES) on streptozotocin (STZ)-induced T1DM. MAIN METHODS Mice were classified into four groups of 10 animals each. The control group received citrate buffer. The RES group received 50 mg/kg i.p. RES for 12 days beginning on day 4 of citrate buffer. The STZ group received 55 mg/kg i.p. STZ once a day for 5 consecutive days. The fourth group injected with RES (50 mg/kg) for 12 days starting on day 4 of STZ injection. Biochemical, physical and oxidative stress parameters were measured in all groups. Moreover, expression of CXCL16 and CD45 was measured in pancreatic islets and spleen. Additionally, NF-κΒ p65 was investigated in isolated islets. KEY FINDINGS Our results showed a significant elevation of CXCL16, NF-κΒ p65 and CD45 in islets of diabetic (DM) mice. Intriguingly, RES significantly restored distorted biochemical, physical and oxidative stress parameters after STZ treatment as well as inhibited the expression of CXCL16/NF-κΒ p65 in pancreatic islets. Moreover, RES normalized CXCL16 and CD45 expression in islets and spleen. SIGNIFICANCE This study demonstrates first evidence that CXCL16/NF-κΒ p65 signaling pathway is associated with macrophage infiltration to pancreatic islet in T1DM and that RES successfully improved T1DM may be at least via inhibiting this pathway.
Collapse
Affiliation(s)
- Mostafa A Darwish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-azhar University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
13
|
Asgharpour M, Alirezaei A. Herbal antioxidants in dialysis patients: a review of potential mechanisms and medical implications. Ren Fail 2021; 43:351-361. [PMID: 33593237 PMCID: PMC7894453 DOI: 10.1080/0886022x.2021.1880939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The consumption of exogenous antioxidants isolated from herbal extracts has shown beneficial effects on ameliorating dialysis-related complications through debilitating oxidative stress and inflammatory process. Many clinical studies available in public databases have reported the improved consequences of dialysis in patients supplemented with herbal antioxidants. Exploration of such data offers great possibilities for gaining insights into the potential mechanisms and medical implications of herbal antioxidants. In this work, the mechanisms and implications of some famous bioactive substances including silymarin, curcumin, resveratrol, emodin, and quercetin on the consequences of dialysis in chronic kidney disease (CKD) patients were explored. The protective features of silymarin are due to the flavonoid complex silybin. Curcumin is an active element from the root of curcuma longa with extensive beneficial properties, including antioxidant, anti-inflammatory activity, and inhibitory effects on cell apoptosis. Resveratrol can reduce the oxidative stress by neutralization of free radicals. Emodin is known as a natural anthraquinone derivative isolated from Chinese herbs. Finally, quercetin has been reported to exhibit several properties including antioxidant, anti-diabetic, analgesic, antihistaminic, antiviral, cholesterol reducer, and renal hemodynamic modulator. However, potential mechanisms and medical implications of the aforementioned herbal antioxidants seem to be more complicated, that is, more studies are required in this field.
Collapse
Affiliation(s)
- Masoumeh Asgharpour
- Department of Nephrology, Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran
| | - Amirhesam Alirezaei
- Department of Nephrology, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Casanova AG, Hernández-Sánchez MT, Martínez-Salgado C, Morales AI, Vicente-Vicente L, López-Hernández FJ. A meta-analysis of preclinical studies using antioxidants for the prevention of cisplatin nephrotoxicity: implications for clinical application. Crit Rev Toxicol 2020; 50:780-800. [PMID: 33170047 DOI: 10.1080/10408444.2020.1837070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug whose clinical use and efficacy are limited by its nephrotoxicity, which affects mainly the renal tubules and vasculature. It accumulates in proximal and distal epithelial tubule cells and causes oxidative stress-mediated cell death and malfunction. Consequently, many antioxidants have been tested for their capacity to prevent cisplatin nephrotoxicity. In this study, we made a systematic review of the literature and meta-analyzed 152 articles, which tested the nephroprotective effect of isolated compounds or mixtures of natural origin on cisplatin nephrotoxicity in preclinical models. This meta-analysis identified the most effective candidates and examined the efficacy obtained by antioxidants administered by the oral and intraperitoneal routes. By comparing with a recent, similar meta-analysis performed on clinical studies, this article identifies a disconnection between preclinical and clinical research, and contextualizes, discusses, and integrates the existing preclinical information toward the optimized selection of candidates to be further explored (clinical level). Despite proved efficacy, this article discusses the barriers limiting the clinical development of natural mixtures, such as those in extracts from Calendula officinalis flowers and Heliotropium eichwaldii roots. On the contrary, isolated compounds are more straightforward candidates, among which arjunolic acid and quercetin stand out in this meta-analysis.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - M Teresa Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| |
Collapse
|
15
|
Shahbazi F, Farvadi F, Dashti-Khavidaki S, Ataei S, Shojaei L. Potential nephroprotective effects of resveratrol in drug induced nephrotoxicity: a narrative review of safety and efficacy data. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00432-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Deniz GY, Laloglu E, Altun S, Yiğit N, Gezer A. Antioxidant and anti-apoptotic effects of vitexilactone on cisplatin-induced nephrotoxicity in rats. Biotech Histochem 2020; 95:381-388. [PMID: 31961202 DOI: 10.1080/10520295.2019.1703220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Cisplatin (CP) is an antineoplastic drug; however, owing to its nephrotoxicity, its clinical use is limited. We investigated whether vitexilactone (vitex) is a safe and effective treatment for CP induced kidney injury. We allocated Sprague-Dawley rats into six groups: control group, low dose-high dose vitex groups (40 and 80 mg/kg vitex for 6 days before administration of CP), CP group (single 6 mg/kg dose on day 6) and CP + low dose vitex-CP + high dose vitex group (40 and 80 mg/kg vitex for 6 days, and a single 6 mg/kg dose of CP on day 6. Rats were euthanized 5 days after CP treatment. After exposure to CP and/or vitex, total oxidative stress and total antioxidant status were assessed. The histology of the kidney was examined using hematoxylin and eosin, and periodic acid-Schiff. We used immunohistochemical and fluorescence staining to detect expression of caspase-3. We also measured blood urea nitrogen, uric acid and creatinine levels. Nephroprotective effects of vitex were associated with decreased serum toxicity markers and increased antioxidant activity. Vitex also reduced the expression of the apoptosis marker, caspase-3. Treatment with CP increased blood urea nitrogen, uric acid, creatinine levels and total antioxidant status, and decreased total antioxidant status compared to the control group. Use of vitex for protection from CP induced nephrotoxicity appears to be a safe and efficacious alternative for treatment of kidney injury.
Collapse
Affiliation(s)
- Gulsah Yildiz Deniz
- Vocational School of Healh Services, Ataturk University, 25240 Erzurum, Turkey
| | - Esra Laloglu
- Faculty of Medicine, Biochemistry Department, Ataturk University, 25240 Erzurum, Turkey
| | - Serdar Altun
- Faculty of Veterinary Medicine, Pathology Department, Ataturk University, 25240 Erzurum, Turkey
| | - Nimet Yiğit
- Vocational School of Healh Services, Ataturk University, 25240 Erzurum, Turkey
| | - Arzu Gezer
- Vocational School of Healh Services, Ataturk University, 25240 Erzurum, Turkey
| |
Collapse
|
17
|
Abdel-Razek EAN, Abo-Youssef AM, Azouz AA. Benzbromarone mitigates cisplatin nephrotoxicity involving enhanced peroxisome proliferator-activated receptor-alpha (PPAR-α) expression. Life Sci 2020; 243:117272. [PMID: 31926251 DOI: 10.1016/j.lfs.2020.117272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
AIM Despite the great efficacy reported for cisplatin as a widely used chemotherapeutic agent, its clinical use is limited by the challenge of facing its serious side effect; nephrotoxicity. In this study, the effect of the benzbromarone on peroxisome proliferator-activated receptor-alpha (PPAR-α) was investigated against cisplatin nephrotoxicity. MAIN METHODS Rats were administered benzbromarone (10 mg/kg/day; p.o.) for 14 days, and cisplatin (6.5 mg/kg; i.p.) as a single dose on the 10th day. Blood and kidney tissue samples were collected for determination of kidney function, biochemical and molecular markers, as well as histopathological investigation. KEY FINDINGS Benzbromarone improved kidney function, that was evidenced by reduced serum creatinine and blood urea nitrogen to nearly the half, compared to the group administered cisplatin alone. The protein expression of PPAR-α was enhanced with benzbromarone treatment, along with a considerable suppression of oxidative stress as benzbromarone reduced mRNA expression of NADPH oxidase, while increased the anti-oxidant HO-1 protein expression associated with enhancing Nrf2. Besides, it displayed a marked anti-inflammatory effect involved suppression of p38 MAPK/NF-κB p65 signaling pathway and its downstream targets. Moreover, benzbromarone retarded apoptosis associated with reducing the pro-apoptotic (Bax) and enhancing the anti-apoptotic (Bcl-2) protein expressions. The protective effects of benzbromarone were also confirmed by histopathological results. SIGNIFICANCE Our data confirm the relation between PPAR-α, and the deleterious effects induced by cisplatin. It can also be suggested that enhancing PPAR-α expression by benzbromarone is a promising therapeutic approach that overcomes cisplatin nephrotoxicity, involving regulation of different signaling pathways: Nrf2/HO-1, p38 MAPK/NF-κB p65, and Bax/Bcl-2.
Collapse
Affiliation(s)
| | - Amira M Abo-Youssef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| |
Collapse
|
18
|
Paradoxical Effect of Grape Pomace Extract on Cisplatin-Induced Acute Kidney Injury in Rats. Pharmaceutics 2019; 11:pharmaceutics11120656. [PMID: 31817713 PMCID: PMC6956102 DOI: 10.3390/pharmaceutics11120656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Cisplatin is one of the most used drugs in the therapy of different types of cancer. However, its use is limited by nephrotoxicity. This study investigated the effects of a commercially available grape pomace extract (GE) from Vitis vinifera on cisplatin-induced kidney toxicity in rats. Sixty-four male Wistar albino rats were randomly divided into eight groups. Groups 1–3 were controls, receiving 0.9% saline and doses 1 and 2 of GE respectively. Cisplatin was given to groups 4–8. Two groups received pretreatment with GE, while another two groups received pre- and post-treatment with GE. Blood samples were collected and all animals sacrificed. Kidneys were harvested for histopathological analysis. GE significantly increased blood creatinine and urea levels, the severity of kidney histopathological damage, and mortality in all cisplatin groups, except for group 7 which received pre- and post-treatment with a low dose of GE. Renal toxicity was determined by mortality and severe histopathological renal lesions. Additionally, the serum total antioxidant capacity (TAC) was not significantly modified in the treated groups compared to the control. These results indicate that the GE did not have a protective effect on cisplatin-induced nephrotoxicity; on the contrary, GE accentuated the toxic effect of cisplatin.
Collapse
|
19
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
20
|
Lee SR, Jin H, Kim WT, Kim WJ, Kim SZ, Leem SH, Kim SM. Tristetraprolin activation by resveratrol inhibits the proliferation and metastasis of colorectal cancer cells. Int J Oncol 2018; 53:1269-1278. [PMID: 29956753 DOI: 10.3892/ijo.2018.4453] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Resveratrol (RSV) is a polyphenolic compound that naturally occurs in grapes, peanuts and berries. Considerable research has been conducted to determine the benefits of RSV against various human cancer types. Tristetraprolin (TTP) is an AU-rich element-binding protein that regulates mRNA stability and has decreased expression in human cancer. The present study investigated the biological effect of RSV on TTP gene regulation in colon cancer cells. RSV inhibited the proliferation and invasion/metastasis of HCT116 and SNU81 colon cancer cells. Furthermore, RSV induced a dose-dependent increase in TTP expression in HCT116 and SNU81 cells. The microarray experiment revealed that RSV significantly increased TTP expression by downregulating E2F transcription factor 1 (E2F1), a downstream target gene of TTP and regulated genes associated with inflammation, cell proliferation, cell death, angiogenesis and metastasis. Although TTP silencing inhibited TTP mRNA expression, the expression was subsequently restored by RSV. Small interfering RNA-induced TTP inhibition attenuated the effects of RSV on cell growth. In addition, RSV induced the mRNA-decaying activity of TTP and inhibited the relative luciferase activity of baculoviral IAP repeat containing 3 (cIAP2), large tumor suppressor kinase 2 (LATS2), E2F1, and lin‑28 homolog A (Lin28) in HCT116 and SNU81 cells. Therefore, RSV enhanced the inhibitory activity of TTP in HCT116 and SNU81 cells by negatively regulating cIAP2, E2F1, LATS2, and Lin28 expression. In conclusion, RSV suppressed the proliferation and invasion/metastasis of colon cancer cells by activating TTP.
Collapse
Affiliation(s)
- Se-Ra Lee
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Hua Jin
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Won-Tae Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Won-Jung Kim
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| | - Sun-Hee Leem
- Department of Biological Science, Dong-A University, Busan 49315, Republic of Korea
| | - Soo Mi Kim
- Department of Physiology, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeonbuk 54907, Republic of Korea
| |
Collapse
|