1
|
Zhang L, Lin Y, Lu AX, Liu JX, Li J, Yan CH. Metabolomics insights into the effects of pre-pregnancy lead exposure on bone metabolism in pregnant rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122468. [PMID: 37652228 DOI: 10.1016/j.envpol.2023.122468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Today's women of childbearing age with a history of high lead (Pb) exposure in childhood have large Pb body burdens, which increases Pb release during pregnancy by promoting bone Pb mobilisation. The purpose of this study was to investigate the metabolic mechanisms underlying bone Pb mobilisation and explore the bone metabolism-related pathways during pregnancy. Drinking water containing 0.05% sodium acetate or Pb acetate was provided to weaned female rats for 4 weeks followed by a 4-week washout period, and then rats were co-caged with healthy males of the same age until pregnancy. Blood and bone tissues of the female rats were collected at gestational day (GD) 3 (early pregnancy), GD 10 (middle pregnancy), and GD 17 (late pregnancy), respectively. Pb and calcium concentrations, biomarkers for bone turnover, bone microstructure, serum metabolomics, and metabolic indicators were intensively analyzed. The results demonstrated that pre-pregnancy Pb exposure elevated blood lead levels (BLLs) at GD17, accompanied by a negative correlation between BLLs and trabecular bone Pb levels. Meanwhile, Pb-exposed rats had low bone mass and aberrant bone architecture with a larger number of mature osteoclasts (OCs) compared to the control group. Moreover, the metabolomics uncovered that Pb exposure caused mitochondrial dysfunction, such as enhanced oxidative stress and inflammatory response, and suppressed energy metabolism. Additionally, the levels of ROS, MDA, IL-1β, and IL-18 involved in redox and inflammatory pathways of bone tissues were significantly increased in the Pb-exposed group, while antioxidant SOD and energy metabolism-related indicators including ATP levels, Na+-K+-ATPase, and Ca2+-Mg2+-ATPase activities were significantly decreased. In conclusion, pre-pregnancy Pb exposure promotes bone Pb mobilisation and affects bone microstructure in the third trimester of pregnancy, which may be attributed to OC activation and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lin Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yin Lin
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - An-Xin Lu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jun-Xia Liu
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Li
- School of Public Health, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chong-Huai Yan
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
2
|
Xie J, Zhou F, Ouyang L, Li Q, Rao S, Su R, Yang S, Li J, Wan X, Yan L, Liu P, Cheng H, Li L, Du G, Feng C, Fan G. Insight into the effect of a heavy metal mixture on neurological damage in rats through combined serum metabolomic and brain proteomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165009. [PMID: 37353033 DOI: 10.1016/j.scitotenv.2023.165009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/26/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023]
Abstract
The heavy metals lead (Pb), cadmium (Cd), and mercury (Hg) that cause neurocognitive impairment have been extensively studied. These elements typically do not exist alone in the environment; they are often found with other heavy metals and can enter the body through various routes, thereby impacting health. Our previous research showed that low Pb, Cd, and Hg levels cause neurobehavioral impairments in weaning and adult rats. However, little is known about the biomarkers and mechanisms underlying Pb, Cd, and Hg mixture-induced neurological impairments. A combined analysis of metabolomic and proteomic data may reveal heavy metal-induced alterations in metabolic and protein profiles, thereby improving our understanding of the molecular mechanisms underlying heavy metal-induced neurological impairments. Therefore, brain tissue and serum samples were collected from rats exposed to a Pb, Cd, and Hg mixture for proteomic and metabolomic analyses, respectively. The analysis revealed 363 differential proteins in the brain and 206 metabolites in serum uniquely altered in the Pb, Cd, and Hg mixture exposure group, compared to those of the control group. The main metabolic impacted pathways were unsaturated fatty acids biosynthesis, linoleic acid metabolism, phenylalanine metabolism, and tryptophan metabolism. We further identified that the levels of arachidonic acid (C20:4 n-3) and, adrenic acid (C22:4 n-3) were elevated and that kynurenic acid (KA) and quinolinic acid (QA) levels and the KA/QA ratio, were decreased in the group exposed to the Pb, Cd, and Hg mixture. A joint analysis of the proteome and metabolome showed that significantly altered proteins such as LPCAT3, SLC7A11, ASCL4, and KYAT1 may participate in the neurological impairments induced by the heavy metal mixture. Overall, we hypothesize that the dysregulation of ferroptosis and kynurenine pathways is associated with neurological damage due to chronic exposure to a heavy metal mixture.
Collapse
Affiliation(s)
- Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Shuo Yang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Jiajun Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Xin Wan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingyu Yan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Peishan Liu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Hui Cheng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Lingling Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang 330006, PR China; Jiangxi Province Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Liu M, Liu R, Yang M, Ba Y, Deng Q, Zhang Y, Han L, Gao L, Huang H. Combined exposure to lead and high-fat diet induced neuronal deficits in rats: Anti-neuroinflammatory role of SIRT1. Food Chem Toxicol 2023; 177:113857. [PMID: 37244597 DOI: 10.1016/j.fct.2023.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Lead (Pb) exposure and high-fat diet (HFD) trigger neurotoxicity, which may involve neuroinflammation. However, the mechanism by which combined Pb and HFD exposure induces nucleotide oligomerization domain-like receptor family pyrin domain 3 (NLRP3) inflammasome activation has not been fully elucidated. MATERIAL AND METHODS The Sprague-Dawley (SD) rat model of exposure to Pb and HFD was established to reveal the influence of co-exposure on cognition and identify signaling clues that mediate neuroinflammation and synaptic dysregulation. PC12 cells was treated with Pb and PA in vitro. Silent information regulator 1 (SIRT1) agonist (SRT 1720) was employed as intervention agent. RESULTS Our results showed that Pb and HFD exposure induced cognitive impairment and lead to neurological damage in rats. Meanwhile, Pb and HFD could stimulate the NLRP3 inflammasome assembly and activate caspase 1, releasing proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), further promoting neuronal cell activation and amplifying neuroinflammatory responses. Additionally, our findings suggest that SIRT1 plays a role in Pb and HFD induced neuroinflammation. However, the use of SRT 1720 agonists showed some potential in alleviating these impairments. CONCLUSION Pb exposure and HFD intake could induce neuronal damage through activation of the NLRP3 inflammasome pathway and synaptic dysregulation, while the NLRP3 inflammasome pathway may be rescued via activating SIRT1.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Mingzhi Yang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| | - Yu Zhang
- State Key Laboratory of Microbial Technology, Qingdao, Shandong, 266000, China; Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, 250100, China; Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, China.
| | - Lin Han
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, Shandong, 250100, China; Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, China.
| | - Lihua Gao
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou, Henan, 450052, China.
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China.
| |
Collapse
|
4
|
Adiga D, Bhat S, Shukla V, Shah HV, Kuthethur R, Chakrabarty S, Kabekkodu SP. Double C-2 like domain beta (DOC2B) induces calcium dependent oxidative stress to promote lipotoxicity and mitochondrial dysfunction for its tumor suppressive function. Free Radic Biol Med 2023; 201:1-13. [PMID: 36913987 DOI: 10.1016/j.freeradbiomed.2023.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Mitochondria are biosynthetic and bioenergetic organelles that regulate many biological processes, including metabolism, oxidative stress, and cell death. Cervical cancer (CC) cells show impairments in mitochondrial structure and function and are linked with cancer progression. DOC2B is a tumor suppressor with anti-proliferative, anti-migratory, anti-invasive, and anti-metastatic function in CC. For the first time, we demonstrated the role of the DOC2B-mitochondrial axis with tumor growth regulatory functions in CC. We used DOC2B overexpression and knockdown model systems to show that DOC2B is localized to mitochondria and induces Ca2+-mediated lipotoxicity. DOC2B expression induced mitochondrial morphological changes with the subsequent reduction in mitochondrial DNA copy number, mitochondrial mass, and mitochondrial membrane potential. Intracellular and mitochondrial Ca2+, intracellular O.-2, and ATP levels were substantially elevated in the presence of DOC2B. DOC2B manipulation reduced glucose uptake, lactate production, and mitochondrial complex-IV activity. The presence of DOC2B significantly reduced the proteins associated with mitochondrial structure and biogenesis with the concomitant activation of AMPK signaling. Augmented lipid peroxidation (LPO) in the presence of DOC2B was a Ca2+-dependent process. Our findings demonstrated that DOC2B promotes lipid accumulation, oxidative stress, and LPO through intracellular Ca2+ overload, which may contribute to mitochondrial dysfunction and tumor-suppressive properties of DOC2B. We propose that the DOC2B-Ca2+-oxidative stress-LPO-mitochondrial axis could be targeted for confining CC. Further, the induction of lipotoxicity in tumor cells by activating DOC2B could serve as a novel therapeutic approach in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Henil Vinit Shah
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
5
|
Vukelić D, Djordjevic AB, Anđelković M, Repić A, Baralić K, Ćurčić M, Đukić-Ćosić D, Boričić N, Antonijević B, Bulat Z. Derivation of benchmark doses for male reproductive toxicity in a subacute low-level Pb exposure model in rats. Toxicol Lett 2023; 375:69-76. [PMID: 36610527 DOI: 10.1016/j.toxlet.2023.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/10/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The objectives of the study were to simulate low-level Pb exposure scenario in an animal model and to examine reproductive adverse effects. Based on obtained data, we have performed Benchmark dose (BMD)-response modelling. Male Wistar rats were randomized in seven groups (n = 6): one control and six treated with: 0.1, 0.5, 1, 3, 7, and 15 mg Pb/kg body weight, daily for 28 days by oral gavage. The rats were sacrificed and the blood and testes were used for further analysis of testosterone levels in serum, testicular essential metal levels and histological analysis. The Pb treatment led to a dose-dependent decrease of serum testosterone levels with a negative trend (BMDI 0.17-6.13 mg Pb/kg). Increase of Zn (dose-dependent, BMDI 0.004-19.7 mg Pb/kg) and Cu and a decrease of Mn testicular levels were also detected with unscathed histology of the testes. The presented results might be used in further evaluation of the point of departure in human health risk assessment for Pb.
Collapse
Affiliation(s)
- Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia.
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Milena Anđelković
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia; Health Center Kosovska Mitrovica, 38220 Kosovska Mitrovica, Serbia
| | - Aleksandra Repić
- Institute of Forensic Medicine, Faculty of Medicine University of Belgrade, 11000 Belgrade, Serbia
| | - Katarina Baralić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Marijana Ćurčić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Novica Boričić
- Institute of Pathology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, 11221 Belgrade, Serbia
| |
Collapse
|
6
|
Lenski M, Bruno C, Darrouzain F, Allorge D. Métabolomique : principes et applications en toxicologie biologique et médicolégale. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2023. [DOI: 10.1016/j.toxac.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
7
|
Liang Y, Zhang H, Tian L, Shi C, Zheng Y, Wang J, Tan Y, Luo Y, Hong H. Gut microbiota and metabolic profile as affected by Maillard reaction products derived from bighead carp meat hydrolysates with galactose and galacto-oligosaccharides during in vitro pig fecal fermentation. Food Chem 2023; 398:133905. [DOI: 10.1016/j.foodchem.2022.133905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
|
8
|
Zhu X, He Y, Zhang Q, Ma D, Zhao H. Lead induced disorders of lipid metabolism and glycometabolism in the liver of developmental Japanese quails (Coturnix japonica) via inhibiting PI3K/Akt signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2023; 263:109489. [PMID: 36261108 DOI: 10.1016/j.cbpc.2022.109489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/19/2022]
Abstract
The lead (Pb) contamination is considered a lethal threat to birds. However, Pb-induced hepatotoxicology especially its impacts on metabolic processes in the liver of birds is not yet fully understood. Therefore, we tried to determine the toxicological effects of Pb exposure on hepatic carbohydrate and lipid metabolism via Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway by using an animal model- Japanese quail (Coturnix japonica). One-week old female Japanese quails were randomly allocated into four groups and fed with 0, 50 ppm, 500 ppm and 1000 ppm Pb drinking water respectively for 49 days. The results showed that Pb accumulated in the liver as a dose-dependent manner. Exposure to high dose of Pb (500 and 1000 ppm Pb) led to severe histopathological damages characterized by irregularity and dilation of liver sinusoids, hepatic lipid vacuolization and hepatocellular cytoplasm hyalinization. Meanwhile, Pb exposure caused glycogen increase and lipid droplets decrease in the liver. Pb exposure was also attributable to a decreased triglyceride level in the plasma. In addition, the transcriptional levels of PI3K and Akt in the liver were downregulated by Pb exposure. Subsequently, the mRNA expressions of genes related with glycometabolism in the liver were remarkably altered and the mRNA levels of genes involved in fat synthesis and oxidation in the liver were also markedly changed. it seems that Pb could lead to liver metabolic disorder through structural damages and PI3K/Akt signaling pathway disruption.
Collapse
Affiliation(s)
- Xiaojia Zhu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Yu He
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Qingyu Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Derui Ma
- Beijing Chaoyang Foreign Language School, Beijing 100101, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
9
|
Shan X, Zhang L, Ye H, Shao J, Shi Y, Tan S, Su K, Zhang L, Cao C. Magnetic solid phase extraction of lead ion from water samples with humic acid modified magnetic nanoparticles prior to its fame atomic absorption spectrometric detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Lu LL, Zhang YW, Li ZC, Fang YY, Wang LL, Zhao YS, Li SJ, Ou SY, Aschner M, Jiang YM. Therapeutic Effects of Sodium Para-Aminosalicylic Acid on Cognitive Deficits and Activated ERK1/2-p90 RSK/NF-κB Inflammatory Pathway in Pb-Exposed Rats. Biol Trace Elem Res 2022; 200:2807-2815. [PMID: 34398420 DOI: 10.1007/s12011-021-02874-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/08/2021] [Indexed: 12/25/2022]
Abstract
Lead (Pb) is a toxic heavy metal and environmental pollutant that adversely affects the nervous system. However, effective therapeutic drugs for Pb-induced neurotoxicity have yet to be developed. In the present study, we investigated the ameliorative effect of sodium para-aminosalicylic acid (PAS-Na) on Pb-induced neurotoxicity. Male Sprague-Dawley rats were treated with (CH3COO)2 Pb•4H2O (6 mg/kg) for 4 weeks, followed by 3 weeks of PAS-Na (100, 200, and 300 mg/kg). The results showed that subacute Pb exposure significantly decreased rats body-weight gains and increased liver coefficient, and impaired spatial learning and memory. HE staining showed that Pb damaged the structure of the hippocampus. Moreover, Pb activated the ERK1/2-p90RSK/ NF-κB pathway concomitant with increased inflammatory cytokine IL-1β levels in rat hippocampus. PAS-Na reversed the Pb-induced increase in the liver coefficient as well as the learning and memory deficits. In addition, PAS-Na reduced the phosphorylation of ERK1/2, p90RSK and NF-κB p65, decreasing IL-1β levels in hippocampus. Our findings indicated that PAS-Na showed efficacy in reversing Pb-induced rats cognitive deficits and triggered an anti-inflammatory response. Thus, PAS-Na may be a promising therapy for treating Pb-induced neurotoxicity.
Collapse
Affiliation(s)
- Li-Li Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yu-Wen Zhang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhao-Cong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lei-Lei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yue-Song Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
11
|
Dzugkoev SG, Dzugkoeva FS, Margieva OI. Mechanisms of Lead Toxicity and Their Pathogenetic Correction. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Metabolomic Alteration in the Plasma of Wild Rodents Environmentally Exposed to Lead: A Preliminary Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19010541. [PMID: 35010801 PMCID: PMC8744629 DOI: 10.3390/ijerph19010541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/24/2021] [Accepted: 01/01/2022] [Indexed: 01/27/2023]
Abstract
Lead poisoning is often considered a traditional disease; however, the specific mechanism of toxicity remains unclear. The study of Pb-induced alterations in cellular metabolic pathways is important to understand the biological response and disorders associated with environmental exposure to lead. Metabolomics studies have recently been paid considerable attention to understand in detail the biological response to lead exposure and the associated toxicity mechanisms. In the present study, wild rodents collected from an area contaminated with lead (N = 18) and a control area (N = 10) were investigated. This was the first ever experimental metabolomic study of wildlife exposed to lead in the field. While the levels of plasma phenylalanine and isoleucine were significantly higher in a lead-contaminated area versus the control area, hydroxybutyric acid was marginally significantly higher in the contaminated area, suggesting the possibility of enhancement of lipid metabolism. In the interregional least-absolute shrinkage and selection operator (lasso) regression model analysis, phenylalanine and isoleucine were identified as possible biomarkers, which is in agreement with the random forest model. In addition, in the random forest model, glutaric acid, glutamine, and hydroxybutyric acid were selected. In agreement with previous studies, enrichment analysis showed alterations in the urea cycle and ATP-binding cassette transporter pathways. Although regional rodent species bias was observed in this study, and the relatively small sample size should be taken into account, the present results are to some extent consistent with those of previous studies on humans and laboratory animals.
Collapse
|
13
|
Niedzwiecki MM, Eggers S, Joshi A, Dolios G, Cantoral A, Lamadrid-Figueroa H, Amarasiriwardena C, Téllez-Rojo MM, Wright RO, Petrick L. Lead exposure and serum metabolite profiles in pregnant women in Mexico City. Environ Health 2021; 20:125. [PMID: 34893088 PMCID: PMC8665540 DOI: 10.1186/s12940-021-00810-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Lead (Pb) exposure is a global health hazard causing a wide range of adverse health outcomes. Yet, the mechanisms of Pb toxicology remain incompletely understood, especially during pregnancy. To uncover biological pathways impacted by Pb exposure, this study investigated serum metabolomic profiles during the third trimester of pregnancy that are associated with blood Pb and bone Pb. METHODS We used data and specimens from 99 women enrolled in the Programming Research in Obesity, Growth, Environment, and Social Stressors birth cohort in Mexico City. Maternal Pb exposure was measured in whole blood samples from the third trimester of pregnancy and in the tibia and patella bones at 1 month postpartum. Third-trimester serum samples underwent metabolomic analysis; metabolites were identified based on matching to an in-house analytical standard library. A metabolome-wide association study was performed using multiple linear regression models. Class- and pathway-based enrichment analyses were also conducted. RESULTS The median (interquartile range) blood Pb concentration was 2.9 (2.6) µg/dL. Median bone Pb, measured in the tibia and patella, were 2.5 (7.3) µg/g and 3.6 (9.5) µg/g, respectively. Of 215 total metabolites identified in serum, 31 were associated with blood Pb (p < 0.05). Class enrichment analysis identified significant overrepresentation of metabolites classified as fatty acids and conjugates, amino acids and peptides, and purines. Tibia and patella Pb were associated with 14 and 8 metabolites, respectively (p < 0.05). Comparing results from bone and blood Pb, glycochenodeoxycholic acid, glycocholic acid, and 1-arachidonoylglycerol were positively associated with blood Pb and tibia Pb, and 7-methylguanine was negatively associated with blood Pb and patella Pb. One metabolite, 5-aminopentanoic acid, was negatively associated with all three Pb measures. CONCLUSIONS This study identified serum metabolites in pregnant women associated with Pb measured in blood and bone. These findings provide insights on the metabolic profile around Pb exposure in pregnancy and information to guide mechanistic studies of toxicological effects for mothers and children.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | - Shoshannah Eggers
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | - Anu Joshi
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | - Georgia Dolios
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | | | | | - Chitra Amarasiriwardena
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | | | - Robert O Wright
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| | - Lauren Petrick
- Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, United States, NY
| |
Collapse
|
14
|
Słota M, Wąsik M, Stołtny T, Machoń-Grecka A, Kasperczyk A, Bellanti F, Dobrakowski M, Chwalba A, Kasperczyk S. Relationship between lead absorption and iron status and its association with oxidative stress markers in lead-exposed workers. J Trace Elem Med Biol 2021; 68:126841. [PMID: 34438315 DOI: 10.1016/j.jtemb.2021.126841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The emission of lead (Pb) occurring during the extraction, processing and industrial applications of this element remains a significant environmental risk factor. The absorbability of lead in humans is strongly associated with the general health status of exposed individuals. Existing mineral deficiencies are considered being a predisposition to an increased Pb uptake. Both, iron deficiency and lead poisoning are the major causative factors responsible for the prevalence of anemia within the vulnerable population, especially in children. Although some of the intervention programs of counteracting lead poisoning by iron supplementation proved to be effective in the Pb-exposed population, the exact mechanisms of this interaction still require further studies. The objective of the presented study was to examine the association of iron level on oxidative stress measures and its effects on the severity of lead toxicity in the exposed population. METHODS The analyzed population consisted of 270 male workers from the lead-zinc smelter. The studied population was divided into two sub-groups based on the serum iron concentration: low iron level group (L-Fe; Fe < median value) and high iron level group (H-Fe; Fe > median value). Measured traits comprised of blood lead (PbB), serum Fe and zinc protoporphyrin (ZPP) levels as well as a blood count and oxidative stress markers. RESULTS No significant correlation between serum iron concentration and PbB in the tested cohort was found. On the contrary, the analysis of ZPP levels (long-term marker related to a hematologic toxic effect of Pb) within the subgroups differing in serum Fe level shown that ZPP was 12.3 % lower (p = 0.043) in subjects classified within the H-Fe group. A positive correlation of serum Fe and total antioxidant capacity (TAC) was found (R = 0.1999). The conducted 3-D PCA analysis showed that individuals classified within the H-Fe group were characterized by the co-occurrence of higher Fe levels, lower ZPP, and higher TAC value. CONCLUSION These results support the existing evidence providing that maintaining the optimal status of Fe may play a significant role in preventing the lead poisoning and alleviating harmful effects of Pb on the oxidative balance in humans.
Collapse
Affiliation(s)
- Michał Słota
- ARKOP Sp. z o.o., Kolejowa 34a, 32-332, Bukowno, Poland
| | - Marta Wąsik
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Bytomska 62, 41-940, Piekary Śląskie, Poland
| | - Anna Machoń-Grecka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Aleksandra Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Francesco Bellanti
- Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto 1, 71122, Foggia, Italy
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Artur Chwalba
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Poniatowskiego 15, 40-055, Katowice, Poland.
| |
Collapse
|
15
|
Yang B, Xu J, Hu S, You B, Ma Q. Effects of lead exposure on blood electrical impedance spectroscopy of mice. Biomed Eng Online 2021; 20:99. [PMID: 34620171 PMCID: PMC8499524 DOI: 10.1186/s12938-021-00933-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background Lead is a nonessential heavy metal, which can inhibit heme synthesis and has significant cytotoxic effects. Nevertheless, its effect on the electrical properties of red blood cells (RBCs) remains unclear. Consequently, this study aimed to investigate the electrical properties and the electrophysiological mechanism of lead exposure in mouse blood using Electrical Impedance Spectroscopy (EIS) in 0.01–100 MHz frequency range. Data characteristic of the impedance spectrum, Bodes plot, Nyquist plot and Nichols plot, and Constant Phase Element (CPE) equivalent circuit model were used to explicitly analyze the differences in amplitude–frequency, phase–frequency, and the frequency characteristics of blood in electrical impedance properties. Results Compared with the healthy blood in control mice, the changes in blood exposed to lead were as follows: (i) the hematocrit decreased; (ii) the amplitude–frequency and phase–frequency characteristics of electrical impedance decreased; (iii) the characteristic frequencies (f0) were significantly increased; (iv) the electrical impedance of plasma, erythrocyte membrane, and hemoglobin decreased, while the conductivity increased. (v) The pseudo-capacitance of cell membrane (CPE_Tm) and the intracellular pseudo-capacitance (CPE-Ti) were decreased. Conclusions Therefore, EIS can be used as an effective method to monitor blood and RBC abnormalities caused by lead exposure. The electrical properties of the cells can be applied as an important observation in the evaluation of the toxic effects of heavy metals.
Collapse
Affiliation(s)
- Binying Yang
- Ninghai First Hospital, Ninghai, 315600, Zhejiang, China.,School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Jia Xu
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Shao Hu
- Ninghai First Hospital, Ninghai, 315600, Zhejiang, China
| | - Boning You
- Ninghai First Hospital, Ninghai, 315600, Zhejiang, China
| | - Qing Ma
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|