1
|
Wang Y, Wei H, Song Z, Jiang L, Zhang M, Lu X, Li W, Zhao Y, Wu L, Li S, Shen H, Shu Q, Xie Y. Inhalation of panaxadiol alleviates lung inflammation via inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. J Ginseng Res 2024; 48:77-88. [PMID: 38223829 PMCID: PMC10785239 DOI: 10.1016/j.jgr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/18/2023] [Accepted: 09/13/2023] [Indexed: 01/16/2024] Open
Abstract
Background Lung inflammation occurs in many lung diseases, but has limited effective therapeutics. Ginseng and its derivatives have anti-inflammatory effects, but their unstable physicochemical and metabolic properties hinder their application in the treatment. Panaxadiol (PD) is a stable saponin among ginsenosides. Inhalation administration may solve these issues, and the specific mechanism of action needs to be studied. Methods A mouse model of lung inflammation induced by lipopolysaccharide (LPS), an in vitro macrophage inflammation model, and a coculture model of epithelial cells and macrophages were used to study the effects and mechanisms of inhalation delivery of PD. Pathology and molecular assessments were used to evaluate efficacy. Transcriptome sequencing was used to screen the mechanism and target. Finally, the efficacy and mechanism were verified in a human BALF cell model. Results Inhaled PD reduced LPS-induced lung inflammation in mice in a dose-dependent manner, including inflammatory cell infiltration, lung tissue pathology, and inflammatory factor expression. Meanwhile, the dose of inhalation was much lower than that of intragastric administration under the same therapeutic effect, which may be related to its higher bioavailability and superior pharmacokinetic parameters. Using transcriptome analysis and verification by a coculture model of macrophage and epithelial cells, we found that PD may act by inhibiting TNFA/TNFAR and IL7/IL7R signaling to reduce macrophage inflammatory factor-induced epithelial apoptosis and promote proliferation. Conclusion PD inhalation alleviates lung inflammation and pathology by inhibiting TNFA/TNFAR and IL7/IL7R signaling between macrophages and epithelial cells. PD may be a novel drug for the clinical treatment of lung inflammation.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Hao Wei
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Zhen Song
- Department of Molecular Bioinformatics, Institute of Computer Science, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Liqun Jiang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Mi Zhang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiao Lu
- Shenyang Pharmaceutical University, Shenyang, China
| | - Wei Li
- Shenyang Pharmaceutical University, Shenyang, China
| | - Yuqing Zhao
- Shenyang Pharmaceutical University, Shenyang, China
| | - Lei Wu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shuxian Li
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Huijuan Shen
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Shu
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yicheng Xie
- Department of Pulmonology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
2
|
Zhang Y, Gao Z, Pan Z, Fu H, Jiang F, Yan H, Yang B, He Q, Luo P, Xu Z, Yang X. Crizotinib induces pulmonary toxicity by blocking autophagy flux in alveolar epithelial cells. Biochem Pharmacol 2023; 215:115636. [PMID: 37290598 DOI: 10.1016/j.bcp.2023.115636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Crizotinib is the first-line drug for advanced non-small cell lung cancer with the abnormal expression of anaplastic lymphoma kinase gene. Severe, life-threatening, or fatal interstitial lung disease/pneumonia has been reported in patients treated with crizotinib. The clinical benefit of crizotinib is limited by its pulmonary toxicity, but the underlying mechanisms have not been adequately studied, and protective strategies are relatively scarce. Here, we established an in vivo mouse model in which crizotinib was continuously administered to C57BL/6 at 100 mg/kg/day for 6 weeks and verified that crizotinib induced interstitial lung disease in vivo, which was consistent with the clinical observations. We further treated BEAS-2B and TC-1 cells, the alveolar epithelial cell lines, with crizotinib and found the increased apoptosis rate. We proved that crizotinib-blocked autophagic flux caused apoptosis of the alveolar epithelial cells and then promoted the recruitment of immune cells, suggesting that limited autophagy activity was the key reason for pulmonary injury and inflammation caused by crizotinib. Subsequently, we found that metformin could reduce the macrophage recruitment and pulmonary fibrosis by recovering the autophagy flux, thereby ameliorating impaired lung function caused by crizotinib. In conclusion, our study revealed the mechanism of crizotinib-induced apoptosis of alveolar epithelial cells and activation of inflammation during the onset of pulmonary toxicity and provided a promising therapeutic strategy for the treatment of crizotinib-induced pulmonary toxicity.
Collapse
Affiliation(s)
- Yuanteng Zhang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zizheng Gao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zezheng Pan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Huangxi Fu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Feng Jiang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, Zhejiang, China; Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
3
|
Liu B, Liu G, Li C, Liu S, Sun D. Resection of Scar Tissue in Rats With Spinal Cord Injury Can Promote the Expression of βⅢ-tubulin in the Injured Area. World Neurosurg 2023; 170:e115-e126. [PMID: 36280047 DOI: 10.1016/j.wneu.2022.10.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Previous research shows that scar tissue formed in the injured area after spinal cord injury blocks nerve regeneration and functional recovery. However, those researchers tried to prevent the formation of scar after spinal cord injury to promote nerve regeneration, but it ran counter to their desire, indicating that the formation of scar might play a role in functional recovery after spinal cord injury. METHODS To investigate roles of scar formation on functional repair after spinal cord injury, we selected several different key time points to resect the scar tissue formed after spinal cord injury based on the rat models of the T8-T9 transection injury of spinal cord. First, the recovery of motor function was evaluated by Basso Beattie Bresnahan score and electrophysiologic examination; second, the pathologic features of functional recovery were analyzed mainly by immunofluorescence βⅢ-tubulin staining; finally, the genes related to the recovery of motor function were predicted by high-throughput sequencing analysis. RESULTS Immunofluorescence results showed that the resection of scar tissue promoted significantly the recovery of motor function and the expression of βⅢ-tubulin in the injured area in the second week after spinal cord injury. Furthermore, RNA-seq studies showed that Tubb3 and Tubb6 gene expression and other neural regeneration pathways were significantly different in the tissue before and after early resection. CONCLUSIONS Excision of scar tissue in the second week promoted nerve regeneration after spinal cord injury. Tubb3 and Tubb6 genes might be the potential targets for spinal cord injury therapy in our study.
Collapse
Affiliation(s)
- Baoguo Liu
- College of Pharmacy, Jilin University, Changchun, China
| | - Guoqing Liu
- Cell Therapy Center, Xintai Hospital of Traditional Chinese Medicine, Taian, China
| | - Changyang Li
- Cell Therapy Center, Xintai Hospital of Traditional Chinese Medicine, Taian, China
| | - Sumei Liu
- College of Pharmacy, Jilin University, Changchun, China; Cell Therapy Center, Xuanwu Hospital Capital Medical University, Beijing, China.
| | - Dejun Sun
- College of Pharmacy, Jilin University, Changchun, China
| |
Collapse
|
4
|
Yang L, Wang Z. Natural Products, Alone or in Combination with FDA-Approved Drugs, to Treat COVID-19 and Lung Cancer. Biomedicines 2021; 9:689. [PMID: 34207313 PMCID: PMC8234041 DOI: 10.3390/biomedicines9060689] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
As a public health emergency of international concern, the highly contagious coronavirus disease 2019 (COVID-19) pandemic has been identified as a severe threat to the lives of billions of individuals. Lung cancer, a malignant tumor with the highest mortality rate, has brought significant challenges to both human health and economic development. Natural products may play a pivotal role in treating lung diseases. We reviewed published studies relating to natural products, used alone or in combination with US Food and Drug Administration-approved drugs, active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and lung cancer from 1 January 2020 to 31 May 2021. A wide range of natural products can be considered promising anti-COVID-19 or anti-lung cancer agents have gained widespread attention, including natural products as monotherapy for the treatment of SARS-CoV-2 (ginkgolic acid, shiraiachrome A, resveratrol, and baicalein) or lung cancer (daurisoline, graveospene A, deguelin, and erianin) or in combination with FDA-approved anti-SARS-CoV-2 agents (cepharanthine plus nelfinavir, linoleic acid plus remdesivir) and anti-lung cancer agents (curcumin and cisplatin, celastrol and gefitinib). Natural products have demonstrated potential value and with the assistance of nanotechnology, combination drug therapies, and the codrug strategy, this "natural remedy" could serve as a starting point for further drug development in treating these lung diseases.
Collapse
Affiliation(s)
- Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China;
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|