1
|
Rupérez D, Rivière M, Lebreton J, Aznar M, Silva F, Tessier A, Cariou R, Nerín C. Synthesis and quantification of oligoesters migrating from starch-based food packaging materials. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135202. [PMID: 39029188 DOI: 10.1016/j.jhazmat.2024.135202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
The term oligomer refers to structurally diverse compounds coming from incomplete polymerisation or polymer degradation. Their ability to migrate into foodstuffs along with recent studies about their bioavailability and toxicity have risen concerns about the scarcity of standards needed to perform thorough analytical and toxicological studies. In this work, migration extracts of three starch-based biopolymers films for the packaging of fruits and vegetables were analysed according to European legislation 10/2011. Oligoesters analysed by UPLC-MS(QTOF) were the main non-intentionally added substances (NIAS) identified in the food simulants. A stepwise synthesis approach was used to synthesise and isolate eleven cyclic and linear oligoester standards ranging from 2 to 8 monomers based on adipic acid, 1,4-butanediol, isophtalic acid and propylene glycol monomers. These standards were characterised by 1H and 13C NMR as well as high resolution mass spectrometry. An overall high purity of > 98 % was achieved as detected by UPLC-MS(Orbitrap). The standards were then used to unequivocally identify the oligoesters in the migration assay samples by comparing their UPLC-MS/MS spectra, and to semi-quantify or fully quantify these migrant oligoesters. The oligoester quantification results deemed safe only one out of the three biopolymer films according to their threshold of toxicological concern concept. The work herein described aims to contribute towards the oligomers knowledge gaps, opening the door for comprehensive toxicological risk and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies.
Collapse
Affiliation(s)
- David Rupérez
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Matthieu Rivière
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Jacques Lebreton
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | - Margarita Aznar
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
| | - Filomena Silva
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain; ARAID - Agencia Aragonesa para la Investigación y el Desarrollo, Zaragoza, Spain; Faculty of Veterinary Medicine, University of Zaragoza, Spain
| | - Arnaud Tessier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France
| | | | - Cristina Nerín
- I3A - Aragon Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
2
|
Slikkerveer A, Doehr O, Claude N, Hutchinson R, Harvey J, Spanhaak S. New limits proposed for the management of non-mutagenic impurities. Regul Toxicol Pharmacol 2024; 150:105647. [PMID: 38777301 DOI: 10.1016/j.yrtph.2024.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Multiple international guidelines exist that describe both quality and safety considerations for the control of the broad spectrum of impurities inherent to drug substance and product manufacturing processes. However, regarding non-mutagenic impurities (NMI) the most relevant ICH Q3A/B guidelines are not applicable during early phases of drug development leading to confusion about acceptable limits at this stage. Thus, there is need for more flexible approaches that ensure that patient safety remains paramount, while taking into consideration the limited duration of exposure. An EFPIA survey, which collected quantitative data from different types of studies applied to qualify impurities in accordance with ICH Q3A, shows that no toxicities could be attributed to any of the 467 impurities at any tested level in vivo. This data combined with earlier published toxicological datasets encompassing drug substances and intermediates, food related substances and chemicals provide convincing evidence that for NMIs, the application of a generic 5 mg/day limit for an exposure duration <6 months, and a 1 mg/day generic limit for life-long exposure, provides sufficient margins to ensure patient safety. Hence, application of these absolute limits to trigger qualification studies (instead of the relative limits described in Q3A/B), is considered warranted. This approach will prevent conduct of unnecessary dedicated impurity qualification studies and the resulting use of animals.
Collapse
Affiliation(s)
| | - Olaf Doehr
- Bayer AG, Research and Development Pharmaceuticals, 13342, Berlin, Germany
| | - Nancy Claude
- Servier Group, 50 Rue Carnot, 92150, Suresnes, France
| | - Richard Hutchinson
- Janssen Research & Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | | | - Steven Spanhaak
- Janssen Research & Development, Turnhoutseweg 30, Beerse, Belgium.
| |
Collapse
|
3
|
Magurany KA, English JC, Cox KD. Application of the threshold of toxicological concern (TTC) in the evaluation of drinking water contact chemicals. Toxicol Mech Methods 2023:1-17. [PMID: 38031359 DOI: 10.1080/15376516.2023.2279041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
The Threshold of Toxicological Concern (TTC) is an approach for assessing the safety of chemicals with low levels of exposure for which limited toxicology data are available. The original TTC criteria were derived for oral exposures from a distributional analysis of a dataset of 613 chemicals that identified 5th percentile no observed effect level (NOEL) values grouped within three tiers of compounds having specific structural functional groups and/or toxic potencies known as Cramer I, II and III classifications. Subsequent assessments of the TTC approach have established current thresholds to be scientifically robust. While the TTC has gained acknowledgment and acceptance by many regulatory agencies and organizations, use of the TTC approach in evaluating drinking water chemicals has been limited. To apply the TTC concept to drinking water chemicals, an exposure-based approach that incorporates the current weight of evidence for the target chemical is presented. Such an approach provides a comparative point of departure to the 5th percentile TTC NOEL using existing data, while conserving the allocation of toxicological resources for quantitative risk assessment to chemicals with greater exposure or toxicity. This approach will be considered for incorporation into NSF/ANSI/CAN 600, a health effects standard used in the safety evaluation of chemicals present in drinking water from drinking water contact additives and materials certified to NSF/ANSI/CAN 60 and 61, respectively.
Collapse
Affiliation(s)
| | | | - Kevin D Cox
- Water Toxics Unit, Michigan Department of Environment, Great Lakes and Energy (EGLE), Lansing, MI, USA
| |
Collapse
|
4
|
Wohlleben W, Mehling A, Landsiedel R. Lessons Learned from the Grouping of Chemicals to Assess Risks to Human Health. Angew Chem Int Ed Engl 2023; 62:e202210651. [PMID: 36254879 DOI: 10.1002/anie.202210651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
In analogy to the periodic system that groups elements by their similarity in structure and chemical properties, the hazard of chemicals can be assessed in groups having similar structures and similar toxicological properties. Here we review case studies of chemical grouping strategies that supported the assessment of hazard, exposure, and risk to human health. By the EU-REACH and the US-TSCA New Chemicals Program, structural similarity is commonly used as the basis for grouping, but that criterion is not always adequate and sufficient. Based on the lessons learned, we derive ten principles for grouping, including: transparency of the purpose, criteria, and boundaries of the group; adequacy of methods used to justify the group; and inclusion or exclusion of substances in the group by toxicological properties. These principles apply to initial grouping to prioritize further actions as well as to definitive grouping to generate data for risk assessment. Both can expedite effective risk management.
Collapse
Affiliation(s)
- Wendel Wohlleben
- Department of Analytical and Material Science, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
| | - Annette Mehling
- Dept. of Advanced Formulation and Performance Technology, BASF Personal Care and Nutrition GmbH, 40589, Duesseldorf, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen am Rhein, Germany
- Free University of Berlin, Biology, Chemistry and Pharmacy-Pharmacology and Toxicology, 14195, Berlin, Germany
| |
Collapse
|
5
|
Cattaneo I, Astuto MC, Binaglia M, Devos Y, Dorne JLCM, Ana FA, Fernandez DA, Garcia-Vello P, Kass GE, Lanzoni A, Liem AKD, Panzarea M, Paraskevopulos K, Parra Morte JM, Tarazona JV, Terron A. Implementing New Approach Methodologies (NAMs) in food safety assessments: Strategic objectives and actions taken by the European Food Safety Authority. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Patlewicz G, Worth A, Yang C, Zhu T. Editorial: Advances and Refinements in the Development and Application of Threshold of Toxicological Concern. FRONTIERS IN TOXICOLOGY 2022; 4:882321. [PMID: 35573274 PMCID: PMC9096208 DOI: 10.3389/ftox.2022.882321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | |
Collapse
|
7
|
Astuto MC, Di Nicola MR, Tarazona JV, Rortais A, Devos Y, Liem AKD, Kass GEN, Bastaki M, Schoonjans R, Maggiore A, Charles S, Ratier A, Lopes C, Gestin O, Robinson T, Williams A, Kramer N, Carnesecchi E, Dorne JLCM. In Silico Methods for Environmental Risk Assessment: Principles, Tiered Approaches, Applications, and Future Perspectives. Methods Mol Biol 2022; 2425:589-636. [PMID: 35188648 DOI: 10.1007/978-1-0716-1960-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.
Collapse
Affiliation(s)
| | | | | | - A Rortais
- European Food Safety Authority, Parma, Italy
| | - Yann Devos
- European Food Safety Authority, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | - Antony Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (U.S. EPA), Research Triangle Park, NC, USA
| | - Nynke Kramer
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Edoardo Carnesecchi
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
8
|
Identification of recycled polyethylene and virgin polyethylene based on untargeted migrants. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Sartori Tamburlin I, Roux E, Feuillée M, Labbé J, Aussaguès Y, El Fadle FE, Fraboul F, Bouvier G. Toxicological safety assessment of essential oils used as food supplements to establish safe oral recommended doses. Food Chem Toxicol 2021; 157:112603. [PMID: 34648935 DOI: 10.1016/j.fct.2021.112603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Essential oils (EOs) are increasingly consumed as food supplements. The few published recommended doses available generally lack details both on the methodology used and concentration limits for substances of concern, including genotoxic carcinogens. We propose a tiered approach based on the toxicological evaluation of maximized concentrations of each constituent present in the EO investigated. The genotoxic potential of each constituent is assessed using literature data or QSAR analyses. Genotoxic constituents are evaluated according to the methodology provided in the ICHM7 guideline. A Toxicological Reference Value (TRV) is associated to each non-genotoxic constituent, using one of the following methodologies (decision-tree successive steps): extraction from recognized databases or clinical studies, application of adequate safety factors to NOAELs established in animal studies, read-across analyses and when none was possible, TTC of Cramer classes. An EO recommended dose is considered safe when the safety margin (ratio between TRV and systemic exposure) for all constituents is all at least equal to 1. In conclusion, this methodology has proven to be robust to establish safe recommended doses for EOs used as food supplements, consistent with those publicly available, and avoiding unnecessary dedicated new animal testing.
Collapse
Affiliation(s)
| | - Elise Roux
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Marion Feuillée
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Julie Labbé
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Yannick Aussaguès
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | | | - Françoise Fraboul
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| | - Guy Bouvier
- Toxicology and Safety Assessment Department, Pierre Fabre, 31035, Toulouse, France
| |
Collapse
|
10
|
Arnesdotter E, Rogiers V, Vanhaecke T, Vinken M. An overview of current practices for regulatory risk assessment with lessons learnt from cosmetics in the European Union. Crit Rev Toxicol 2021; 51:395-417. [PMID: 34352182 DOI: 10.1080/10408444.2021.1931027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Risk assessments of various types of chemical compounds are carried out in the European Union (EU) foremost to comply with legislation and to support regulatory decision-making with respect to their safety. Historically, risk assessment has relied heavily on animal experiments. However, the EU is committed to reduce animal experimentation and has implemented several legislative changes, which have triggered a paradigm shift towards human-relevant animal-free testing in the field of toxicology, in particular for risk assessment. For some specific endpoints, such as skin corrosion and irritation, validated alternatives are available whilst for other endpoints, including repeated dose systemic toxicity, the use of animal data is still central to meet the information requirements stipulated in the different legislations. The present review aims to provide an overview of established and more recently introduced methods for hazard assessment and risk characterisation for human health, in particular in the context of the EU Cosmetics Regulation (EC No 1223/2009) as well as the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation (EC 1907/2006).
Collapse
Affiliation(s)
- Emma Arnesdotter
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Vera Rogiers
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Research Group of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
11
|
Yamada T, Kurimoto M, Hirose A, Yang C, Rathman JF. Development of a New Threshold of Toxicological Concern Database of Non-cancer Toxicity Endpoints for Industrial Chemicals. FRONTIERS IN TOXICOLOGY 2021; 3:626543. [PMID: 35295111 PMCID: PMC8915903 DOI: 10.3389/ftox.2021.626543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/25/2021] [Indexed: 11/25/2022] Open
Abstract
In cases where chemical-specific toxicity data are absent or limited, the threshold of toxicological concern (TTC) offers an alternative to assess human exposure below which “there would be no appreciable risk to human health.” The application of TTC to non-cancer systemic endpoints has been pursued for decades using a chemical classification and Point of Departure (POD). This study presents a new POD dataset of oral subacute/subchronic toxicity studies in rats for 656 industrial chemicals retrieved from the Hazard Evaluation Support System (HESS) Integrated Platform, which contains hundreds of reliable repeated-dose toxicity test data of industrial chemicals under the Chemical Substances of Control Law in Japan. The HESS TTC dataset was found to have less duplication with substances in other reported TTC datasets. Each chemical was classified into a Cramer Class, with 68, 3, and 29% of these 656 chemicals distributed in Classes III, II, and I, respectively. For each Cramer Class, a provisional Tolerable Daily Intake (TDI) was derived from the 5th percentile of the lognormal distribution of PODs. The TDIs were 1.9 and 30 μg/kg bw/day for Classes III and I, respectively. The TDI for Cramer Class II could not be determined due to insufficient sample size. This work complements previous studies of the TTC approach and increases the confidence of the thresholds for non-cancer endpoints by including unique chemical structures. This new TTC dataset is publicly available and can be merged with existing databases to improve the TTC approach.
Collapse
Affiliation(s)
- Takashi Yamada
- Division of Risk Assessment, Center for Biological Safety Research, National Institute of Health Sciences, Kawasaki, Japan
- *Correspondence: Takashi Yamada
| | - Masayuki Kurimoto
- Division of Risk Assessment, Center for Biological Safety Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, Center for Biological Safety Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Chihae Yang
- Molecular Networks GmbH, Nürnberg, Germany
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - James F. Rathman
- Molecular Networks GmbH, Nürnberg, Germany
- Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
12
|
Serafimova R, Coja T, Kass GEN. Application of the Threshold of Toxicological Concern (TTC) in Food Safety: Challenges and Opportunities. FRONTIERS IN TOXICOLOGY 2021; 3:655951. [PMID: 35295160 PMCID: PMC8915901 DOI: 10.3389/ftox.2021.655951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/26/2021] [Indexed: 01/04/2023] Open
Abstract
The safety assessment of chemicals added or found in food has traditionally made use of data from in vivo studies performed on experimental animals. The nature and amount of data required to carry out a risk assessment is generally stipulated either in the different food legislations or in sectoral guidance documents. However, there are still cases where no or only limited experimental data are available or not specified by law, for example for contaminants or for some minor metabolites from active substances in plant protection products. For such cases, the Threshold of Toxicological Concern (TTC) can be applied. This review explores the use of the TTC approach in food safety in the European Union, in relation to the different food sectors, legal requirements and future opportunities.
Collapse
Affiliation(s)
| | - Tamara Coja
- Austrian Agency for Health and Food Safety, Vienna, Austria
| | | |
Collapse
|
13
|
Dorne JLCM, Richardson J, Livaniou A, Carnesecchi E, Ceriani L, Baldin R, Kovarich S, Pavan M, Saouter E, Biganzoli F, Pasinato L, Zare Jeddi M, Robinson TP, Kass GEN, Liem AKD, Toropov AA, Toropova AP, Yang C, Tarkhov A, Georgiadis N, Di Nicola MR, Mostrag A, Verhagen H, Roncaglioni A, Benfenati E, Bassan A. EFSA's OpenFoodTox: An open source toxicological database on chemicals in food and feed and its future developments. ENVIRONMENT INTERNATIONAL 2021; 146:106293. [PMID: 33395940 DOI: 10.1016/j.envint.2020.106293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 05/12/2023]
Abstract
Since its creation in 2002, the European Food Safety Authority (EFSA) has produced risk assessments for over 5000 substances in >2000 Scientific Opinions, Statements and Conclusions through the work of its Scientific Panels, Units and Scientific Committee. OpenFoodTox is an open source toxicological database, available both for download and data visualisation which provides data for all substances evaluated by EFSA including substance characterisation, links to EFSA's outputs, applicable legislations regulations, and a summary of hazard identification and hazard characterisation data for human health, animal health and ecological assessments. The database has been structured using OECD harmonised templates for reporting chemical test summaries (OHTs) to facilitate data sharing with stakeholders with an interest in chemical risk assessment, such as sister agencies, international scientific advisory bodies, and others. This manuscript provides a description of OpenFoodTox including data model, content and tools to download and search the database. Examples of applications of OpenFoodTox in chemical risk assessment are discussed including new quantitative structure-activity relationship (QSAR) models, integration into tools (OECD QSAR Toolbox and AMBIT-2.0), assessment of environmental footprints and testing of threshold of toxicological concern (TTC) values for food related compounds. Finally, future developments for OpenFoodTox 2.0 include the integration of new properties, such as physico-chemical properties, exposure data, toxicokinetic information; and the future integration within in silico modelling platforms such as QSAR models and physiologically-based kinetic models. Such structured in vivo, in vitro and in silico hazard data provide different lines of evidence which can be assembled, weighed and integrated using harmonised Weight of Evidence approaches to support the use of New Approach Methodologies (NAMs) in chemical risk assessment and the reduction of animal testing.
Collapse
Affiliation(s)
- J L C M Dorne
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy.
| | - J Richardson
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - A Livaniou
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - E Carnesecchi
- Istituto di Ricerche Farmacologico Mario Negri, Via La Masa 19, 20156 Milano, Italy; Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands
| | - L Ceriani
- S-IN Soluzioni Informatiche, Via Ferrari 14, 36100 Vicenza, Italy
| | - R Baldin
- S-IN Soluzioni Informatiche, Via Ferrari 14, 36100 Vicenza, Italy
| | - S Kovarich
- S-IN Soluzioni Informatiche, Via Ferrari 14, 36100 Vicenza, Italy
| | - M Pavan
- S-IN Soluzioni Informatiche, Via Ferrari 14, 36100 Vicenza, Italy
| | - E Saouter
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - F Biganzoli
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - L Pasinato
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - M Zare Jeddi
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy; Istituto di Ricerche Farmacologico Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - T P Robinson
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - G E N Kass
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - A K D Liem
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - A A Toropov
- Istituto di Ricerche Farmacologico Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - A P Toropova
- Istituto di Ricerche Farmacologico Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - C Yang
- MN-AM, 90411 Nürnberg, Germany
| | | | | | | | | | - H Verhagen
- European Food Safety Authority, Via Carlo Magno, 1A, 43126 Parma, Italy; University of Ulster, Coleraine, Northern Ireland, UK
| | - A Roncaglioni
- Istituto di Ricerche Farmacologico Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - E Benfenati
- Istituto di Ricerche Farmacologico Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - A Bassan
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80177, 3508 TD Utrecht, the Netherlands
| |
Collapse
|
14
|
Krebs J, McKeague M. Green Toxicology: Connecting Green Chemistry and Modern Toxicology. Chem Res Toxicol 2020; 33:2919-2931. [DOI: 10.1021/acs.chemrestox.0c00260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Johanna Krebs
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
- Department of Health Sciences and Technology, ETH Zürich, Universitätstrasse 2, Zurich, Switzerland CH 8092
| | - Maureen McKeague
- Pharmacology and Therapeutics, Faculty of Medicine, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6
- Faculty of Science, Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B8
| |
Collapse
|
15
|
Nelms MD, Patlewicz G. Derivation of New Threshold of Toxicological Concern Values for Exposure via Inhalation for Environmentally-Relevant Chemicals. FRONTIERS IN TOXICOLOGY 2020; 2:580347. [PMID: 35296122 PMCID: PMC8915872 DOI: 10.3389/ftox.2020.580347] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mark D. Nelms
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
| | - Grace Patlewicz
- Center for Computational Toxicology & Exposure (CCTE), U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC, United States
- *Correspondence: Grace Patlewicz
| |
Collapse
|
16
|
Rogiers V, Benfenati E, Bernauer U, Bodin L, Carmichael P, Chaudhry Q, Coenraads PJ, Cronin MT, Dent M, Dusinska M, Ellison C, Ezendam J, Gaffet E, Galli CL, Goebel C, Granum B, Hollnagel HM, Kern PS, Kosemund-Meynen K, Ouédraogo G, Panteri E, Rousselle C, Stepnik M, Vanhaecke T, von Goetz N, Worth A. The way forward for assessing the human health safety of cosmetics in the EU - Workshop proceedings. Toxicology 2020; 436:152421. [DOI: 10.1016/j.tox.2020.152421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
|
17
|
Jank B, Rath J, Marko D, Vejdovszky K, Rauscher-Gabernig E. Exploring the TTC approach as a basis for risk management: The example of emerging Alternaria mycotoxins. Toxicol Lett 2020; 320:124-128. [DOI: 10.1016/j.toxlet.2019.11.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022]
|