1
|
Xu H, Li H, Zhang P, Gao Y, Ma H, Gao T, Liu H, Hua W, Zhang L, Zhang X, Yang P, Liu J. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types. Neural Regen Res 2024; 19:1947-1953. [PMID: 38227520 DOI: 10.4103/1673-5374.390961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system; they participate in crucial biological processes, maintain brain structure, and regulate nervous system function. Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins, peptides, nucleotides, and lipids secreted from their cellular sources. Increasing evidence shows that exosomes participate in a communication network in the nervous system, in which astrocyte-derived exosomes play important roles. In this review, we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system. We also discuss the potential research directions of the exosome-based communication network in the nervous system. The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain. New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
Collapse
Affiliation(s)
- Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan, Zhejiang Province, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianxiang Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
2
|
Gatica-Garcia B, Bannon MJ, Martínez-Dávila IA, Soto-Rojas LO, Reyes-Corona D, Escobedo L, Maldonado-Berny M, Gutierrez-Castillo ME, Espadas-Alvarez AJ, Fernandez-Parrilla MA, Mascotte-Cruz JU, Rodríguez-Oviedo CP, Valenzuela-Arzeta IE, Luna-Herrera C, Lopez-Salas FE, Santoyo-Salazar J, Martinez-Fong D. Unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neuropathology and behavioral deficits in parkinsonian rats with α-synucleinopathy. Neural Regen Res 2024; 19:2057-2067. [PMID: 38227536 DOI: 10.4103/1673-5374.391190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral β-sitosterol β-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral β-sitosterol β-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection. This study found that rNurr1-V5 expression but not that of the green fluorescent protein (the negative control) reduced β-sitosterol β-D-glucoside-induced neuropathology. Accordingly, a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum. In addition, tyrosine hydroxylase-positive cells displayed less senescence marker β-galactosidase and more neuron-cytoskeleton marker βIII-tubulin and brain-derived neurotrophic factor. A significant decrease in activated microglia (positive to ionized calcium-binding adaptor molecule 1) and neurotoxic astrocytes (positive to glial fibrillary acidic protein and complement component 3) and increased neurotrophic astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10) also occurred in the substantia nigra. These effects followed the bilateral reduction in α-synuclein aggregates in the nigrostriatal system, improving sensorimotor behavior. Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration (senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells), neuroinflammation (activated microglia, neurotoxic astrocytes), α-synuclein aggregation, and sensorimotor deficits. Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect, supporting its potential clinical use in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Bismark Gatica-Garcia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Irma Alicia Martínez-Dávila
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Luis O Soto-Rojas
- Laboratorio de Patogénesis Molecular, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México
- Red de Medicina para la Educación y Desarrollo y la Investigación Científica de Iztacala (Red MEDICI), Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, México
| | | | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Minerva Maldonado-Berny
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - M E Gutierrez-Castillo
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | - Armando J Espadas-Alvarez
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Juan U Mascotte-Cruz
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | | | - Irais E Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Claudia Luna-Herrera
- Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Francisco E Lopez-Salas
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
- Nanoparticle Therapy Institute, Aguascalientes, México
- Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| |
Collapse
|
3
|
Ferrucci M, Lenzi P, Lazzeri G, Busceti CL, Frati A, Puglisi-Allegra S, Fornai F. Combined light and electron microscopy (CLEM) to quantify methamphetamine-induced alpha-synuclein-related pathology. J Neural Transm (Vienna) 2024; 131:335-358. [PMID: 38367081 PMCID: PMC11016004 DOI: 10.1007/s00702-024-02741-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
Methamphetamine (METH) produces a cytopathology, which is rather specific within catecholamine neurons both in vitro and ex vivo, in animal models and chronic METH abusers. This led some authors to postulate a sort of parallelism between METH cytopathology and cell damage in Parkinson's disease (PD). In fact, METH increases and aggregates alpha-syn proto-fibrils along with producing spreading of alpha-syn. Although alpha-syn is considered to be the major component of aggregates and inclusions developing within diseased catecholamine neurons including classic Lewy body (LB), at present, no study provided a quantitative assessment of this protein in situ, neither following METH nor in LB occurring in PD. Similarly, no study addressed the quantitative comparison between occurrence of alpha-syn and other key proteins and no investigation measured the protein compared with non-protein structure within catecholamine cytopathology. Therefore, the present study addresses these issues using an oversimplified model consisting of a catecholamine cell line where the novel approach of combined light and electron microscopy (CLEM) was used measuring the amount of alpha-syn, which is lower compared with p62 or poly-ubiquitin within pathological cell domains. The scenario provided by electron microscopy reveals unexpected findings, which are similar to those recently described in the pathology of PD featuring packing of autophagosome-like vesicles and key proteins shuttling autophagy substrates. Remarkably, small seed-like areas, densely packed with p62 molecules attached to poly-ubiquitin within wide vesicular domains occurred. The present data shed new light about quantitative morphometry of catecholamine cell damage in PD and within the addicted brain.
Collapse
Affiliation(s)
- Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Paola Lenzi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Carla L Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135, Rome, Italy
| | - Stefano Puglisi-Allegra
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077, Pozzilli, Italy
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077, Pozzilli, Italy.
| |
Collapse
|
4
|
Kumar A, Nader MA, Deep G. Emergence of Extracellular Vesicles as "Liquid Biopsy" for Neurological Disorders: Boom or Bust. Pharmacol Rev 2024; 76:199-227. [PMID: 38351075 PMCID: PMC10877757 DOI: 10.1124/pharmrev.122.000788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/11/2023] [Accepted: 11/27/2023] [Indexed: 02/16/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as an attractive liquid biopsy approach in the diagnosis and prognosis of multiple diseases and disorders. The feasibility of enriching specific subpopulations of EVs from biofluids based on their unique surface markers has opened novel opportunities to gain molecular insight from various tissues and organs, including the brain. Over the past decade, EVs in bodily fluids have been extensively studied for biomarkers associated with various neurological disorders, such as Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, major depressive disorders, substance use disorders, human immunodeficiency virus-associated neurocognitive disorder, and cancer/treatment-induced neurodegeneration. These studies have focused on the isolation and cargo characterization of either total EVs or brain cells, such as neuron-, astrocyte-, microglia-, oligodendrocyte-, pericyte-, and endothelial-derived EVs from biofluids to achieve early diagnosis and molecular characterization and to predict the treatment and intervention outcomes. The findings of these studies have demonstrated that EVs could serve as a repetitive and less invasive source of valuable molecular information for these neurological disorders, supplementing existing costly neuroimaging techniques and relatively invasive measures, like lumbar puncture. However, the initial excitement surrounding blood-based biomarkers for brain-related diseases has been tempered by challenges, such as lack of central nervous system specificity in EV markers, lengthy protocols, and the absence of standardized procedures for biological sample collection, EV isolation, and characterization. Nevertheless, with rapid advancements in the EV field, supported by improved isolation methods and sensitive assays for cargo characterization, brain cell-derived EVs continue to offer unparallel opportunities with significant translational implications for various neurological disorders. SIGNIFICANCE STATEMENT: Extracellular vesicles present a less invasive liquid biopsy approach in the diagnosis and prognosis of various neurological disorders. Characterizing these vesicles in biofluids holds the potential to yield valuable molecular information, thereby significantly impacting the development of novel biomarkers for various neurological disorders. This paper has reviewed the methodology employed to isolate extracellular vesicles derived from various brain cells in biofluids, their utility in enhancing the molecular understanding of neurodegeneration, and the potential challenges in this research field.
Collapse
Affiliation(s)
- Ashish Kumar
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Michael A Nader
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| | - Gagan Deep
- Departments of Cancer Biology (A.K., G.D.), Physiology and Pharmacology (M.A.N.), Radiology (M.A.N.), and Center for Addiction Research (M.A.N., G.D.), Wake Forest University School of Medicine, Winston-Salem, North Carolina; Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina (G.D.); and Sticht Center for Healthy Aging and Alzheimer's Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina (G.D.)
| |
Collapse
|
5
|
Li K, Ling H, Wang X, Xie Q, Gu C, Luo W, Qiu P. The role of NF-κB signaling pathway in reactive astrocytes among neurodegeneration after methamphetamine exposure by integrated bioinformatics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110909. [PMID: 38061485 DOI: 10.1016/j.pnpbp.2023.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Methamphetamine (METH) is a highly addictive stimulant that has become one of the top five risk substances cause deaths from substance abuse. METH exposure increases the risk of neurodegenerative disease (ND), such as Parkinson's disease (PD), leading to disability and death. Activation of reactive astrocytes is an essential factor in neurodegeneration, and their complex role in METH exposure remains unclear. This study explored the role of reactive astrocyte overactivation in neurodegeneration after METH exposure. METHODS METH bulk RNA sequencing data (GSE107015 and GSE98793) and single-cell RNA sequencing data (GSE119861) were obtained from the GEO database. We performed immune infiltration analysis on the bulk RNA data. After cell clustering using the single-cell RNA data, astrocytes were extracted for downstream analysis. Differentially expressed genes (DEGs) were identified from the bulk and single-cell RNA sequencing datasets, and GO, KEGG, and GSEA pathway analyses were performed. The PPI network and random forest methods were performed on the overlapping genes of the DEGs to screen hub genes. To explore the common ground between METH exposure and neurodegenerative diseases, we applied a random forest algorithm to PD chip data (GSE99039 and GSE72267) to establish a diagnostic model using the hub genes in METH. New object recognition and the Morris water maze were used to examine cognitive function in mice exposed to METH for 14 days in vivo. Astrocytes were cocultured with neurons for the detection of intercellular crosstalk. RESULTS DEGs in the METH group significantly enriched pathways related to NDs, inflammation, and the NF-κB signaling pathway. Immune infiltration analysis revealed significantly increased infiltration of monocytes, T cells, and NK cells and decreased infiltration of neutrophils in the METH group. An intersection of 44 hub genes was screened based on the PPI network and random forest algorithm. These genes suggest that there might be similar pathogenesis between METH exposure and PD. METH exposure resulted in learning memory impairment, hippocampal astrocyte activation, and upregulation of NF-κB expression in mice. Activation of reactive astrocytes cocultured with neurons causes neural damage. CONCLUSIONS This study explored the crosstalk between astrocytes and neurons in METH exposure, providing a potential pathogenesis to explore the altered immune microenvironment involving reactive astrocytes after METH exposure.
Collapse
Affiliation(s)
- Kuan Li
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Haosen Ling
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaohan Wang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Qiqian Xie
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cihang Gu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Wenyu Luo
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Pingming Qiu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China.; Department of Thyroid Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
6
|
Hu S, Huang X, Huang J, Qian Y, Tian Y, Xiao Y, Qi X, Zhou X, Yang Z, Chen Z. Iron chelation prevents nigrostriatal neurodegeneration in a chronic methamphetamine mice model. Neurotoxicology 2023; 99:24-33. [PMID: 37717738 DOI: 10.1016/j.neuro.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Methamphetamine (METH) has been established to selectively target and impair dopaminergic neurons through multiple pathways. Ferroptosis is a unique form of non-apoptotic cell death driven by cellular iron accumulation-induced lipid peroxidation. Nonetheless, it remains unclear whether METH can induce ferroptosis. In the present study, we sought to assess alterations in iron levels after chronic METH exposure and reveal the modulatory role of iron on METH-induced pathologies. Importantly, we demonstrated that METH increased iron deposition in the nigrostriatal system, including the substantia nigra (SN) and caudate putamen (CPu). Moreover, decreases in GPx4 levels, increases in lipid peroxidation products, and pathological alterations were observed in the nigrostriatal system as a consequence of chronic METH exposure. The iron chelator deferiprone not only alleviated nigrostriatal iron deposition, dopaminergic cell death, and lipid peroxidation, but alsoattenuated the decreases in GPx4 induced by METH. These findings suggest an alleviation of ferroptosis in dopaminergic neurons. In addition, we found that the ferroptosis inhibitor liproxstatin-1 attenuated METH-induced dopaminergic degeneration in the nigrostriatal system. Our findings corroborated that METH might induce dopaminergic neurodegeneration through iron-dependent ferroptosis. Interestingly, reducing iron levels or inhibiting ferroptosis may alleviate METH-induced dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaorong Huang
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China; NHC Key Laboratory of Drug Addiction Medicine,Department of Forensic Medicine, School of Forensic Medicine, Kunming Medical University, Kunming 650500, China
| | - Ying Qian
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Yingbiao Tian
- Department of Pharmacy, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Ye Xiao
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang 550004, China
| | - Xiaoxian Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Zhusheng Yang
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China.
| | - Zehui Chen
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China.
| |
Collapse
|
7
|
Patrigeon M, Brot S, Bonnet ML, Belnoue L, Gaillard A. Host-to-graft Propagation of α-synuclein in a Mouse Model of Parkinson's Disease: Intranigral Versus Intrastriatal Transplantation. Transplantation 2023; 107:e201-e212. [PMID: 36944598 DOI: 10.1097/tp.0000000000004565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies. Ectopic transplantation of human fetal ventral mesencephalic DA neurons into the striatum of PD patients have provided proof-of-principle for the cell replacement strategy in this disorder. However, 10 to 22 y after transplantation, 1% to 27% of grafted neurons contained α-syn aggregates similar to those observed in the host brain. We hypothesized that intrastriatal grafts are more vulnerable to α-syn propagation because the striatum is not the ontogenic site of nigral DA neurons and represents an unfavorable environment for transplanted neurons. Here, we compared the long-term host-to-graft propagation of α-syn in 2 transplantation sites: the SNpc and the striatum. METHODS Two mouse models of PD were developed by injecting adeno-associated-virus2/9-human α-syn A53T into either the SNpc or the striatum of C57BL/6 mice. Mouse fetal ventral mesencephalic DA progenitors were grafted into the SNpc or into the striatum of SNpc or striatum of α-syn injected mice, respectively. RESULTS First, we have shown a degeneration of the nigrostriatal pathway associated with motor deficits after nigral but not striatal adeno-associated-virus-hαsyn A53T injection. Second, human α-syn preferentially accumulates in striatal grafts compared to nigral grafts. However, no differences were observed for phosphorylated α-syn, a marker of pathological α-syn aggregates. CONCLUSIONS Taken together, our results suggest that the ectopic site of the transplantation impacts the host-to-graft transmission of α-syn.
Collapse
Affiliation(s)
- Maëlig Patrigeon
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| | - Sébastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| | - Marie-Laure Bonnet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
- CHU Poitiers, Poitiers, France
| | - Laure Belnoue
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
- CHU Poitiers, Poitiers, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| |
Collapse
|
8
|
Liu M, Lan Y, Qin Y, Gao Y, Deng Y, Li N, Zhang C, Ma H. Interaction between astrocytes and neurons in simulated space radiation-induced CNS injury. Int J Radiat Biol 2023; 99:1830-1840. [PMID: 37436484 DOI: 10.1080/09553002.2023.2232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/26/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Astronauts exhibit neurological dysfunction during long-duration spaceflight, and the specific mechanisms may be closely related to the cumulative effects of these neurological injuries in the space radiation environment. Here, we investigated the interaction between astrocytes and neuronal cells exposed to simulated space radiation. MATERIALS AND METHODS we selected human astrocytes (U87 MG) and neuronal cells (SH-SY5Y) to establish an experimental model to explore the interaction between astrocytes and neuronal cells in the CNS under simulated space radiation environment and the role of exosomes in the interactions. RESULTS We found that γ-ray caused oxidative and inflammatory damage in human U87 MG and SH-SY5Y. The results of the conditioned medium transfer experiments showed that astrocytes exhibited a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory injury of CNS. We demonstrated that the number and size distribution of exosomes derived from U87 MG and SH-SY5Y cells were changed in response to H2O2, TNF-α or γ-ray treatment. Furthermore, we found that exosome derived from treated nerve cells influenced the cell viability and gene expression of untreated nerve cells, and the effect of exosomes was partly consistent with that of the conditioned medium. CONCLUSION Our findings demonstrated that astrocytes showed a protective effect on neuronal cells, and neuronal cells influenced the activation of astrocytes in oxidative and inflammatory damage of CNS induced by simulated space radiation. Exosomes played an essential role in the interaction between astrocytes and neuronal cells exposed to simulated space radiation.
Collapse
Affiliation(s)
- Mengjin Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yu Lan
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yuhan Qin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yanan Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Nuomin Li
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Chen Zhang
- School of Medical Technology, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Hong Ma
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
9
|
Pang L, Wang Y. Overview of blood-brain barrier dysfunction in methamphetamine abuse. Biomed Pharmacother 2023; 161:114478. [PMID: 37002574 DOI: 10.1016/j.biopha.2023.114478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Methamphetamine (METH) is one of the psychostimulants most widely abused in the world. METH abuse can lead to severe neurotoxicity. The blood-brain barrier (BBB) is a natural barrier separating the central nervous system (CNS) from the peripheral blood circulation, which can limit or regulate the exchange of toxic substances, molecules, ions, etc., to maintain the homeostasis of CNS. Long-term or high dose abuse of METH can cause structural or functional abnormalities of the BBB and increase the risk of neurodegenerative diseases. In this review, we discussed the mechanisms of METH-induced BBB dysfunction, summarized the risk factors that could exacerbate METH-induced BBB dysfunction, and introduced some potential therapeutic agents. It would provide an important basis and direction for the prevention and treatment of BBB dysfunction induced by METH.
Collapse
Affiliation(s)
- Lu Pang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China; Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yun Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Diab R, Pilotto F, Saxena S. Autophagy and neurodegeneration: Unraveling the role of C9ORF72 in the regulation of autophagy and its relationship to ALS-FTD pathology. Front Cell Neurosci 2023; 17:1086895. [PMID: 37006471 PMCID: PMC10060823 DOI: 10.3389/fncel.2023.1086895] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
The proper functioning of the cell clearance machinery is critical for neuronal health within the central nervous system (CNS). In normal physiological conditions, the cell clearance machinery is actively involved in the elimination of misfolded and toxic proteins throughout the lifetime of an organism. The highly conserved and regulated pathway of autophagy is one of the important processes involved in preventing and neutralizing pathogenic buildup of toxic proteins that could eventually lead to the development of neurodegenerative diseases (NDs) such as Alzheimer’s disease or Amyotrophic lateral sclerosis (ALS). The most common genetic cause of ALS and frontotemporal dementia (FTD) is a hexanucleotide expansion consisting of GGGGCC (G4C2) repeats in the chromosome 9 open reading frame 72 gene (C9ORF72). These abnormally expanded repeats have been implicated in leading to three main modes of disease pathology: loss of function of the C9ORF72 protein, the generation of RNA foci, and the production of dipeptide repeat proteins (DPRs). In this review, we discuss the normal physiological role of C9ORF72 in the autophagy-lysosome pathway (ALP), and present recent research deciphering how dysfunction of the ALP synergizes with C9ORF72 haploinsufficiency, which together with the gain of toxic mechanisms involving hexanucleotide repeat expansions and DPRs, drive the disease process. This review delves further into the interactions of C9ORF72 with RAB proteins involved in endosomal/lysosomal trafficking, and their role in regulating various steps in autophagy and lysosomal pathways. Lastly, the review aims to provide a framework for further investigations of neuronal autophagy in C9ORF72-linked ALS-FTD as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Rim Diab
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Federica Pilotto
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Smita Saxena
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Smita Saxena,
| |
Collapse
|
11
|
Liu X, Zhang L, Cao Y, Jia H, Li X, Li F, Zhang S, Zhang J. Neuroinflammation of traumatic brain injury: Roles of extracellular vesicles. Front Immunol 2023; 13:1088827. [PMID: 36741357 PMCID: PMC9889855 DOI: 10.3389/fimmu.2022.1088827] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023] Open
Abstract
Traumatic brain injury (TBI) is a major cause of neurological disorder or death, with a heavy burden on individuals and families. While sustained primary insult leads to damage, subsequent secondary events are considered key pathophysiological characteristics post-TBI, and the inflammatory response is a prominent contributor to the secondary cascade. Neuroinflammation is a multifaceted physiological response and exerts both positive and negative effects on TBI. Extracellular vesicles (EVs), as messengers for intercellular communication, are involved in biological and pathological processes in central nervous system (CNS) diseases and injuries. The number and characteristics of EVs and their cargo in the CNS and peripheral circulation undergo tremendous changes in response to TBI, and these EVs regulate neuroinflammatory reactions by activating prominent receptors on receptor cells or delivering pro- or anti-inflammatory cargo to receptor cells. The purpose of this review is to discuss the possible neuroinflammatory mechanisms of EVs and loading in the context of TBI. Furthermore, we summarize the potential role of diverse types of cell-derived EVs in inflammation following TBI.
Collapse
Affiliation(s)
- Xilei Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lan Zhang
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yiyao Cao
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Haoran Jia
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Xiaotian Li
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Fanjian Li
- Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Shu Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Repair and Regeneration in Central Nervous System, Tianjin, China
| |
Collapse
|
12
|
Vaz M, Soares Martins T, Henriques AG. Extracellular vesicles in the study of Alzheimer's and Parkinson's diseases: Methodologies applied from cells to biofluids. J Neurochem 2022; 163:266-309. [PMID: 36156258 PMCID: PMC9828694 DOI: 10.1111/jnc.15697] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 01/12/2023]
Abstract
Extracellular vesicles (EVs) are gaining increased importance in fundamental research as key players in disease pathogenic mechanisms, but also in translational and clinical research due to their value in biomarker discovery, either for diagnostics and/or therapeutics. In the first research scenario, the study of EVs isolated from neuronal models mimicking neurodegenerative diseases can open new avenues to better understand the pathological mechanisms underlying these conditions or to identify novel molecular targets for diagnosis and/or therapeutics. In the second research scenario, the easy availability of EVs in body fluids and the specificity of their cargo, which can reflect the cell of origin or disease profiles, turn these into attractive diagnostic tools. EVs with exosome-like characteristics, circulating in the bloodstream and other peripheral biofluids, constitute a non-invasive and rapid alternative to study several conditions, including brain-related disorders. In both cases, several EVs isolation methods are already available, but each neuronal model or biofluid presents its own challenges. Herein, a literature overview on EVs isolation methodologies from distinct neuronal models (cellular culture and brain tissue) and body fluids (serum, plasma, cerebrospinal fluid, urine and saliva) was carried out. Focus was given to approaches employed in the context of Alzheimer's and Parkinson's diseases, and the main research findings discussed. The topics here revised will facilitate the choice of EVs isolation methodologies and potentially prompt new discoveries in EVs research and in the neurodegenerative diseases field.
Collapse
Affiliation(s)
- Margarida Vaz
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Tânia Soares Martins
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| | - Ana Gabriela Henriques
- Biomarker Discovery TeamNeuroscience and Signalling GroupInstitute of Biomedicine (iBiMED)Department of Medical SciencesUniversity of AveiroAveiroPortugal
| |
Collapse
|
13
|
Huang J, Ding J, Wang X, Gu C, He Y, Li Y, Fan H, Xie Q, Qi X, Wang Z, Qiu P. Transfer of neuron-derived α-synuclein to astrocytes induces neuroinflammation and blood-brain barrier damage after methamphetamine exposure: Involving the regulation of nuclear receptor-associated protein 1. Brain Behav Immun 2022; 106:247-261. [PMID: 36089218 DOI: 10.1016/j.bbi.2022.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 10/31/2022] Open
Abstract
The α-synuclein (α-syn) is involved in methamphetamine (METH)-induced neurotoxicity. Neurons can transfer excessive α-syn to neighboring neurons and glial cells. The effects of α-syn aggregation in astrocytes after METH exposure on the blood-brain barrier (BBB) remains unclear. Our previous study demonstrated that nuclear receptor-related protein 1 (Nurr1), a member of the nuclear receptor family widely expressed in the brain, was involved in the process of METH-induced α-syn accumulated in astrocytes to activate neuroinflammation. The role Nurr1 plays in astrocyte-mediated neuroinflammation, which results in BBB injury induced by METH, remains uncertain. This study found that METH up-regulated α-syn expression in neurons extended to astrocytes, thereby eliciting astrocyte activation, increasing and decreasing IL-1β, IL-6, TNF-α, and GDNF levels by down-regulating Nurr1 expression, and ultimately damaging the BBB. Specifically, the permeability of BBB to Evans blue and sodium fluorescein (NaF) increased; IgG deposits in the brain parenchyma increased; the Claudin5, Occludin, and PDGFRβ levels decreased. Several ultrastructural pathological changes occurred in the BBB, such as abnormal cerebral microvascular diameter, astrocyte end-foot swelling, decreased pericyte coverage, and loss of tight junctions. However, knockout or inhibition of α-syn or astrocyte-specific overexpression of Nurr1 partially alleviated these symptoms and BBB injury. Moreover, the in vitro experiments confirmed that METH increased α-syn level in the primary cultured neurons, which could be further transferred to primary cultured astrocytes, resulting in decreased Nurr1 levels. The decreased Nurr1 levels mediated the increase of IL-1β, IL-6, and TNF-α, and the decrease of GDNF, thereby changing the permeability to NaF, transendothelial electrical resistance, and Claudin5 and Occludin levels of primary cultured brain microvascular endothelial cells. Based on our findings, we proposed a new mechanism to elucidate METH-induced BBB injury and presented α-syn and Nurr1 as promising drug intervention targets to reduce BBB injury and resulting neurotoxicity in METH abusers.
Collapse
Affiliation(s)
- Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China; Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xiaohan Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Cihang Gu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yitong He
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Yanning Li
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Qiqian Xie
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Zhuo Wang
- School of Medicine, South China University of Technology, Guangzhou, China; Department of Infertility and Sexual Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
14
|
Wu H, Zhang Z, Ma Y, Chen F, Xiong P, Xie Z, Ding G, Yu J, Wang K. Dynamic immune and exosome transcriptomic responses in patients undergoing psychostimulant methamphetamine withdrawal. Front Cell Neurosci 2022; 16:961131. [PMID: 36238831 PMCID: PMC9550894 DOI: 10.3389/fncel.2022.961131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Methamphetamine (METH) addiction and withdrawal cause serious harm to both the immune system and nervous system. However, the pathogenesis remains largely unknown. Herein, we investigated the peripheral cytokines and exosomal transcriptome regulatory networks in the patients with METH use disorders (MUDs) undergoing withdrawal. Twenty-seven cytokines were simultaneously assessed in 51 subjects, including 22 at the acute withdrawal (AW) stage and 29 at the protracted withdrawal (PW) stage, and 31 age and gender-matched healthy controls (HCs). Compared to the HCs, significantly decreased levels of interleukin (IL)-1β, IL-9, IL-15, Basic FGF, and MIP1a, increased levels of IL-1rα, IL-6, Eotaxin IP-10, VEGF, and RANTES were identified in AW. These disturbances were mostly or partly restored to the baseline in PW. However, the cytokines IL-6, IL-7, and IL-12p70 were consistently increased even after one year of withdrawal. Besides, a significant decrease in CD3+T and CD4+T cell numbers was observed in AW, and the diminishment was restored to baseline in PW. Comparatively, there were no statistically significant changes in CD8+T, NK, and B cells. Furthermore, the exosomal mRNAs and long non-coding RNAs (lncRNA) were profiled, and the lncRNA-miRNA-mRNA networks were constructed and associated with METH AW and PW stages. Notably, the chemokine signaling was remarkably upregulated during AW. By contrast, the differentially expressed mRNAs/lincRNAs were significantly enriched in neurodegeneration-related diseases. Taken together, a group of METH withdrawal-related cytokines and exosomal mRNA/lncRNA regulatory networks were obtained, which provides a useful experimental and theoretical basis for further understanding of the pathogenesis of the withdrawal symptoms in MUDs.
Collapse
Affiliation(s)
- Hongjin Wu
- School of Medicine, Yunnan University, Yunnan, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- International Research Center for Regenerative Medicine, BOAO International Hospital, Qionghai, China
| | - Zunyue Zhang
- School of Medicine, Yunnan University, Yunnan, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Yuru Ma
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Fengrong Chen
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Pu Xiong
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Zhenrong Xie
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
| | - Guo Ding
- High School Attached to Shanghai Normal University, Shanghai, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- International Research Center for Regenerative Medicine, BOAO International Hospital, Qionghai, China
- *Correspondence: Juehua Yu https://orcid.org/0000-0002-1661-0503 Kunhua Wang
| | - Kunhua Wang
- School of Medicine, Yunnan University, Yunnan, China
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China
- *Correspondence: Juehua Yu https://orcid.org/0000-0002-1661-0503 Kunhua Wang
| |
Collapse
|
15
|
Jiao Z, He Z, Liu N, Lai Y, Zhong T. Multiple roles of neuronal extracellular vesicles in neurological disorders. Front Cell Neurosci 2022; 16:979856. [PMID: 36204449 PMCID: PMC9530318 DOI: 10.3389/fncel.2022.979856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathy is a growing public health problem in the aging, adolescent, and sport-playing populations, and the number of individuals at risk of neuropathy is growing; its risks include aging, violence, and conflicts between players. The signal pathways underlying neuronal aging and damage remain incompletely understood and evidence-based treatment for patients with neuropathy is insufficiently delivered; these are two of the reasons that explain why neuropathy is still not completely curable and why the progression of the disease cannot be inhibited. Extracellular vesicles (EVs) shuttling is an important pathway in disease progression. Previous studies have focused on the EVs of cells that support and protect neurons, such as astrocytes and microglia. This review aims to address the role of neuronal EVs by delineating updated mechanisms of neuronal damage and summarizing recent findings on the function of neuronal EVs. Challenges and obstacles in isolating and analyzing neuronal EVs are discussed, with an emphasis on neuron as research object and modification of EVs on translational medicine.
Collapse
Affiliation(s)
- Zhigang Jiao
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Gannan Branch of National Geriatric Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Zhigang Jiao,
| | - Zhengyi He
- Department of Clinical Research Center, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Nanhai Liu
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanwei Lai
- Department of Neurology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- *Correspondence: Tianyu Zhong,
| |
Collapse
|
16
|
Methamphetamine induced neurotoxic diseases, molecular mechanism, and current treatment strategies. Biomed Pharmacother 2022; 154:113591. [PMID: 36007276 DOI: 10.1016/j.biopha.2022.113591] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Methamphetamine (MA) is a extremely addictive psychostimulant drug with a significant abuse potential. Long-term MA exposure can induce neurotoxic effects through oxidative stress, mitochondrial functional impairment, endoplasmic reticulum stress, the activation of astrocytes and microglial cells, axonal transport barriers, autophagy, and apoptosis. However, the molecular and cellular mechanisms underlying MA-induced neurotoxicity remain unclear. MA abuse increases the chances of developing neurotoxic conditions such as Parkinson's disease (PD), Alzheimer's disease (AD) and other neurotoxic diseases. MA increases the risk of PD by increasing the expression of alpha-synuclein (ASYN). Furthermore, MA abuse is linked to high chances of developing AD and subsequent neurodegeneration due to biological variations in the brain region or genetic and epigenetic variations. To date, there is no Food and Drug Administration (FDA)-approved therapy for MA-induced neurotoxicity, although many studies are being conducted to develop effective therapeutic strategies. Most current studies are now focused on developing therapies to diminish the neurotoxic effects of MA, based on the underlying mechanism of neurotoxicity. This review article highlights current research on several therapeutic techniques targeting multiple pathways to reduce the neurotoxic effects of MA in the brain, as well as the putative mechanism of MA-induced neurotoxicity.
Collapse
|
17
|
Zhang J, Yang H, Wu J, Zhang D, Wang Y, Zhai J. Recent progresses in novel in vitro models of primary neurons: A biomaterial perspective. Front Bioeng Biotechnol 2022; 10:953031. [PMID: 36061442 PMCID: PMC9428288 DOI: 10.3389/fbioe.2022.953031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Central nervous system (CNS) diseases have been a growing threat to the health of humanity, emphasizing the urgent need of exploring the pathogenesis and therapeutic approaches of various CNS diseases. Primary neurons are directly obtained from animals or humans, which have wide applications including disease modeling, mechanism exploration and drug development. However, traditional two-dimensional (2D) monoculture cannot resemble the native microenvironment of CNS. With the increasing understanding of the complexity of the CNS and the remarkable development of novel biomaterials, in vitro models have experienced great innovation from 2D monoculture toward three-dimensional (3D) multicellular culture. The scope of this review includes the progress of various in vitro models of primary neurons in recent years to provide a holistic view of the modalities and applications of primary neuron models and how they have been connected with the revolution of biofabrication techniques. Special attention has been paid to the interaction between primary neurons and biomaterials. First, a brief introduction on the history of CNS modeling and primary neuron culture was conducted. Next, detailed progress in novel in vitro models were discussed ranging from 2D culture, ex vivo model, spheroid, scaffold-based model, 3D bioprinting model, and microfluidic chip. Modalities, applications, advantages, and limitations of the aforementioned models were described separately. Finally, we explored future prospects, providing new insights into how basic science research methodologies have advanced our understanding of the CNS, and highlighted some future directions of primary neuron culture in the next few decades.
Collapse
Affiliation(s)
- Jiangang Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiyu Yang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dingyue Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiliang Zhai
- Departments of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jiliang Zhai,
| |
Collapse
|
18
|
Mavroeidi P, Vetsi M, Dionysopoulou D, Xilouri M. Exosomes in Alpha-Synucleinopathies: Propagators of Pathology or Potential Candidates for Nanotherapeutics? Biomolecules 2022; 12:957. [PMID: 35883513 PMCID: PMC9313025 DOI: 10.3390/biom12070957] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
The pathological accumulation of alpha-synuclein governs the pathogenesis of neurodegenerative disorders, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, collectively termed alpha-synucleinopathies. Alpha-synuclein can be released in the extracellular space, partly via exosomes, and this extracellular protein pool may contribute to disease progression by facilitating the spread of pathological alpha-synuclein or activating immune cells. The content of exosomes depends on their origin and includes specific proteins, lipids, functional mRNAs and various non-coding RNAs. Given their ability to mediate intercellular communication via the transport of multilevel information, exosomes are considered to be transporters of toxic agents. Beyond neurons, glial cells also release exosomes, which may contain inflammatory molecules and this glia-to-neuron or neuron-to-glia transmission of exosomal alpha-synuclein may contribute to the propagation of pathology and neuroinflammation throughout the brain. In addition, as their content varies as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection, whereas targeted exosomes may be used as scaffolds to deliver therapeutic agents into the brain. This review summarizes the current knowledge regarding the role of exosomes in the progression of alpha-synuclein-related pathology and their potential use as biomarkers and nanotherapeutics in alpha-synucleinopathies.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (P.M.); (M.V.); (D.D.)
| |
Collapse
|
19
|
Icariside II Attenuates Methamphetamine-Induced Neurotoxicity and Behavioral Impairments via Activating the Keap1-Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8400876. [PMID: 35387263 PMCID: PMC8979738 DOI: 10.1155/2022/8400876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/26/2021] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Chronic and long-term methamphetamine (METH) abuse is bound to cause damages to multiple organs and systems, especially the central nervous system (CNS). Icariside II (ICS), a type of flavonoid and one of the main active ingredients of the traditional Chinese medicine Epimedium, exhibits a variety of biological and pharmacological properties such as anti-inflammatory, antioxidant, and anticancer activities. However, whether ICS could protect against METH-induced neurotoxicity remains unknown. Based on a chronic METH abuse mouse model, we detected the neurotoxicity after METH exposure and determined the intervention effect of ICS and the potential mechanism of action. Here, we found that METH could trigger neurotoxicity, which was characterized by loss of dopaminergic neurons, depletion of dopamine (DA), activation of glial cells, upregulation of α-synuclein (α-syn), abnormal dendritic spine plasticity, and dysfunction of motor coordination and balance. ICS treatment, however, alleviated the above-mentioned neurotoxicity elicited by METH. Our data also indicated that when ICS combated METH-induced neurotoxicity, it was accompanied by partial correction of the abnormal Kelch 2 like ECH2 associated protein 1 (Keap1)-nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and oxidative stress response. In the presence of ML385, an inhibitor of Nrf2, ICS failed to activate the Nrf2-related protein expression and reduce the oxidative stress response. More importantly, ICS could not attenuate METH-induced dopaminergic neurotoxicity and behavioral damage when the Nrf2 was inhibited, suggesting that the neuroprotective effect of ICS on METH-induced neurotoxicity was dependent on activating the Keap1-Nrf2 pathway. Although further research is needed to dig deeper into the actual molecular targets of ICS, it is undeniable that the current results imply the potential value of ICS to reduce the neurotoxicity of METH abusers.
Collapse
|
20
|
Zhang P, Rasheed M, Liang J, Wang C, Feng L, Chen Z. Emerging Potential of Exosomal Non-coding RNA in Parkinson’s Disease: A Review. Front Aging Neurosci 2022; 14:819836. [PMID: 35360206 PMCID: PMC8960858 DOI: 10.3389/fnagi.2022.819836] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Exosomes are extracellular vesicles that are released by cells and circulate freely in body fluids. Under physiological and pathological conditions, they serve as cargo for various biological substances such as nucleotides (DNA, RNA, ncRNA), lipids, and proteins. Recently, exosomes have been revealed to have an important role in the pathophysiology of several neurodegenerative illnesses, including Parkinson’s disease (PD). When secreted from damaged neurons, these exosomes are enriched in non-coding RNAs (e.g., miRNAs, lncRNAs, and circRNAs) and display wide distribution characteristics in the brain and periphery, bridging the gap between normal neuronal function and disease pathology. However, the current status of ncRNAs carried in exosomes regulating neuroprotection and PD pathogenesis lacks a systematic summary. Therefore, this review discussed the significance of ncRNAs exosomes in maintaining the normal neuron function and their pathogenic role in PD progression. Additionally, we have emphasized the importance of ncRNAs exosomes as potential non-invasive diagnostic and screening agents for the early detection of PD. Moreover, bioengineered exosomes are proposed to be used as drug carriers for targeted delivery of RNA interference molecules across the blood-brain barrier without immune system interference. Overall, this review highlighted the diverse characteristics of ncRNA exosomes, which may aid researchers in characterizing future exosome-based biomarkers for early PD diagnosis and tailored PD medicines.
Collapse
Affiliation(s)
- Peng Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Madiha Rasheed
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Junhan Liang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chaolei Wang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- *Correspondence: Lin Feng,
| | - Zixuan Chen
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Zixuan Chen,
| |
Collapse
|
21
|
Ding J, Huang J, Xia B, Hu S, Fan H, Dai J, Li Z, Wang J, Le C, Qiu P, Wang Y. Transfer of α-synuclein from neurons to oligodendrocytes triggers myelin sheath destruction in methamphetamine administration mice. Toxicol Lett 2021; 352:34-45. [PMID: 34562559 DOI: 10.1016/j.toxlet.2021.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 01/06/2023]
Abstract
Methamphetamine (METH), a widely abused nervous system stimulant, could induce neurotoxicity through α-synuclein (α-syn). Not much is known about the neuronal derived α-syn transmission that underlies oligodendrocyte pathology in METH mice model. In this study, we tested α-syn level, oligodendroglial pathology and autophagy lysosome pathway (ALP) function in corpus callosum in a chronic METH mice model. METH increased α-syn level in neurons and then accumulated in oligodendrocytes. METH increased phosphor-mTOR level, decreased transcription factor EB (TFEB) level and triggered autophagy lysosomal pathway (ALP) impairment, leading to myelin sheath destruction, oligodendroglial proteins loss, mature dendritic spine loss, neuron loss, and astrocyte activation. Deleting endogenous α-syn increased TFEB level, alleviated ALP deficit, and diminished neuropathology induced by METH. TFEB overexpression in oligodendrocytes exerted beneficial effects in METH mice model. These neuroprotective effects were associated with the rescued ALP machinery after oligodendroglial TFEB overexpression. Our study demonstrated, for the first time, that α-syn-TFEB axis might be involve in the METH induced myelin loss, oligodendroglial pathology, and neuropathology. In summary, targeting at the α-syn-TFEB axis might be a promising therapeutic strategy for treating METH induced oligodendroglial pathology, and to a broader view, neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiuyang Ding
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Bing Xia
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Haoliang Fan
- School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jialin Dai
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Zhu Li
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jiawen Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Cuiyun Le
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou, China.
| | - Yuanhe Wang
- School of Forensic Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
22
|
Wang C, Yang T, Liang M, Xie J, Song N. Astrocyte dysfunction in Parkinson's disease: from the perspectives of transmitted α-synuclein and genetic modulation. Transl Neurodegener 2021; 10:39. [PMID: 34657636 PMCID: PMC8522040 DOI: 10.1186/s40035-021-00265-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/05/2021] [Indexed: 01/20/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder that primarily affects the elderly. While the etiology of PD is likely multifactorial with the involvement of genetic, environmental, aging and other factors, α-synuclein (α-syn) pathology is a pivotal mechanism underlying the development of PD. In recent years, astrocytes have attracted considerable attention in the field. Although astrocytes perform a variety of physiological functions in the brain, they are pivotal mediators of α-syn toxicity since they internalize α-syn released from damaged neurons, and this triggers an inflammatory response, protein degradation dysfunction, mitochondrial dysfunction and endoplasmic reticulum stress. Astrocytes are indispensable coordinators in the background of several genetic mutations, including PARK7, GBA1, LRRK2, ATP13A2, PINK1, PRKN and PLA2G6. As the most abundant glial cells in the brain, functional astrocytes can be replenished and even converted to functional neurons. In this review, we discuss astrocyte dysfunction in PD with an emphasis on α-syn toxicity and genetic modulation and conclude that astrocyte replenishment is a valuable therapeutic approach in PD.
Collapse
Affiliation(s)
- Changjing Wang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Tongtong Yang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Meiyu Liang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Ning Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
23
|
Central Nervous System Cell-Derived Exosomes in Neurodegenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9965564. [PMID: 34336127 PMCID: PMC8294976 DOI: 10.1155/2021/9965564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022]
Abstract
Exosomes are a type of extracellular vesicles secreted by almost all kinds of mammalian cells that shuttle "cargo" from one cell to another, indicative of its role in cell-to-cell transportation. Interestingly, exosomes are known to undergo alterations or serve as a pathway in multiple diseases, including neurodegenerative diseases. In the central nervous system (CNS), exosomes originating from neurons or glia cells contribute to or inhibit the progression of CNS-related diseases in special ways. In lieu of this, the current study investigated the effect of CNS cell-derived exosomes on different neurodegenerative diseases.
Collapse
|
24
|
Mavroeidi P, Xilouri M. Neurons and Glia Interplay in α-Synucleinopathies. Int J Mol Sci 2021; 22:4994. [PMID: 34066733 PMCID: PMC8125822 DOI: 10.3390/ijms22094994] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of the neuronal presynaptic protein alpha-synuclein within proteinaceous inclusions represents the key histophathological hallmark of a spectrum of neurodegenerative disorders, referred to by the umbrella term a-synucleinopathies. Even though alpha-synuclein is expressed predominantly in neurons, pathological aggregates of the protein are also found in the glial cells of the brain. In Parkinson's disease and dementia with Lewy bodies, alpha-synuclein accumulates mainly in neurons forming the Lewy bodies and Lewy neurites, whereas in multiple system atrophy, the protein aggregates mostly in the glial cytoplasmic inclusions within oligodendrocytes. In addition, astrogliosis and microgliosis are found in the synucleinopathy brains, whereas both astrocytes and microglia internalize alpha-synuclein and contribute to the spread of pathology. The mechanisms underlying the pathological accumulation of alpha-synuclein in glial cells that under physiological conditions express low to non-detectable levels of the protein are an area of intense research. Undoubtedly, the presence of aggregated alpha-synuclein can disrupt glial function in general and can contribute to neurodegeneration through numerous pathways. Herein, we summarize the current knowledge on the role of alpha-synuclein in both neurons and glia, highlighting the contribution of the neuron-glia connectome in the disease initiation and progression, which may represent potential therapeutic target for a-synucleinopathies.
Collapse
Affiliation(s)
| | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
25
|
Izco M, Carlos E, Alvarez-Erviti L. The Two Faces of Exosomes in Parkinson's Disease: From Pathology to Therapy. Neuroscientist 2021; 28:180-193. [PMID: 33530851 DOI: 10.1177/1073858421990001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accumulating evidence suggests that exosomes play a key role in Parkinson's disease (PD). Exosomes may contribute to the PD progression facilitating the spread of pathological alpha-synuclein or activating immune cells. Glial cells also release exosomes, and transmission of exosomes derived from activated glial cells containing inflammatory mediators may contribute to the propagation of the neuroinflammatory response. Glia-to-neuron transmission of exosomes containing alpha-synuclein may contribute to alpha-synuclein propagation and neurodegeneration. Additionally, miRNAs can be transmitted among cells via exosomes inducing changes in the genetic program of the target cell contributing to PD progression. Exosomes also represent a promising drug delivery system. The brain is a difficult target for drugs of all classes because the blood-brain barrier excludes most macromolecular drugs. One of the major challenges is the development of vehicles for robust delivery to the brain. Targeted exosomes may have the potential for delivering therapeutic agents, including proteins and gene therapy molecules, into the brain. This review summarizes recent advances in the role of exosomes in PD pathology progression and their potential use as drug delivery system for PD treatment, the two faces of the exosomes in PD.
Collapse
Affiliation(s)
- Maria Izco
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Estefania Carlos
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Lydia Alvarez-Erviti
- Laboratory of Molecular Neurobiology, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
26
|
Sandau US, Duggan E, Shi X, Smith SJ, Huckans M, Schutzer WE, Loftis JM, Janowsky A, Nolan JP, Saugstad JA. Methamphetamine use alters human plasma extracellular vesicles and their microRNA cargo: An exploratory study. J Extracell Vesicles 2020; 10:e12028. [PMID: 33613872 PMCID: PMC7890470 DOI: 10.1002/jev2.12028] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/18/2020] [Accepted: 10/19/2020] [Indexed: 01/27/2023] Open
Abstract
Methamphetamine (MA) is the largest drug threat across the globe, with health effects including neurotoxicity and cardiovascular disease. Recent studies have begun to link microRNAs (miRNAs) to the processes related to MA use and addiction. Our studies are the first to analyse plasma EVs and their miRNA cargo in humans actively using MA (MA-ACT) and control participants (CTL). In this cohort we also assessed the effects of tobacco use on plasma EVs. We used vesicle flow cytometry to show that the MA-ACT group had an increased abundance of EV tetraspanin markers (CD9, CD63, CD81), but not pro-coagulant, platelet-, and red blood cell-derived EVs. We also found that of the 169 plasma EV miRNAs, eight were of interest in MA-ACT based on multiple statistical criteria. In smokers, we identified 15 miRNAs of interest, two that overlapped with the eight MA-ACT miRNAs. Three of the MA-ACT miRNAs significantly correlated with clinical features of MA use and target prediction with these miRNAs identified pathways implicated in MA use, including cardiovascular disease and neuroinflammation. Together our findings indicate that MA use regulates EVs and their miRNA cargo, and support that further studies are warranted to investigate their mechanistic role in addiction, recovery, and recidivism.
Collapse
Affiliation(s)
- Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | | | - Xiao Shi
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Sierra J. Smith
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Marilyn Huckans
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Clinical Psychology ProgramOregon Health & Science UniversityPortlandOregonUSA
| | - William E. Schutzer
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | - Jennifer M. Loftis
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Clinical Psychology ProgramOregon Health & Science UniversityPortlandOregonUSA
| | - Aaron Janowsky
- VA Portland Health Care SystemPortlandOregonUSA
- Department of PsychiatryOregon Health & Science UniversityPortlandOregonUSA
- Methamphetamine Research CenterOregon Health & Science UniversityPortlandOregonUSA
- Department of Behavioral NeuroscienceOregon Health & Science UniversityPortlandOregonUSA
| | | | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
27
|
Odegaard KE, Chand S, Wheeler S, Tiwari S, Flores A, Hernandez J, Savine M, Gowen A, Pendyala G, Yelamanchili SV. Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies. Int J Mol Sci 2020; 21:E6765. [PMID: 32942668 PMCID: PMC7554956 DOI: 10.3390/ijms21186765] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are a broad, heterogeneous class of membranous lipid-bilayer vesicles that facilitate intercellular communication throughout the body. As important carriers of various types of cargo, including proteins, lipids, DNA fragments, and a variety of small noncoding RNAs, including miRNAs, mRNAs, and siRNAs, EVs may play an important role in the development of addiction and other neurological pathologies, particularly those related to HIV. In this review, we summarize the findings of EV studies in the context of methamphetamine (METH), cocaine, nicotine, opioid, and alcohol use disorders, highlighting important EV cargoes that may contribute to addiction. Additionally, as HIV and substance abuse are often comorbid, we discuss the potential role of EVs in the intersection of substance abuse and HIV. Taken together, the studies presented in this comprehensive review shed light on the potential role of EVs in the exacerbation of substance use and HIV. As a subject of growing interest, EVs may continue to provide information about mechanisms and pathogenesis in substance use disorders and CNS pathologies, perhaps allowing for exploration into potential therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.E.O.); (S.C.); (S.W.); (S.T.); (A.F.); (J.H.); (M.S.); (A.G.); (G.P.)
| |
Collapse
|