1
|
Li K, Wu L, Jiang J. LncRNA SLNCR1 facilitates angiogenesis and tumor growth in melanoma via DNMT1-mediated epigenetically silencing SPRY2. Skin Res Technol 2024; 30:e13910. [PMID: 39297702 PMCID: PMC11411697 DOI: 10.1111/srt.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The malignancy of melanoma is attributed to its pronounced invasiveness, extensive vascularization, and rapid tumor cell growth and metastasis. LncRNA SLNCR1 is closely associated with a variety of aggressive tumors. However, our understanding of SLNCR1 influences on malignant melanoma growth metastasis mechanism especially proangiogenic mechanism remains unclear. METHODS The expression of SLNCR1 was evaluated in melanoma tissues, adjacent tissues, melanoma cell lines. The abilities of SLNCR1 on proliferation, migration, and angiogenesis of HUVECs were detected by CCK-8, flow cytometry, and Western blot assays. The association between SLNCR1, DNMT1, and SPRY2 was assessed by ChIP, RIP, and Western blot assays. The effect of SLNCR1 on tumor growth was determined using a xenograft model in nude mice. RESULTS SLNCR1 was confirmed to be highly expressed in melanoma tissues and cells. CM from melanoma cells transfected with sh-SLNCR1 attenuated proliferation, migration, and angiogenesis of HUVECs. Moreover, loss of SLNCR1 hindered tumor growth and metastasis, as evidenced by reduced tumor size and weight, as well as angiogenesis. Mechanistic studies revealed that SLNCR1 silenced SPRY2 expression, likely through enhancing DNMT1-mediated DNA methylation of SPRY2 promoter. CONCLUSION SLNCR1 is an oncogene that interacts with DNMT1 to mediate SPRY2 methylation, thereby suppressing SPRY2 expression and promoting the angiogenesis and tumor growth in melanoma. SLNCR1 may serve as a potential target for melanoma treatment.
Collapse
Affiliation(s)
- Ke Li
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow University, Jiangsu Engineering Research Center for Tumor Immunotherapy, Institute of Cell Therapy, Soochow UniversityChangzhouJiangsuP. R. China
- Department of Burn and Plastic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| | - Lijun Wu
- Department of Plastic and Aesthetic SurgeryThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuP. R. China
| | - Jingting Jiang
- Department of Tumor Biological TreatmentThe Third Affiliated Hospital of Soochow University, Jiangsu Engineering Research Center for Tumor Immunotherapy, Institute of Cell Therapy, Soochow UniversityChangzhouJiangsuP. R. China
| |
Collapse
|
2
|
Alqithami SM, Machwe A, Orren DK. Cigarette Smoke-Induced Epithelial-to-Mesenchymal Transition: Insights into Cellular Mechanisms and Signaling Pathways. Cells 2024; 13:1453. [PMID: 39273025 PMCID: PMC11394110 DOI: 10.3390/cells13171453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
This review delves into the molecular complexities underpinning the epithelial-to-mesenchymal transition (EMT) induced by cigarette smoke (CS) in human bronchial epithelial cells (HBECs). The complex interplay of pathways, including those related to WNT//β-catenin, TGF-β/SMAD, hypoxia, oxidative stress, PI3K/Akt, and NF-κB, plays a central role in mediating this transition. While these findings significantly broaden our understanding of CS-induced EMT, the research reviewed herein leans heavily on 2D cell cultures, highlighting a research gap. Furthermore, the review identifies a stark omission of genetic and epigenetic factors in recent studies. Despite these shortcomings, the findings furnish a consolidated foundation not only for the academic community but also for the broader scientific and industrial sectors, including large tobacco companies and manufacturers of related products, both highlighting areas of current understanding and identifying areas for deeper exploration. The synthesis herein aims to propel further research, hoping to unravel the complexities of the EMT in the context of CS exposure. This review not only expands our understanding of CS-induced EMT but also reveals critical limitations in current methodologies, primarily the reliance on 2D cell cultures, which may not adequately simulate more complex biological interactions. Additionally, it highlights a significant gap in the literature concerning the genetic and epigenetic factors involved in CS-induced EMT, suggesting an urgent need for comprehensive studies that incorporate these types of experiments.
Collapse
Affiliation(s)
- Sarah Mohammed Alqithami
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
3
|
Li MD, Chen LH, Xiang HX, Jiang YL, Lv BB, Xu DX, Zhao H, Fu L. Benzo[a]pyrene evokes epithelial-mesenchymal transition and pulmonary fibrosis through AhR-mediated Nrf2-p62 signaling. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134560. [PMID: 38759404 DOI: 10.1016/j.jhazmat.2024.134560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Benzo[a]pyrene (BaP) and its metabolic end product benzo(a)pyren-7,8-dihydrodiol-9,10-epoxide (BPDE), are known toxic environmental pollutants. This study aimed to analyze whether sub-chronic BPDE exposure initiated pulmonary fibrosis and the potential mechanisms. In this work, male C57BL6/J mice were exposed to BPDE by dynamic inhalation exposure for 8 weeks. Our results indicated that sub-chronic BPDE exposure evoked pulmonary fibrosis and epithelial-mesenchymal transition (EMT) in mice. Both in vivo and in vitro, BPDE exposure promoted nuclear translocation of Snail. Further experiments indicated that nuclear factor erythroid 2-related factor 2 (Nrf2) and p62 were upregulated in BPDE-exposed alveolar epithelial cells. Moreover, Nrf2 siRNA transfection evidently attenuated BPDE-induced p62 upregulation. Besides, p62 shRNA inhibited BPDE-incurred Snail nuclear translocation and EMT. Mechanically, BPDE facilitated physical interaction between p62 and Snail in the nucleus, then repressed Snail protein degradation by p62-dependent autophagy-lysosome pathway, and finally upregulated transcriptional activity of Snail. Additionally, aryl hydrocarbon receptor (AhR) was activated in BPDE-treated alveolar epithelial cells. Dual-luciferase assay indicated activating AhR could bind to Nrf2 gene promoter. Moreover, pretreatment with CH223191 or α-naphthoflavone (α-NF), AhR antagonists, inhibited BPDE-activated Nrf2-p62 signaling, and alleviated BPDE-induced EMT and pulmonary fibrosis in mice. Taken together, AhR-mediated Nrf2-p62 signaling contributes to BaP-induced EMT and pulmonary fibrosis.
Collapse
Affiliation(s)
- Meng-Die Li
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Li-Hong Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hui-Xian Xiang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Department of Respiratory and Critical Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Ya-Lin Jiang
- Department of Respiratory and Critical Care Medicine, Bozhou People's Hospital, Bozhou, Anhui 236800, China
| | - Bian-Bian Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
4
|
Adegbola PI, Adetutu A. Genetic and epigenetic modulations in toxicity: The two-sided roles of heavy metals and polycyclic aromatic hydrocarbons from the environment. Toxicol Rep 2024; 12:502-519. [PMID: 38774476 PMCID: PMC11106787 DOI: 10.1016/j.toxrep.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/24/2024] Open
Abstract
This study emphasizes the importance of considering the metabolic and toxicity mechanisms of environmental concern chemicals in real-life exposure scenarios. Furthermore, environmental chemicals may require metabolic activation to become toxic, and competition for binding sites on receptors can affect the severity of toxicity. The multicomplex process of chemical toxicity is reflected in the activation of multiple pathways during toxicity of which AhR activation is major. Real-life exposure to a mixture of concern chemicals is common, and the composition of these chemicals determines the severity of toxicity. Nutritional essential elements can mitigate the toxicity of toxic heavy metals, while the types and ratio of composition of PAH can either increase or decrease toxicity. The epigenetic mechanisms of heavy metals and PAH toxicity involves either down-regulation or up-regulation of some non-coding RNAs (ncRNAs) whereas specific small RNAs (sRNAs) may have dual role depending on the tissue and circumstance of expression. Similarly, decrease DNA methylation and histone modification are major players in heavy metals and PAH mediated toxicity and FLT1 hypermethylation is a major process in PAH induced carcinogenesis. Overall, this review provides the understanding of the metabolism of environmental concern chemicals, emphasizing the importance of considering mixed compositions and real-life exposure scenarios in assessing their potential effects on human health and diseases development as well as the dual mechanism of toxicity via genetic or epigenetic axis.
Collapse
Affiliation(s)
- Peter Ifeoluwa Adegbola
- Department of Biochemistry and Forensic Science, First Technical University, Ibadan, Nigeria
| | - Adewale Adetutu
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| |
Collapse
|
5
|
Ni H, Tang S, Lu G, Niu Y, Xu J, Zhang H, Hu J, Shen HM, Wu Y, Xia D. Linc00673-V3 positively regulates autophagy by promoting Smad3-mediated LC3B transcription in NSCLC. Life Sci Alliance 2024; 7:e202302408. [PMID: 38527804 PMCID: PMC10963591 DOI: 10.26508/lsa.202302408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Since its first discovery, long noncoding RNA Linc00673 has been linked to carcinogenesis and metastasis of various human cancers. Linc00673 had five transcriptional isoforms and their biological functions remained to be explored. Here we have reported that Linc00673-V3, one of the isoforms of Linc00673, promoted non-small cell lung cancer chemoresistance, and increased Linc00673-V3 expression level was associated with enhanced autophagy. Mechanistically, we discerned the existence of a stem-loop configuration engendered by the 1-100-nt and 2200-2275-nt fragments within Linc00673-V3. This structure inherently interacted with Smad3, thereby impeding its ubiquitination and subsequent degradation orchestrated by E3 ligase STUB1. The accumulation of Smad3 contributed to autophagy via up-regulation of LC3B transcription and ultimately conferred chemoresistance in NSCLC. Our results revealed a novel transcriptional regulation network between Linc00673-V3, Smad3, and LC3B, which provided an important insight into the interplay between autophagy regulation and non-canonical function of Smad3. Furthermore, the results from in vivo experiments suggested Linc00673-V3 targeted antisense oligonucleotide as a promising therapeutic strategy to overcome chemotherapy resistance in NSCLC.
Collapse
Affiliation(s)
- Heng Ni
- https://ror.org/00a2xv884 Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- https://ror.org/00a2xv884 Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Tang
- https://ror.org/00a2xv884 Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guang Lu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuequn Niu
- https://ror.org/00a2xv884 Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- https://ror.org/00a2xv884 Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinming Xu
- https://ror.org/00a2xv884 Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Honghe Zhang
- https://ror.org/00a2xv884 Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Hu
- https://ror.org/00a2xv884 Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China
| | - Yihua Wu
- https://ror.org/00a2xv884 Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- https://ror.org/00a2xv884 Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Ni H, Tang S, Yuan X, Xu J, Zheng F, Chen K, Liu X, Zhang H, Hu J, Xia D, Wu Y. Prolonged exposure of environmental concentration benzo[a]pyrene promoted cancer stemness through AhR/PKA/SOX2 dependent pathway in small cell lung cancer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167824. [PMID: 37839474 DOI: 10.1016/j.scitotenv.2023.167824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Benzo[a]pyrene (BaP) is commonly found in the environment as a result of incomplete combustion of organic materials and cigarette smoke. Epidemiological studies have consistently suggested that elderly smokers are at higher risk for small cell lung cancer (SCLC), with risks and clinical stages increasing with the intensity and duration of smoking. However, the underlying mechanism remains insufficiently investigated. Here, we established a positive correlation between smoking and BaP metabolite 3-hydroxybenzo[a]pyrene (3OH-BaP) in urine. The pooled standardized mean difference of urinary 3OH-BaP concentration for smokers versus nonsmokers was 5.18 (95 % CI 2.86-7.50). Clinical data suggested that smoking led to more lymph node metastasis, higher pathological N-stage, and worse overall survival in SCLC patients. We identified 75 genes that participate in BaP-associated cancer stemness of SCLC from Comparative Toxicogenomics Database and validated the expression of these candidate genes in SCLC patient samples. Protein kinase cAMP-activated catalytic subunit alpha (PRKACA) was found to be most upregulated in SCLC patients and in vitro experiments indicated that long-term exposure of SCLC cells to BaP, at the concentration equivalent to those detected in blood, increased PKA protein level. Further investigation revealed that PKA could directly interact with SOX2 and protect SOX2 from COP1-mediated ubiquitination and degradation. Upregulated SOX2 then contributed to the stemness and metastasis of SCLC cells while inhibition of aryl hydrocarbon receptor (AhR) signaling pathway abolished BaP induced PKA expression and downstream PKA/SOX2 axis. Our findings firstly pinpoint BaP exposure as a high-risk factor for SCLC and worse outcomes in patients, with the underlying mechanism being the activation of cancer stemness of SCLC via the AhR/PKA/SOX2 axis.
Collapse
Affiliation(s)
- Heng Ni
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Song Tang
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyu Yuan
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinming Xu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fang Zheng
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kelie Chen
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Liu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Honghe Zhang
- Department of Pathology and Women's Hospital, Zhejiang University School of Medicine, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Dajing Xia
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yihua Wu
- Department of Toxicology of School of Public Health and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Alluli A, Fonseca G, Matthews J, Eidelman DH, Baglole CJ. Regulation of long non-coding RNA expression by aryl hydrocarbon receptor activation. Toxicol Lett 2024; 391:13-25. [PMID: 38036013 DOI: 10.1016/j.toxlet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor that can be activated by endogenous or xenobiotic ligands. Upon activation, the AhR translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT), and binds to specific DNA sequences called xenobiotic response elements (XRE) to promote target gene transcription, including cytochrome P450 (e.g., CYP1A1) expression. In addition to mRNA, the AhR may also regulate long non-coding RNA (lncRNA) expression. lncRNA are transcripts more than 200 nucleotides in length that do not encode a protein. Herein, we tested whether AhR activation regulates the expression of lncRNA in response to benzo[a]pyrene (B[a]P) using RNA sequencing (RNA-seq). We found that many lncRNA (e.g., SATB1-AS1, MIR4290HG, AC008969.1, LINC01533, VIPR1-AS1) and protein-coding RNA (e.g., CYP1A1, BX005266.2, AQP3, BTG2, DCX, and AhRR) were differentially expressed (DE) in A549 cells treated with B[a]P; many of these genes were dependent on AhR expression including CYP1A1, CYP1B1 and TiPARP. GO analyses indicated that DE protein-coding RNAs in A549WT cells are associated with distinct molecular functions compared to A549KO cells. KEGG analyses showed the hsa01100 pathway was associated with DE lncRNA only in A549WT cells. A549KO cells treated with B[a]P exhibited a distinct set of differentially-regulated lncRNA including upregulation of HOTAIR. We further confirmed that despite AhR activation in A549WT cells, B[a]P did not alter the expression of many well-characterized lncRNA including NEAT1, HOTTIP, SOX2OT, MALAT1, H19, and Linc00673. Thus, there is control over select lncRNA expression in A549 cells exposed to B[a]P, a finding which could yield insight into the molecular function of the AhR.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada
| | - Gregory Fonseca
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Montreal, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Montreal, Canada; Department of Pathology, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Alluli A, Rijnbout St James W, Eidelman DH, Baglole CJ. Dynamic relationship between the aryl hydrocarbon receptor and long noncoding RNA balances cellular and toxicological responses. Biochem Pharmacol 2023; 216:115745. [PMID: 37597813 DOI: 10.1016/j.bcp.2023.115745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a cytosolic transcription factor activated by endogenous ligands and xenobiotic chemicals. Once the AhR is activated, it translocates to the nucleus, dimerizes with the AhR nuclear translator (ARNT) and binds to xenobiotic response elements (XRE) to promote gene transcription, notably the cytochrome P450 CYP1A1. The AhR not only mediates the toxic effects of environmental chemicals, but also has numerous putative physiological functions. This dichotomy in AhR biology may be related to reciprocal regulation of long non-coding RNA (lncRNA). lncRNA are defined as transcripts more than 200 nucleotides in length that do not encode a protein but are implicated in many physiological processes such as cell differentiation, cell proliferation, and apoptosis. lncRNA are also linked to disease pathogenesis, particularly the development of cancer. Recent studies have revealed that AhR activation by environmental chemicals affects the expression and function of lncRNA. In this article, we provide an overview of AhR signaling pathways activated by diverse ligands and highlight key differences in the putative biological versus toxicological response of AhR activation. We also detail the functions of lncRNA and provide current data on their regulation by the AhR. Finally, we outline how overlap in function between AhR and lncRNA may be one way in which AhR can be both a regulator of endogenous functions but also a mediator of toxicological responses to environmental chemicals. Overall, more research is still needed to fully understand the dynamic interplay between the AhR and lncRNA.
Collapse
Affiliation(s)
- Aeshah Alluli
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - Willem Rijnbout St James
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada
| | - David H Eidelman
- Meakins-Christie Laboratories, McGill University, Canada; Department of Medicine, McGill University, Canada
| | - Carolyn J Baglole
- Meakins-Christie Laboratories, McGill University, Canada; Translational Research in Respiratory Diseases Program at the Research Institute of the McGill University Health Centre, Canada; Department of Pathology, McGill University, Canada; Department of Medicine, McGill University, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| |
Collapse
|
9
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
10
|
Baran K, Kordiak J, Jabłoński S, Brzeziańska-Lasota E. Panel of miR-150 and linc00673, regulators of CCR6/CCL20 may serve as non-invasive diagnostic marker of non-small cell lung cancer. Sci Rep 2023; 13:9642. [PMID: 37316552 DOI: 10.1038/s41598-023-36485-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
The C-C motif ligand 20 (CCL20) is a chemokine that specifically binds to the chemokine receptor 6 (CCR6) and the CCL20/CCR6 axis has been implicated in the non-small lung cancer (NSCLC) development and progression. Its expression is regulated by mutual interactions of non-coding RNAs (ncRNAs). This goals of presented study was to evaluate the expression level of CCR6/CCL20 mRNA in NSCLC tissue comparative to selected ncRNAs: miR-150, linc00673. The expression level of the studied ncRNAs was also assessed in serum extracellular vesicles (EVs). Thirty patients (n = 30) were enrolled as the study cohort. Total RNA was isolated from tumor tissue, adjacent macroscopically unchanged tissue and serum EVs. The expression level of studied genes and ncRNAs were estimated based on the qPCR method. Higher expression level of CCL20 mRNA but lower expression level of CCR6 mRNA were observed in tumor in comparison to control tissue. Relative to the smoking status, higher CCL20 (p < 0.05) and CCR6 mRNA (p > 0.05) expression levels were observed in current smokers than in never smokers. In serum EVs the expression level of miR-150 has a negative correlation with AJCC tumor staging, whereas the expression level of linc00673 positively correlated (p > 0.05). The lower expression level of miR-150 and higher expression level of linc00673 in serum EVs were observed in NSCLC patients with lymph nodes metastases (p > 0.05). Regarding the histopathological type, significantly lower expression level of miR-150 and higher expression level of linc00673 were observed in the serum EVs of patients with AC compared to patient with SCC. Our findings revealed that smoking significantly changed the expression level of CCL20 mRNA in NSCLC tissue. Changes in expression levels of miR-150 and linc00673 in the serum EVs of NSCLC patients in relation to presence of lymph node metastases and the stage of cancer development may serve as a non-invasive molecular biomarkers of tumor progression. Furthermore, expression levels of miR-150 and linc00673 may serve as non-intrusive diagnostic biomarkers differentiating adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Kamila Baran
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland.
| | - Jacek Kordiak
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Sławomir Jabłoński
- Department of Thoracic, General and Oncological Surgery, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzeziańska-Lasota
- Department of Biomedicine and Genetics, Chair of Biology and Medical Microbiology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
11
|
He H, Huang Y, Lu Y, Wang X, Ni H, Wu Y, Xia D, Ye D, Ding J, Mao Y, Teng Y. Effect of benzo[a]pyrene on proliferation and metastasis of oral squamous cell carcinoma cells: A transcriptome analysis based on RNA-seq. ENVIRONMENTAL TOXICOLOGY 2022; 37:2589-2604. [PMID: 35870112 DOI: 10.1002/tox.23621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Benzo[a]pyrene (BaP), a representative polycyclic aromatic hydrocarbon compound, is a carcinogen that causes head and neck cancers. Despite intensive research, the molecular mechanism of BaP in the development of oral squamous cell carcinoma (OSCC) remains largely unknown. In the present study, the SCC-9 human OSCC cell line was cultured in vitro, separated into treatment groups, and treated with dimethyl sulfoxide or BaP at various concentrations. The malignant behavior ascribed to the BaP treatment was investigated by cell proliferation, clony formation assay, and Transwell assays. Furthermore, transcriptome sequencing was performed to detect the differentially expressed genes, followed by quantitative real-time PCR to measure the expression levels of nine of these genes. Moreover, the Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed the biological processes and signaling pathways in which the target genes were involved. Significant effects on SCC-9 cell proliferation, tumorigenicity, cell migration, and invasion were observed after exposure to 8 μM BaP. Additional results revealed that BaP inhibited apoptosis in a dose-dependent manner. The transcriptome sequencing results showed 137 upregulated genes and 135 downregulated genes induced by BaP, associated with tumor-related biological processes and signaling pathways, mainly including transcriptional dysregulation in cancer, the tumor necrosis factor signaling pathway, metabolism of xenobiotics by cytochrome P450, mitogen-activated protein kinase signaling pathway, and so forth. Our study demonstrates that BaP may regulate the expression of certain genes involved in tumor-associated signaling pathways, thereby promoting the proliferative, tumorigenic, and metastatic behaviors of OSCC cells while suppressing their apoptosis.
Collapse
Affiliation(s)
- Hanyi He
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixing Huang
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueyue Lu
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinlu Wang
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haifeng Ni
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihua Wu
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dajing Xia
- Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Jinwang Ding
- Department of Head and Neck Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China
| | - Yanjiao Mao
- Department of Oncology Radiotherapy, Hangzhou Cancer Hospital, Affiliated Medical College of Zhejiang University, Hangzhou, China
| | - Yaoshu Teng
- Department of Otorhinolaryngology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The Fourth Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
13
|
Yu Z, Wang H, Zhang X, Gong S, Liu Z, Zhao N, Zhang C, Xie X, Wang K, Liu Z, Wang JS, Zhao X, Zhou J. Long-term environmental surveillance of PM2.5-bound polycyclic aromatic hydrocarbons in Jinan, China (2014-2020): Health risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127766. [PMID: 34916105 DOI: 10.1016/j.jhazmat.2021.127766] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/10/2023]
Abstract
We established long-term surveillance sites in Jinan city to monitor PM2.5 particles (PM2.5) and PM2.5-bound PAHs (2014-2020). The range of PM2.5 was 15-230 µg/m3. The average annual ƩPAH16 were 433 ± 271 ng/m3 (industrial area) and 299 ± 171.8 ng/m3 (downtown). PAHs captured in winter accounted for 61.5% (industrial area) and 59.1% (downtown) of total PAHs. A hazardous seasonal benzo[a]pyrene level was detected in 2015-2016 winter as 14.03 ng/m3 (14 folds of EU standard). The dominant PM2.5-bound PAHs were benzo[b]fluoranthene (24-26%), chrysene (19-20%), benzo[g,h,i]perylene (15%), Indeno(1,2,3-cd)pyrene (12%) and Benzo[a]pyrene (10%). Toxic equivalent quotients of PAHs were 4.93 ng/m3 (industrial area) and 3.13 ng/m3 (downtown). Excess cancer risks (ECRs) were 4.3 × 10-4 ng/m3 and 2.7 × 10-4 ng/m3, respectively. The ECRs exceeded EPA regulatory limit of 1 × 10-6 ng/m3 largely. Non-negligible excess lifetime cancer risks were found as 36 and 26 related cancer incidences per 1,000,000 people. Consistently, local prevalence of lung cancer raise from 56.97/100,000 to 72.38/100,000; the prevalence of thyroid cancer raise from 10.12/100,000 to 45.26/100,000 from 2014 to 2020. Our findings suggest an urgent need to investigate the adverse health effects of PAHs on local population and we call for more strictly restriction on coal consumption and traffic tail gas emission.
Collapse
Affiliation(s)
- Zhigang Yu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Hong Wang
- Clinical Laboratory, Jinan Hospital, 250013, China.
| | - Xin Zhang
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Shuping Gong
- Institute of Chronic and Non-communicable Disease, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Zhen Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research, University of Jinan, 250022, China.
| | - Ning Zhao
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Cuiqin Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Xiaorui Xie
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Kaige Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Zhong Liu
- Institute of Physical and Chemical Analysis, Jinan Municipal Center for Disease Control and Prevention, 250021, China.
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Xiulan Zhao
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| | - Jun Zhou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China; School of Public Health, Cheeloo College of Medicine, Shandong University, 250012, China.
| |
Collapse
|
14
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
15
|
The Prognostic Value of LncRNA SLNCR1 in Cancers: A Meta-Analysis. JOURNAL OF ONCOLOGY 2021; 2021:3161714. [PMID: 34733328 PMCID: PMC8560271 DOI: 10.1155/2021/3161714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022]
Abstract
Objective This meta-analysis was performed to identify the prognostic value of SLNCR1 in multiple cancer types. Methods Electronic databases, including PubMed, EMBASE, and Web of Science, Cochrane Library, Medline, BioMed Central, Springer, Science Direct, and China National Knowledge Internet (CNKI), were searched for relevant studies up to August 2021, and the hazard ratios (HR) and 95% confidence intervals (95% CI) were calculated to assess the relationship between SLNCR1 expression and overall survival (OS). Results 12 studies with a total of 1155 patients with 9 different types of cancers were included in this meta-analysis. The pooled HR indicates that high SLNCR1 expression represented poorer prognosis of cancer (HR = 2.11, 95% CI: 1.59–2.80, I2 = 0%, P < 0.00001). Additionally, high SLNCR1 expression was correlated with TNM stage (odds ratio (OR): 1.72, 95% CI: 1.08–2.74, I2 = 62%, P=0.02), lymph node metastasis (LNM) (OR:2.42, 95% CI: 1.61–3.64, I2 = 55%, P < 0.0001), and distant metastases (DM) (OR: 2.30, 95% CI: 1.50–3.55, I2 = 27%, P=0.0002). However, no evidence was found for a relationship between SLNCR1 expression and clinical features such as tumor size (OR: 1.71, 95% CI: 0.93–3.14, I2 = 71%, P=0.09), age (OR: 0.86, 95% CI: 0.68–1.08, I2 = 0%, P=0.19), or gender (OR: 1.07, 95% CI: 0.64–1.81, I2 = 55%, P=0.79). Conclusion Our findings found that high SLNCR1 expression was associated with poor OS, advanced tumor stage, tumor size, LNM, and DM in multiple cancers, indicating that SLNCR1 may serve as a potential prognostic biomarker for cancer patients in China.
Collapse
|
16
|
Stading R, Gastelum G, Chu C, Jiang W, Moorthy B. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Semin Cancer Biol 2021; 76:3-16. [PMID: 34242741 DOI: 10.1016/j.semcancer.2021.07.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 01/04/2023]
Abstract
Lung cancer has the second highest incidence and highest mortality compared to all other cancers. Polycyclic aromatic hydrocarbon (PAH) molecules belong to a class of compounds that are present in tobacco smoke, diesel exhausts, smoked foods, as well as particulate matter (PM). PAH-derived reactive metabolites are significant contributors to lung cancer development. The formation of these reactive metabolites entails metabolism of the parent PAHs by cytochrome P4501A1/1B1 (CYP1A1/1B1) and epoxide hydrolase enzymes. These reactive metabolites then react with DNA to form DNA adducts, which contribute to key gene mutations, such as the tumor suppressor gene, p53 and are linked to pulmonary carcinogenesis. PAH exposure also leads to upregulation of CYP1A1 transcription by binding to the aryl hydrocarbon receptor (AHR) and eliciting transcription of the CYP1A1 promoter, which comprises specific xenobiotic-responsive element (XREs). While hepatic and pulmonary CYP1A1/1B1 metabolize PAHs to DNA-reactive metabolites, the hepatic CYP1A2, however, may protect against lung tumor development by suppressing both liver and lung CYP1A1 enzymes. Further analysis of these enzymes has shown that PAH-exposure also induces sustained transcription of CYP1A1, which is independent of the persistence of the parent PAH. CYP1A2 enzyme plays an important role in the sustained induction of hepatic CYP1A1. PAH exposure may further contribute to pulmonary carcinogenesis by producing epigenetic alterations. DNA methylation, histone modification, long interspersed nuclear element (LINE-1) activation, and non-coding RNA, specifically microRNA (miRNA) alterations may all be induced by PAH exposure. The relationship between PAH-induced enzymatic reactive metabolite formation and epigenetic alterations is a key area of research that warrants further exploration. Investigation into the potential interplay between these two mechanisms may lead to further understanding of the mechanisms of PAH carcinogenesis. These mechanisms will be crucial for the development of effective targeted therapies and early diagnostic tools.
Collapse
Affiliation(s)
- Rachel Stading
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Grady Gastelum
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Chun Chu
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Weiwu Jiang
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Bhagavatula Moorthy
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States.
| |
Collapse
|
17
|
Tan J, Guo W, Yang S, Han D, Li H. The multiple roles and therapeutic potential of clusterin in non-small-cell lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:2683-2697. [PMID: 34295670 PMCID: PMC8264340 DOI: 10.21037/tlcr-20-1298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 04/19/2021] [Indexed: 12/25/2022]
Abstract
Worldwide, lung cancer is the most common form of cancer, with an estimated 2.09 million new cases and 1.76 million of death cause in 2018. It is categorized into two subtypes, small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Although platinum-based chemotherapy or molecular targeted drugs is recommended for advanced stages of NSCLC patients, however, resistance to drug and chemotherapy are hindrances for patients to fully beneficial from these treatments. Clusterin (CLU), also known as apolipoprotein J, is a versatile chaperone molecule which produced by a wide array of tissues and found in most biologic fluids. There are studies reported high expression of CLU confers resistance to chemotherapy and radiotherapy in different lung cancer cell lines. By silencing CLU using Custirsen (OGX-011), a second-generation antisense oligonucleotide (ASO) that inhibits CLU production, not only could sensitized cells to chemo- and radiotherapy, also could decreased their metastatic potential. We will review here the extensive literature linking CLU to NSCLC, update the current state of research on CLU for better understanding of this unique protein and the development of more effective anti- CLU treatment.
Collapse
Affiliation(s)
- Juofang Tan
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Guo
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su Yang
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingpei Han
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Transcriptome Analysis Reveals the AhR, Smad2/3, and HIF-1α Pathways as the Mechanism of Ochratoxin A Toxicity in Kidney Cells. Toxins (Basel) 2021; 13:toxins13030190. [PMID: 33800744 PMCID: PMC7999264 DOI: 10.3390/toxins13030190] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/25/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin occurring in foods consumed by humans. Recently, there has been growing global concern regarding OTA toxicity. The main target organ of OTA is the kidney, but the mechanism underlying renal toxicity is not well known. In this study, human-derived proximal tubular epithelial cells, HK-2 cells, were used for RNA-sequencing (RNA-seq) and transcriptome analysis. In total, 3193 differentially expressed genes were identified upon treatment with 200 nM OTA in HK-2 cells; of these, 2224 were upregulated and 969 were downregulated. Transcriptome analysis revealed that OTA significantly affects hypoxia, epithelial-mesenchymal transition (EMT), apoptosis, and xenobiotic metabolism pathways in kidney cells. Quantitative real-time PCR analysis showed gene expression patterns similar to RNA-seq analysis. Expression of EMT markers (E-cadherin and fibronectin), apoptosis markers (caspase-3 and Bax), and kidney injury molecule-1 (KIM-1) was suppressed by inhibiting AhR expression using siRNA, and the related transcription factors, Smad2/3, and HIF-1α were downregulated. Smad2/3 suppression with siRNA could inhibit fibronetcin, caspase-3, Bax, and KIM-1 expression. Fibronetcin, caspase-3, Bax, and KIM-1 expression could be increased with HIF-1α suppression with siRNA. Taken together, these findings suggest that OTA-mediated kidney toxicity via the AhR-Smad2/3-HIF-1α signaling pathways leads to induction of EMT, apoptosis, and kidney injury.
Collapse
|
19
|
Liu S, Yang R, Chen Y, Zhao X, Chen S, Yang X, Cheng Z, Hu B, Liang X, Yin N, Liu Q, Wang H, Liu S, Faiola F. Development of Human Lung Induction Models for Air Pollutants' Toxicity Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2440-2451. [PMID: 33535745 DOI: 10.1021/acs.est.0c05700] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is an urgent need for reliable and effective models to study air pollution health effects on human lungs. Here, we report the utilization of human pluripotent stem cell (hPSC) induction models for human lung progenitor cells (hLPs) and alveolar type 2 epithelial cell-like cells (ATLs) for the toxicity assessment of benzo(a)pyrene, nano-carbon black, and nano-SiO2, as common air pollutants. We induced hPSCs to generate ATLs, which recapitulated key features of human lung type 2 alveolar epithelial cells, and tested the induction models for cellular uptake of nanoparticles and toxicity evaluations. Our findings reveal internalization of nano-carbon black, dose-dependent uptake of nano-SiO2, and interference with surfactant secretion in ATLs exposed to benzo(a)pyrene/nano-SiO2. Thus, hLP and ATL induction models could facilitate the evaluation of environmental pollutants potentially affecting the lungs. In conclusion, this is one of the first studies that managed to adopt hPSC pulmonary induction models in toxicology studies.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjiu Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingchen Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaokun Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuezhi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanwen Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Ashrafizadeh M, Shahinozzaman M, Orouei S, Zarrin V, Hushmandi K, Hashemi F, Kumar A, Samarghandian S, Najafi M, Zarrabi A. Crosstalk of long non-coding RNAs and EMT: Searching the missing pieces of an incomplete puzzle for lung cancer therapy. Curr Cancer Drug Targets 2021; 21:640-665. [PMID: 33535952 DOI: 10.2174/1568009621666210203110305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Lung cancer is considered to be the first place among the cancer-related deaths worldwide and demands novel strategies in the treatment of this life-threatening disorder. The aim of this review is to explore regulation of epithelial-to-mesenchymal transition (EMT) by long non-coding RNAs (lncRNAs) in lung cancer. INTRODUCTION LncRNAs can be considered as potential factors for targeting in cancer therapy, since they regulate a bunch of biological processes, e.g. cell proliferation, differentiation and apoptosis. The abnormal expression of lncRNAs occurs in different cancer cells. On the other hand, epithelial-to-mesenchymal transition (EMT) is a critical mechanism participating in migration and metastasis of cancer cells. METHOD Different databases including Googlescholar, Pubmed and Sciencedirect were used for collecting articles using keywords such as "LncRNA", "EMT", and "Lung cancer". RESULT There are tumor-suppressing lncRNAs that can suppress EMT and metastasis of lung cancer cells. Expression of such lncRNAs undergoes down-regulation in lung cancer progression and restoring their expression is of importance in suppressing lung cancer migration. There are tumor-promoting lncRNAs triggering EMT in lung cancer and enhancing their migration. CONCLUSION LncRNAs are potential regulators of EMT in lung cancer, and targeting them, both pharmacologically and genetically, can be of importance in controlling migration of lung cancer cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul. Turkey
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742. United States
| | - Sima Orouei
- Department of Genetics Science, Tehran Medical Sciences Branch, Islamic Azad University, Tehran. Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz. Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran. Iran
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541. Korea
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanashah University of Medical Sciences, Kermanshah 6715847141. Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul. Turkey
| |
Collapse
|
21
|
Barroso A, Mahler JV, Fonseca-Castro PH, Quintana FJ. The aryl hydrocarbon receptor and the gut-brain axis. Cell Mol Immunol 2021; 18:259-268. [PMID: 33408340 PMCID: PMC8027889 DOI: 10.1038/s41423-020-00585-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor initially identified as the receptor for dioxin. Almost half a century after its discovery, AHR is now recognized as a receptor for multiple physiological ligands, with important roles in health and disease. In this review, we discuss the role of AHR in the gut-brain axis and its potential value as a therapeutic target for immune-mediated diseases.
Collapse
Affiliation(s)
- Andreia Barroso
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - João Vitor Mahler
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro Henrique Fonseca-Castro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
AhR and Cancer: From Gene Profiling to Targeted Therapy. Int J Mol Sci 2021; 22:ijms22020752. [PMID: 33451095 PMCID: PMC7828536 DOI: 10.3390/ijms22020752] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has been shown to be an essential regulator of a broad spectrum of biological activities required for maintaining the body’s vital functions. AhR also plays a critical role in tumorigenesis. Its role in cancer is complex, encompassing both pro- and anti-tumorigenic activities. Its level of expression and activity are specific to each tumor and patient, increasing the difficulty of understanding the activating or inhibiting roles of AhR ligands. We explored the role of AhR in tumor cell lines and patients using genomic data sets and discuss the extent to which AhR can be considered as a therapeutic target.
Collapse
|
23
|
Zhu K, Gong Z, Li P, Jiang X, Zeng Z, Xiong W, Yu J. A review of linc00673 as a novel lncRNA for tumor regulation. Int J Med Sci 2021; 18:398-405. [PMID: 33390809 PMCID: PMC7757132 DOI: 10.7150/ijms.48134] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) act as regulators and play important roles in a variety of biological processes. These regulators constitute a huge information network among genes and participate in the pathophysiological process of human diseases. Increasing evidence has demonstrated that LncRNA, as an oncogene or tumor suppressor gene, is closely related to the occurrence and development of tumors. Linc00673 is a recently discovered LncRNA molecule that is dysregulated in several solid tumors. Moreover, its genetic polymorphism is believed to affect the susceptibility of a population to the corresponding cancer species. This article summarizes the role of Linc00673 in different human cancers and its molecular mechanisms with a focus on the characteristics of Linc00673 and the existing literature on it while highlighting the future research directions for Linc00673. Linc00673 has the potential to become a feasible clinical diagnostic and prognostic marker toward providing a new molecular therapeutic target for cancer patients.
Collapse
Affiliation(s)
- Kunjie Zhu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Panchun Li
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xianjie Jiang
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis, and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Jianjun Yu
- Department of Head and Neck Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
24
|
Hýžďalová M, Procházková J, Strapáčová S, Svržková L, Vacek O, Fedr R, Andrysík Z, Hrubá E, Líbalová H, Kléma J, Topinka J, Mašek J, Souček K, Vondráček J, Machala M. A prolonged exposure of human lung carcinoma epithelial cells to benzo[a]pyrene induces p21-dependent epithelial-to-mesenchymal transition (EMT)-like phenotype. CHEMOSPHERE 2021; 263:128126. [PMID: 33297115 DOI: 10.1016/j.chemosphere.2020.128126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 06/12/2023]
Abstract
Deciphering the role of the aryl hydrocarbon receptor (AhR) in lung cancer cells may help us to better understand the role of toxic AhR ligands in lung carcinogenesis, including cancer progression. We employed human lung carcinoma A549 cells to investigate their fate after continuous two-week exposure to model AhR agonists, genotoxic benzo[a]pyrene (BaP; 1 μM) and non-genotoxic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 10 nM). While TCDD increased proliferative rate of A549 cells, exposure to BaP decreased cell proliferation and induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which was associated with enhanced cell migration, invasion, and altered cell morphology. Although TCDD also suppressed expression of E-cadherin and activated some genes linked to EMT, it did not induce the EMT-like phenotype. The results of transcriptomic analysis, and the opposite effects of BaP and TCDD on cell proliferation, indicated that a delay in cell cycle progression, together with a slight increase of senescence (when coupled with AhR activation), favors the induction of EMT-like phenotype. The shift towards EMT-like phenotype observed after simultaneous treatment with TCDD and mitomycin C (an inhibitor of cell proliferation) confirmed the hypothesis. Since BaP decreased cell proliferative rate via induction of p21 expression, we generated the A549 cell model with reduced p21 expression and exposed it to BaP for two weeks. The p21 knockdown suppressed the BaP-mediated EMT-like phenotype in A549 cells, thus confirming that a delayed cell cycle progression, together with p21-dependent induction of senescence-related chemokine CCL2, may contribute to induction of EMT-like cell phenotype in lung cells exposed to genotoxic AhR ligands.
Collapse
Affiliation(s)
- Martina Hýžďalová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiřina Procházková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Simona Strapáčová
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Lucie Svržková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Ondřej Vacek
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Radek Fedr
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Zdeněk Andrysík
- Linda Crnic Institute for Down Syndrome, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA; Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Eva Hrubá
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Helena Líbalová
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Jiří Kléma
- Department of Computer Science, Czech Technical University in Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic; Center of Biomolecular and Cellular Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic.
| |
Collapse
|
25
|
Cochard M, Ledoux F, Landkocz Y. Atmospheric fine particulate matter and epithelial mesenchymal transition in pulmonary cells: state of the art and critical review of the in vitro studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:293-318. [PMID: 32921295 DOI: 10.1080/10937404.2020.1816238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Exposure to fine particulate matter (PM2.5) has been associated with several diseases including asthma, chronic obstructive pulmonary disease (COPD) and lung cancer. Mechanisms such as oxidative stress and inflammation are well-documented and are considered as the starting point of some of the pathological responses. However, a number of studies also focused on epithelial-mesenchymal transition (EMT), which is a biological process involved in fibrotic diseases and cancer progression notably via metastasis induction. Up until now, EMT was widely reported in vivo and in vitro in various cell types but investigations dealing with in vitro studies of PM2.5 induced EMT in pulmonary cells are limited. Further, few investigations combined the necessary endpoints for validation of the EMT state in cells: such as expression of several surface, cytoskeleton or extracellular matrix biomarkers and activation of transcription markers and epigenetic factors. Studies explored various cell types, cultured under differing conditions and exposed for various durations to different doses. Such unharmonized protocols (1) might introduce bias, (2) make difficult comparison of results and (3) preclude reaching a definitive conclusion regarding the ability of airborne PM2.5 to induce EMT in pulmonary cells. Some questions remain, in particular the specific PM2.5 components responsible for EMT triggering. The aim of this review is to examine the available PM2.5 induced EMT in vitro studies on pulmonary cells with special emphasis on the critical parameters considered to carry out future research in this field. This clarification appears necessary for production of reliable and comparable results.
Collapse
Affiliation(s)
- Margaux Cochard
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Frédéric Ledoux
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| | - Yann Landkocz
- Unité de Chimie Environnementale et Interactions sur le Vivant, UCEIV UR4492, SFR Condorcet FR-CNRS-3417, Univ. Littoral Côte d'Opale (ULCO) , Dunkerque, France
| |
Collapse
|
26
|
Tan Z, Sun Y, Liu M, Xia L, Cao F, Qi Y, Song Y. Retracted: Naringenin Inhibits Cell Migration, Invasion, and Tumor Growth by Regulating circFOXM1/miR-3619-5p/SPAG5 Axis in Lung Cancer. Cancer Biother Radiopharm 2020; 35:e826-e838. [DOI: 10.1089/cbr.2019.3520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Zhaofeng Tan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuli Sun
- Department of Hepatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mei Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Xia
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fang Cao
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuanfu Qi
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonglei Song
- Department of Oncology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|