1
|
Mahmutović-Dizdarević I, Mesic A, Jerković-Mujkić A, Žujo B, Avdić M, Hukić M, Omeragić E, Osmanović A, Špirtović-Halilović S, Ahmetovski S, Mujkanović S, Pramenković E, Salihović M. Biological potential, chemical profiling, and molecular docking study of Morus alba L. extracts. Fitoterapia 2024; 177:106114. [PMID: 38971331 DOI: 10.1016/j.fitote.2024.106114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Morus alba L. is a plant with a long history of dietary and medicinal uses. We hypothesized that M. alba possesses a significant biological potential. In that sense, we aimed to generate the chemical, antimicrobial, toxicological, and molecular profile of M. alba leaf and fruit extracts. Our results showed that extracts were rich in vitamin C, phenols, and flavonoids, with quercetin and pterostilbene concentrated in the leaf, while fisetin, hesperidin, resveratrol, and luteolin were detected in fruit. Extracts exhibited antimicrobial activity against all tested bacteria, including multidrug-resistant strains. The widest inhibition zones were in Staphylococcus aureus ATCC 33591. The values of the minimum inhibitory concentration ranged from 15.62 μg/ml in Enterococcus faecalis to 500 μg/ml in several bacteria. Minimum bactericidal concentration ranged from 31.25 μg/ml to 1000 μg/ml. Extracts impacted the biofilm formation in a concentration-dependent and species-specific manner. A significant difference in the frequency of nucleoplasmic bridges between the methanolic extract of fruit (0.5 μg/ml, 1 μg/ml, 2 μg/ml), as well as for the frequency of micronuclei between ethanolic extract of leaf (2 μg/ml) and the control group was observed. Molecular docking suggested that hesperidin possesses the highest binding affinity for multidrug efflux transporter AcrB and acyl-PBP2a from MRSA, as well as for the SARS-CoV-2 Mpro. This study, by complementing previous research in this field, gives new insights that could be of great value in obtaining a more comprehensive picture of the Morus alba L. bioactive potential, chemical composition, antimicrobial and toxicological features, as well as molecular profile.
Collapse
Affiliation(s)
- Irma Mahmutović-Dizdarević
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Aner Mesic
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Anesa Jerković-Mujkić
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Belma Žujo
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Monia Avdić
- International Burch University, Faculty of Engineering, Natural and Medical Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina; Academy of Sciences and Arts of Bosnia and Herzegovina, Center for Disease Control and Geohealth Studies, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirsada Hukić
- Academy of Sciences and Arts of Bosnia and Herzegovina, Center for Disease Control and Geohealth Studies, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina; Institute for Biomedical Diagnostics and Research Nalaz, Čekaluša 69, 71000 Sarajevo, Bosnia and Herzegovina
| | - Elma Omeragić
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Amar Osmanović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Selma Špirtović-Halilović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sarah Ahmetovski
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Samra Mujkanović
- University of Sarajevo-Faculty of Science, Department of Biology, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
| | - Emina Pramenković
- International Burch University, Faculty of Engineering, Natural and Medical Sciences, Department of Genetics and Bioengineering, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina
| | - Mirsada Salihović
- University of Sarajevo-Faculty of Pharmacy, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
2
|
Chen S, Li X, Wu Q, Li Y, Puig M, Moulin F, Choudhuri S, Gingrich J, Guo L. Investigation of cannabidiol-induced cytotoxicity in human hepatic cells. Toxicology 2024; 506:153884. [PMID: 39004336 DOI: 10.1016/j.tox.2024.153884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/23/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cannabidiol (CBD) is one of the primary cannabinoids present in extracts of the plant Cannabis sativa L. A CBD-based drug, Epidiolex, has been approved by the U.S. FDA for the treatment of seizures in childhood-onset epileptic disorders. Although CBD-associated liver toxicity has been reported in clinical studies, the underlying mechanisms remain unclear. In this study, we demonstrated that CBD causes cytotoxicity in primary human hepatocytes and hepatic HepG2 cells. A 24-h CBD treatment induced cell cycle disturbances, cellular apoptosis, and endoplasmic reticulum (ER) stress in HepG2 cells. A potent ER stress inhibitor, 4-phenylbutyrate, markedly attenuated CBD-induced apoptosis and cell death. Additionally, we investigated the role of cytochrome P450 (CYP)-mediated metabolism in CBD-induced cytotoxicity using HepG2 cell lines engineered to express 14 individual CYPs. We identified CYP2C9, 2C19, 2D6, 2C18, and 3A5 as participants in CBD metabolism. Notably, cells overexpressing CYP2C9, 2C19, and 2C18 produced 7-hydroxy-CBD, while cells overexpressing CYP2C9, 2C19, 2D6, and 2C18 generated 7-carboxy-CBD. Furthermore, CBD-induced cytotoxicity was significantly attenuated in the cells expressing CYP2D6. Taken together, these data suggest that cell cycle disturbances, apoptosis, and ER stress are associated with CBD-induced cytotoxicity, and CYP2D6-mediated metabolism plays a critical role in decreasing the cytotoxicity of CBD.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA.
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, NCTR, U.S. FDA, Jefferson, AR 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20993, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD 20740, USA
| | - Jeremy Gingrich
- Division of Food Ingredients, Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, MD 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), Jefferson, AR 72079, USA.
| |
Collapse
|
3
|
Rauf A, Wilairatana P, Joshi PB, Ahmad Z, Olatunde A, Hafeez N, Hemeg HA, Mubarak MS. Revisiting luteolin: An updated review on its anticancer potential. Heliyon 2024; 10:e26701. [PMID: 38455556 PMCID: PMC10918152 DOI: 10.1016/j.heliyon.2024.e26701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Numerous natural products found in our diet, such as polyphenols and flavonoids, can prevent the progression of cancer. Luteolin, a natural flavone, present in significant amounts in various fruits and vegetables plays a key role as a chemopreventive agent in treating various types of cancer. By inducing apoptosis, initiating cell cycle arrest, and decreasing angiogenesis, metastasis, and cell proliferation, luteolin is used to treat cancer. Its anticancer properties are attributed to its capability to engage with multiple molecular targeted sites and modify various signaling pathways in tumor cells. Luteolin has been shown to slow the spread of cancer in breast, colorectal, lung, prostate, liver, skin, pancreatic, oral, and gastric cancer models. It exhibits antioxidant properties and can be given to patients receiving Doxorubicin (DOX) chemotherapy to prevent the development of unexpected adverse reactions in the lungs and hematopoietic system subjected to DOX. Furthermore, it could be an excellent candidate for synergistic studies to overcome drug resistance in cancer cells. Accordingly, this review covers the recent literature related to the use of luteolin against different types of cancer, along with the mechanisms of action. In addition, the review highlights luteolin as a complementary medicine for preventing and treating cancer.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Payal B. Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, (East)-421501, Maharashtra, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, KPK, Pakistan
| | - Hassan A. Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Medinah, Al-Monawara Postcode, Saudi Arabia
| | | |
Collapse
|
4
|
Li X, Le Y, Li Y, Chen S, Guo L, Fu X, Manjanatha MG, Mei N. Evaluation of weak genotoxicity of hydroxychloroquine in human TK6 cells. Toxicol Lett 2024; 393:84-95. [PMID: 38311193 PMCID: PMC11369915 DOI: 10.1016/j.toxlet.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Hydroxychloroquine (HCQ), a derivative of chloroquine (CQ), is an antimalarial and antirheumatic drug. Since there is limited data available on the genotoxicity of HCQ, in the current study, we used a battery of in vitro assays to systematically examine the genotoxicity of HCQ in human lymphoblastoid TK6 cells. We first showed that HCQ is not mutagenic in TK6 cells up to 80 μM with or without exogenous metabolic activation. Subsequently, we found that short-term (3-4 h) HCQ treatment did not cause DNA strand breakage as measured by the comet assay and the phosphorylation of histone H2A.X (γH2A.X), and did not induce chromosomal damage as determined by the micronucleus (MN) assay. However, after 24-h treatment, both CQ and HCQ induced comparable and weak DNA damage and MN formation in TK6 cells; upregulated p53 and p53-mediated DNA damage responsive genes; and triggered apoptosis and mitochondrial damage that may partially contribute to the observed MN formation. Using a benchmark dose (BMD) modeling analysis, the lower 95% confidence limit of BMD50 values (BMDL50) for MN induction in TK6 cells were about 19.7 μM for CQ and 16.3 μM for HCQ. These results provide additional information for quantitative genotoxic risk assessment of these drugs.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | - Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Yuxi Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Xin Fu
- Division of Pharmacology Toxicology Review, Office of Safety and Clinical Evaluation, Center for Drug Evaluation and Research, Silver Spring, MD 20993, USA
| | - Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| |
Collapse
|
5
|
Hao X, Zu M, Ning J, Zhou X, Gong Y, Han X, Meng Q, Li D, Ding S. Antitumor effect of luteolin proven by patient-derived organoids of gastric cancer. Phytother Res 2023; 37:5315-5327. [PMID: 37469042 DOI: 10.1002/ptr.7963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
Luteolin (Lut) has been shown to inhibit gastric cancer (GC); however, its efficacy compared to other clinical drugs has not been examined in human samples. This study aimed to elucidate the antitumor activity of Lut in GC patient-derived organoids (PDOs). PDOs were established from GC cancer tissues, and the characterization of tissues and PDOs was performed using whole-exome sequencing. Drug sensitivity tests were performed by treating PDOs with Lut, norcantharidin (NCTD), and carboplatin (CP). RNA sequencing of PDOs was performed to elucidate the antitumor mechanism of Lut, which was further verified in three GC cell lines. Eleven PDOs were successfully constructed, and were highly consistent with the pathophysiology and genetic changes in the corresponding tumors. The IC50s of Lut, NCTD, and CP of PDOs were 27.19, 23.9, and 37.87 μM, respectively. Lut treatment upregulated FOXO3, DUSP1, and CDKN1A expression and downregulated IL1R1 and FGFR4 expression in GC cell lines, which was consistent with the results of PDOs. We demonstrate that Lut exerted stronger antitumor effects than CP, but a similar effect to that of NCTD, which was obtained in an in vitro PDO system. Additionally, Lut exerted varying degrees of antitumor effects against the PDOs, thereby indicating that PDO may be a useful preclinical drug screening tool for personalized treatment.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Ming Zu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Jing Ning
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Xin Zhou
- Department of General Surgery, Peking University Third Hospital, Beijing, China
| | - Yueqing Gong
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Xiurui Han
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Qiao Meng
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| | - Dong Li
- Department of Traditional Chinese Medicine, Peking University Third Hospital, Beijing, China
| | - Shigang Ding
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases (BZ0371), Beijing, China
| |
Collapse
|
6
|
Guo C, Huang Q, Wang Y, Yao Y, Li J, Chen J, Wu M, Zhang Z, E M, Qi H, Ji P, Liu Q, Zhao D, Su H, Qi W, Li X. Therapeutic application of natural products: NAD + metabolism as potential target. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154768. [PMID: 36948143 DOI: 10.1016/j.phymed.2023.154768] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Nicotinamide adenine dinucleotide (NAD+) metabolism is involved in the entire physiopathological process and is critical to human health. Long-term imbalance in NAD+ homeostasis is associated with various diseases, including non-alcoholic fatty liver disease, diabetes mellitus, cardiovascular diseases, neurodegenerative disorders, aging, and cancer, making it a potential target for effective therapeutic strategies. Currently, several natural products that target NAD+ metabolism have been widely reported to have significant therapeutic effects, but systematic summaries are lacking. PURPOSE To summarize the latest findings on the prevention and treatment of various diseases through the regulation of NAD+ metabolism by various natural products in vivo and in vitro models, and evaluate the toxicities of the natural products. METHODS PubMed, Web of Science, and ScienceDirect were searched using the keywords "natural products sources," "toxicology," "NAD+ clinical trials," and "NAD+," and/or paired with "natural products" and "diseases" for studies published within the last decade until January 2023. RESULTS We found that the natural products mainly include phenols (curcumin, cyclocurcumin, 4-hydroxybenzyl alcohol, salvianolic acid B, pterostilbene, EGCG), flavonoids (pinostrobin, apigenin, acacetin, tilianin, kaempferol, quercetin, isoliquiritigenin, luteolin, silybin, hydroxysafflor yellow A, scutellarin), glycosides (salidroside), quinones (emodin, embelin, β-LAPachone, shikonin), terpenoids (notoginsenoside R1, ginsenoside F2, ginsenoside Rd, ginsenoside Rb1, ginsenoside Rg3, thymoquinone, genipin), pyrazines (tetramethylpyrazine), alkaloids (evodiamine, berberine), and phenylpropanoids (ferulic acid). These natural products have antioxidant, energy-producing, anti-inflammatory, anti-apoptotic and anti-aging effects, which mainly influence the NAMPT/NAD+/SIRT, AMPK/SIRT1/PGC-1α, Nrf2/HO-1, PKCs/PARPs/NF-κB, and AMPK/Nrf2/mTOR signaling pathways, thereby regulating NAD+ metabolism to prevent and treat various diseases. These natural products have been shown to be safe, tolerable and have fewer adverse effects in various in vivo and in vitro studies and clinical trials. CONCLUSION We evaluated the toxic effects of natural products and summarized the available clinical trials on NAD+ metabolism, as well as the recent advances in the therapeutic application of natural products targeting NAD+ metabolism, with the aim to provide new insights into the treatment of multiple disorders.
Collapse
Affiliation(s)
- Chen Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qingxia Huang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Yisa Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Yao Yao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jing Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Jinjin Chen
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Mingxia Wu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Zepeng Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Mingyao E
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hongyu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Peng Ji
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Qing Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Hang Su
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
7
|
Kukal S, Thakran S, Kanojia N, Yadav S, Mishra MK, Guin D, Singh P, Kukreti R. Genic-intergenic polymorphisms of CYP1A genes and their clinical impact. Gene 2023; 857:147171. [PMID: 36623673 DOI: 10.1016/j.gene.2023.147171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/08/2023]
Abstract
The humancytochrome P450 1A (CYP1A) subfamily genes, CYP1A1 and CYP1A2, encoding monooxygenases are critically involved in biotransformation of key endogenous substrates (estradiol, arachidonic acid, cholesterol) and exogenous compounds (smoke constituents, carcinogens, caffeine, therapeutic drugs). This suggests their significant involvement in multiple biological pathways with a primary role of maintaining endogenous homeostasis and xenobiotic detoxification. Large interindividual variability exist in CYP1A gene expression and/or catalytic activity of the enzyme, which is primarily due to the existence of polymorphic alleles which encode them. These polymorphisms (mainly single nucleotide polymorphisms, SNPs) have been extensively studied as susceptibility factors in a spectrum of clinical phenotypes. An in-depth understanding of the effects of polymorphic CYP1A genes on the differential metabolic activity and the resulting biological pathways is needed to explain the clinical implications of CYP1A polymorphisms. The present review is intended to provide an integrated understanding of CYP1A metabolic activity with unique substrate specificity and their involvement in physiological and pathophysiological roles. The article further emphasizes on the impact of widely studied CYP1A1 and CYP1A2 SNPs and their complex interaction with non-genetic factors like smoking and caffeine intake on multiple clinical phenotypes. Finally, we attempted to discuss the alterations in metabolism/physiology concerning the polymorphic CYP1A genes, which may underlie the reported clinical associations. This knowledge may provide insights into the disease pathogenesis, risk stratification, response to therapy and potential drug targets for individuals with certain CYP1A genotypes.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saroj Yadav
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India
| | - Pooja Singh
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Li Y, Li X, Cournoyer P, Choudhuri S, Yu X, Guo L, Chen S. Cannabidiol-induced transcriptomic changes and cellular senescence in human Sertoli cells. Toxicol Sci 2023; 191:227-238. [PMID: 36519830 PMCID: PMC10123764 DOI: 10.1093/toxsci/kfac131] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cannabidiol (CBD), one of the major cannabinoids in the plant Cannabis sativa L., is the active ingredient in a drug approved for the treatment of seizures associated with certain childhood-onset epileptic disorders. CBD has been shown to induce male reproductive toxicity in multiple animal models. We previously reported that CBD inhibits cellular proliferation in the mouse Sertoli cell line TM4 and in primary human Sertoli cells. In this study, using a transcriptomic approach with mRNA-sequencing analysis, we identified molecular mechanisms underlying CBD-induced cytotoxicity in primary human Sertoli cells. Analysis of differentially expressed genes demonstrated that DNA replication, cell cycle, and DNA repair were the most significantly affected pathways. We confirmed the concentration-dependent changes in the expression of key genes in these pathways using real-time PCR. mRNA sequencing showed upregulation of a group of genes tightly associated with the senescence-associated secretory phenotype (SASP) and with the activation of the p53 signaling pathway, a key upstream event in cellular senescence. Prolonged treatment of 10 μM CBD-induced cellular senescence, as evidenced by the stable cessation of proliferation and the activation of senescence-associated β-galactosidase (SA-β-gal), 2 hallmarks of senescence. Additionally, using real-time PCR and Western blotting assays, we observed that CBD treatment increased the expression of p16, an important marker of cellular senescence. Taken together, our results show that CBD exposure disturbs various interrelated signaling pathways and induces cellular senescence in primary human Sertoli cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | - Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740, USA
| | - Xiaozhong Yu
- College of Nursing, University of New Mexico, Albuquerque, NM 87131, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
9
|
Punia Bangar S, Kajla P, Chaudhary V, Sharma N, Ozogul F. Luteolin: A flavone with myriads of bioactivities and food applications. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Muruganathan N, Dhanapal AR, Baskar V, Muthuramalingam P, Selvaraj D, Aara H, Shiek Abdullah MZ, Sivanesan I. Recent Updates on Source, Biosynthesis, and Therapeutic Potential of Natural Flavonoid Luteolin: A Review. Metabolites 2022; 12:1145. [PMID: 36422285 PMCID: PMC9696498 DOI: 10.3390/metabo12111145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/27/2023] Open
Abstract
Nature gives immense resources that are beneficial to humankind. The natural compounds present in plants provide primary nutritional values to our diet. Apart from food, plants also provide chemical compounds with therapeutic values. The importance of these plant secondary metabolites is increasing due to more studies revealing their beneficial properties in treating and managing various diseases and their symptoms. Among them, flavonoids are crucial secondary metabolite compounds present in most plants. Of the reported 8000 flavonoid compounds, luteolin is an essential dietary compound. This review discusses the source of the essential flavonoid luteolin in various plants and its biosynthesis. Furthermore, the potential health benefits of luteolins such as anti-cancer, anti-microbial, anti-inflammatory, antioxidant, and anti-diabetic effects and their mechanisms are discussed in detail. The activity of luteolin and its derivatives are diverse, as they help to prevent and control many diseases and their life-threatening effects. This review will enhance the knowledge and recent findings regarding luteolin and its therapeutic effects, which are certainly useful in potentially utilizing this natural metabolite.
Collapse
Affiliation(s)
- Nandakumar Muruganathan
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Anand Raj Dhanapal
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Plant Tissue Culture & Central Instrumentation Laboratory, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Venkidasamy Baskar
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Dhivya Selvaraj
- Department of Computer Science and Engineering CSE-AI, Amrita School of Engineering, Chennai 601103, Tamil Nadu, India
| | - Husne Aara
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | | | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
The Utilization of Physiologically Active Molecular Components of Grape Seeds and Grape Marc. Int J Mol Sci 2022; 23:ijms231911165. [PMID: 36232467 PMCID: PMC9570270 DOI: 10.3390/ijms231911165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Nutritional interventions may highly contribute to the maintenance or restoration of human health. Grapes (Vitis vinifera) are one of the oldest known beneficial nutritional components of the human diet. Their high polyphenol content has been proven to enhance human health beyond doubt in statistics-based public health studies, especially in the prevention of cardiovascular disease and cancer. The current review concentrates on presenting and classifying polyphenol bioactive molecules (resveratrol, quercetin, catechin/epicatechin, etc.) available in high quantities in Vitis vinifera grapes or their byproducts. The molecular pathways and cellular signaling cascades involved in the effects of these polyphenol molecules are also presented in this review, which summarizes currently available in vitro and in vivo experimental literature data on their biological activities mostly in easily accessible tabular form. New molecules for different therapeutic purposes can also be synthesized based on existing polyphenol compound classes available in high quantities in grape, wine, and grape marc. Therefore an overview of these molecular structures is provided. Novel possibilities as dendrimer nanobioconjugates are reviewed, too. Currently available in vitro and in vivo experimental literature data on polyphenol biological activities are presented in easily accessible tabular form. The scope of the review details the antidiabetic, anticarcinogenic, antiviral, vasoprotective, and neuroprotective roles of grape-origin flavonoids. The novelty of the study lies in the description of the processing of agricultural by-products (grape seeds and skins) of industrial relevance, and the detailed description of the molecular mechanisms of action. In addition, the review of the clinical therapeutic applications of polyphenols is unique as no summary study has yet been done.
Collapse
|
12
|
Li X, Li Y, Ning KG, Chen S, Guo L, Bonzo JA, Mei N. The expression of Phase II drug-metabolizing enzymes in human B-lymphoblastoid TK6 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:106-118. [PMID: 35895929 PMCID: PMC9346962 DOI: 10.1080/26896583.2022.2044242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro genotoxicity testing plays an important role in chemical risk assessment. The human B-lymphoblastoid cell line TK6 is widely used as a standard cell line for regulatory safety evaluations. Like many other mammalian cell lines, TK6 cells have limited metabolic capacity; therefore, usually require a source of exogenous metabolic activation for use in genotoxicity testing. Previously, we developed a set of TK6-derived cell lines that individually express one of fourteen cytochrome P450s (CYPs). In the present study, we surveyed a panel of major Phase II drug-metabolizing enzymes to characterize their baseline expression in TK6 cells. These results may serve as a reference enzymatic profile of this commonly used cell line.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G. Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jessica A. Bonzo
- Division of Pharmacology/Toxicology for Immunology and Inflammation, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
13
|
Le Y, Li X, Chen S, Ning KG, Guo X, Wu CG, Manjanatha MG, Mei N. Actein contributes to black cohosh extract-induced genotoxicity in human TK6 cells. J Appl Toxicol 2022; 42:1491-1502. [PMID: 35261072 DOI: 10.1002/jat.4313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/27/2022] [Accepted: 02/27/2022] [Indexed: 11/06/2022]
Abstract
Black cohosh extract (BCE) is one of the most popular botanical products for relieving menopausal symptoms. However, recent studies indicate that BCE is not only ineffective for menopausal therapy, but also induces genotoxicity through an aneugenic mode of action (MoA). In this study, the cytotoxicity of five constituents of BCE was evaluated in human lymphoblastoid TK6 cells. Among the five constituents, actein (up to 50 μM) showed the highest cytotoxicity and was thus selected for further genotoxicity evaluations. Actein caused DNA damage proportionally to concentration as evidenced by the phosphorylation of the histone protein H2A.X (γH2A.X) and resulted in chromosomal damage as measured by the increased percentage of micronuclei (MN) in cells. In addition, actein activated DNA damage response (DDR) pathway through induction of p-ATM, p-Chk1, and p-Chk2, which subsequently induced cell cycle changes and apoptosis. Moreover, both BCE and actein increased intracellular reactive oxygen species (ROS) production, decreased glutathione levels, and activated the mitogen-activated protein kinases (MAPK) signaling pathway. N-acetylcysteine, a ROS scavenger, attenuated BCE- and actein-induced ROS production, apoptosis, and DNA damage. These findings indicate that BCE- and actein-induced genotoxicity is mediated through oxidative stress. Taken together, our data show that actein is likely one of the major contributors to BCE-induced genotoxicity.
Collapse
Affiliation(s)
- Yuan Le
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Charles G Wu
- Botanical Review Team, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Mugimane G Manjanatha
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
14
|
Li Y, Wu Q, Li X, Von Tungeln LS, Beland FA, Petibone D, Guo L, Cournoyer P, Choudhuri S, Chen S. In vitro effects of cannabidiol and its main metabolites in mouse and human Sertoli cells. Food Chem Toxicol 2021; 159:112722. [PMID: 34871667 PMCID: PMC10123765 DOI: 10.1016/j.fct.2021.112722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/23/2022]
Abstract
Cannabidiol (CBD) is a major cannabinoid present in extracts of the plant Cannabis sativa (marijuana). While the therapeutic effects of CBD on epilepsy have been demonstrated, less is understood regarding its potential adverse effects. Recent studies revealed that CBD induced toxicity in the male reproductive system of animal models. In this study, we used TM4, an immortalized mouse Sertoli cell line, and primary human Sertoli cells to evaluate the toxicities of CBD and its main metabolites, 7-carboxy-CBD and 7-hydroxy-CBD. CBD induced concentration- and time-dependent cytotoxicity in mouse and human Sertoli cells, which mainly resulted from the inhibition of the G1/S-phase cell cycle transition. CBD also inhibited DNA synthesis and downregulated key cell cycle proteins. Moreover, CBD reduced the mRNA and protein levels of a functional marker, Wilms' tumor 1. Similar to CBD, 7-carboxy-CBD and 7-hydroxy-CBD inhibited cellular proliferation and decreased DNA synthesis. 7-Carboxy-CBD was less cytotoxic than CBD, while 7-hydroxy-CBD showed comparable cytotoxicity to CBD in both mouse and human Sertoli cells. Compared to mouse Sertoli cells, CBD, 7-hydroxy-CBD, and 7-carboxy-CBD were more cytotoxic in human Sertoli cells. Our results indicate that CBD and its main metabolites can inhibit cell proliferation in mouse and human Sertoli cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Linda S Von Tungeln
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Frederick A Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Dayton Petibone
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Patrick Cournoyer
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, 20740, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
15
|
Ding Y, Ma H, Xu Y, Yang F, Li Y, Shi F, Lu Y. Potentiation of flutamide-induced hepatotoxicity in mice by Xian-Ling-Gu-Bao through induction of CYP1A2. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114299. [PMID: 34090906 DOI: 10.1016/j.jep.2021.114299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xian-Ling-Gu-Bao (XLGB) Fufang is herbal formula widely used to treat osteoporosis and other bone disorders. Because of its commonality in the clinical use, there is a safety concern over the use of XLGB combined with other androgen deprivation therapy (ADT) drugs such as flutamide (FLU) that is associated with reduced bone density. To date, there have been no evaluations on the side effects of the drug-drug interaction between XLGB and FLU. AIM OF THE STUDY The present study was designed to investigate the hepatotoxicity in the context of the combined treatment of XLGB and FLU in a mouse model, and to determine whether the metabolic activation of FLU through induction of CYP1A2 plays a role in the increased hepatoxicity caused by the combination of XLGB and FLU. MATERIALS AND METHODS C57 mice were administered with either XLGB (6,160 mg/kg), FLU (300 mg/kg), or with the combination of the two drugs. Animals were treated with XLGB for 5 days before the combined administration of XLGB and FLU for another 4 days. The serum of mice from single or the combined administration groups was collected for biochemical analysis. The mouse liver was collected to examine liver morphological changes, evaluate liver coefficient, as well as determine the mRNA expression of P450 isozymes (Cyp1a2, Cyp3a11 and Cyp2c37). For metabolism analysis, mice were treated with XLGB, FLU, or the combination of XLGB and FLU for 24 h. The urine samples were collected for the analysis of FLU-NAC conjugate by UPLC-Q-Orbitrap MS. The liver microsomes were prepared from fresh livers to determine the activity of metabolizing enzyme CYP1A2. RESULTS The combined treatment of XLGB and FLU caused loss of mice body weight and elicited significant liver toxicity as evidenced by an increased liver coefficient and serum lactate dehydrogenase (LDH) activity as well as pathological changes of fatty lesion of liver tissue. FLU increased hepatic expression of Cyp1a2 mRNA that was further elevated in the liver of mice when administered with both FLU and XLGB. Treatment of FLU resulted in an increase in the expression of Cyp3a11 mRNA that was negated when mice were co-treated with FLU and XLGB. No significant difference in Cyp2c37 mRNA expression was observed among the different treatment groups as compared to the control. Analysis of metabolic activity showed that the combined administration caused a synergic effect in elevating the activity of the CYP1A2 enzyme. Mass spectrometry analysis identified the presence of FLU reactive metabolite derived FLU-NAC conjugate in the urine of mice treated with FLU. Strikingly, about a two-fold increase of the FLU-NAC conjugate was detected when treated with both FLU and XLGB, indicating an elevated amount of toxic metabolite produced from FLU in the present of XLGB. CONCLUSION FLU and XLGB co-treatment potentiated FLU-induced hepatoxicity. This increased hepatoxicity was mediated through the induction of CYP1A2 activity which in turn enhanced bioactivation of FLU leading to over production of FLU-NAC conjugate and oxidative stress. These results offer warnings about serious side effects of the FLU-XLGB interaction in the clinical practice.
Collapse
Affiliation(s)
- Yannan Ding
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China; Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Honghong Ma
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Yasha Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Feng Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Yi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China
| | - Fuguo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|