1
|
Almatroudi A. Unlocking the Potential of Silver Nanoparticles: From Synthesis to Versatile Bio-Applications. Pharmaceutics 2024; 16:1232. [PMID: 39339268 PMCID: PMC11435049 DOI: 10.3390/pharmaceutics16091232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Silver nanoparticles (AgNPs) are leading the way in nanotechnological innovation, combining the captivating properties of silver with the accuracy of nanoscale engineering, thus revolutionizing material science. Three main techniques arise within the alchemical domains of AgNP genesis: chemical, physical, and biological synthesis. Each possesses its distinct form of magic for controlling size, shape, and scalability-key factors necessary for achieving expertise in the practical application of nanoparticles. The story unravels, describing the careful coordination of chemical reduction, the environmentally sensitive charm of green synthesis utilizing plant extracts, and the precise accuracy of physical techniques. AgNPs are highly praised in the field of healthcare for their powerful antibacterial characteristics. These little warriors display a wide-ranging attack against bacteria, fungi, parasites, and viruses. Their critical significance in combating hospital-acquired and surgical site infections is highly praised, serving as a beacon of hope in the fight against the challenging problem of antibiotic resistance. In addition to their ability to kill bacteria, AgNPs are also known to promote tissue regeneration and facilitate wound healing. The field of cancer has also observed the adaptability of AgNPs. The review documents their role as innovative carriers of drugs, specifically designed to target cancer cells with accuracy, minimizing harm to healthy tissues. Additionally, it explores their potential as cancer therapy or anticancer agents capable of disrupting the growth of tumors. In the food business, AgNPs are utilized to enhance the durability of packing materials and coatings by infusing them with their bactericidal properties. This results in improved food safety measures and a significant increase in the duration that products can be stored, thereby tackling the crucial issue of food preservation. This academic analysis recognizes the many difficulties that come with the creation and incorporation of AgNPs. This statement pertains to the evaluation of environmental factors and the effort to enhance synthetic processes. The review predicts future academic pursuits, envisioning progress that will enhance the usefulness of AgNPs and increase their importance from being new to becoming essential within the realms of science and industry. Besides, AgNPs are not only a subject of scholarly interest but also a crucial component in the continuous effort to tackle some of the most urgent health and conservation concerns of contemporary society. This review aims to explore the complex process of AgNP synthesis and highlight their numerous uses, with a special focus on their growing importance in the healthcare and food business sectors. This review invites the scientific community to explore the extensive possibilities of AgNPs in order to fully understand and utilize their potential.
Collapse
Affiliation(s)
- Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
2
|
Pernas-Pleite C, Conejo-Martínez AM, Fernández Freire P, Hazen MJ, Marín I, Abad JP. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Int J Mol Sci 2023; 24:16183. [PMID: 38003373 PMCID: PMC10670984 DOI: 10.3390/ijms242216183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROS.
Collapse
Affiliation(s)
- Carlos Pernas-Pleite
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Amparo M. Conejo-Martínez
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Paloma Fernández Freire
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - María José Hazen
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
3
|
Chakraborty B, Bhat MP, Basavarajappa DS, Rudrappa M, Nayaka S, Kumar RS, Almansour AI, Perumal K. Biosynthesis and characterization of polysaccharide-capped silver nanoparticles from Acalypha indica L. and evaluation of their biological activities. ENVIRONMENTAL RESEARCH 2023; 225:115614. [PMID: 36889569 DOI: 10.1016/j.envres.2023.115614] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Biosynthesized silver nanoparticles (AgNPs) are gaining popularity due to their distinctive biological applications. In this research work, an eco-friendly method of synthesizing AgNPs from the leaf polysaccharide (PS) of Acalypha indica L. ( A. indica) was carried out. Synthesis of polysaccharide-AgNPs (PS-AgNPs) was indicated by visual detection of colour change from pale yellow to light brown. The PS-AgNPs were characterized with different techniques and further evaluated for biological activities. The Ultra violet-visible (UV-Vis.) spectroscopy expressed a sharp absorption peak at 415 nm confirmed the synthesis. Atomic force microscopy (AFM) analysis revealed the size range of particles from 14 nm to 85 nm. Fourier transform infrared (FTIR) analysis detected the presence of various functional groups. The cubic crystalline structure of PS-AgNPs was confirmed by X-ray diffraction (XRD) and the particles were found to be oval to polymorphic shaped through transmission electron microscopy (TEM) with sizes from 7.25 nm to 92.51 nm. Energy dispersive X-ray (EDX) determined the presence of silver in PS-AgNPs. The zeta potential was -28.0 mV, which confirmed the stability and an average particle size of 62.2 nm was calculated through dynamic light scattering (DLS). Lastly, the thermo gravimetric analysis (TGA) showed the PS-AgNPs were resistant to high temperature. The PS-AgNPs exhibited significant free radical scavenging activity with an IC50 value of 112.91 μg/ml. They were highly capable of inhibiting the growth of different bacterial and plant fungal pathogens and also active to reduce the cell viability of prostate cancer (PC-3) cell line. The IC50 value was 101.43 μg/ml. The flow cytometric apoptosis analysis revealed the percentage of viable, apoptotic and necrotic cells of PC-3 cell line. According to this evaluation, it can be concluded that these biosynthesized and environmentally friendly PS-AgNPs are helpful to improve therapeutics because of significant antibacterial, antifungal, antioxidant, and cytotoxic properties to open up new possibilities for euthenics.
Collapse
Affiliation(s)
- Bidhayak Chakraborty
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India
| | | | | | - Muthuraj Rudrappa
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India
| | - Sreenivasa Nayaka
- P.G. Department of Studies in Botany, Karnatak University, Dharwad-03, Karnataka, India.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH 43210, USA
| |
Collapse
|
4
|
Mejía-Méndez JL, López-Mena ER, Sánchez-Arreola E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023; 11:389. [PMID: 36830926 PMCID: PMC9953519 DOI: 10.3390/biomedicines11020389] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Nanomedicine is an interdisciplinary field where nanostructured objects are applied to treat or diagnose disease. Nanoparticles (NPs) are a special class of materials at nanometric scale that can be prepared from lipids, polymers, or noble metals through bottom-up approaches. Biological synthesis is a reliable, sustainable, and non-toxic bottom-up method that uses phytochemicals, microorganisms, and enzymes to induce the reduction of metal ions into NPs. Silver (Ag) NPs exhibit potent therapeutic properties that can be exploited to overcome the limitations of current treatment modalities for human health issues such as lung cancer (LC). Here, we review the preparation of AgNPs using biological synthesis and their application against LC using in vitro and in vivo models. An overview of the staging, diagnosis, genetic mutations, and treatment of LC, as well as its main subtypes, is presented. A summary of the reaction mechanisms of AgNPs using microbial cell cultures, plant extracts, phytochemicals, and amino acids is included. The use of capping agents in the biosynthesis of AgNPs with anticancer activity is also detailed. The history and biological activities of metal-based nanostructures synthesized with gold, copper, palladium, and platinum are considered. The possible anticancer mechanisms of AgNPs against LC models are covered. Our perspective about the future of AgNPs in LC treatment and nanomedicine is added.
Collapse
Affiliation(s)
- Jorge L. Mejía-Méndez
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral. Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45121, Mexico
| | - Eugenio Sánchez-Arreola
- Laboratorio de Investigación Fitoquímica, Departamento de Ciencias Químico Biológicas, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N, San Andrés Cholula 72810, Mexico
| |
Collapse
|
5
|
Phytosynthesis of Silver Nanoparticle (AgNPs) Using Aqueous Leaf Extract of Knoxia sumatrensis (Retz.) DC. and Their Multi-Potent Biological Activity: An Eco-Friendly Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227854. [PMID: 36431952 PMCID: PMC9694222 DOI: 10.3390/molecules27227854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Green synthesis of silver nanoparticles (AgNPs) has gained greater interest among chemists and researchers in this current scenario. The present research investigates the larvicidal and anti-proliferation activity of AgNPs derived from Knoxia sumatrensis aqueous leaf extract (K. sumatrensis-ALE) as a potential capping and reducing candidate. The synthesized AgNPs were characterized through-UV-spectra absorption peak at 425 nm. The XRD and FT-IR studied displayed the crystalline nature and presence of functional groups in prepared samples. FE-SEM showed the hexagonal shape of NPs with the size of 7.73 to 32.84 nm. The synthesized AgNPs displayed superior antioxidant and anti-proliferative activity (IC50 53.29 µg/mL) of breast cancer cell line (MCF-7). Additionally, larvicidal activity against mosquito vector Culex quinquefasciatus larvae delivered (LC50-0.40, mg/L, and LC90-15.83) significant mortality rate post treatment with synthesized AgNPs. Overall, the present research illustrates that the synthesized AgNPs have high biological potential and present a perfect contender in the pharmacological and mosquitocidal arena.
Collapse
|
6
|
Chauhan V, Dhiman VK, Mahajan G, Pandey A, Kanwar SS. Synthesis and characterization of silver nanoparticles developed using a novel lipopeptide(s) biosurfactant and evaluating its antimicrobial and cytotoxic efficacy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
El-Naggar NEA, Hamouda RA, Abou-El-Souod GW. Statistical optimization for simultaneous removal of methyl red and production of fatty acid methyl esters using fresh alga Scenedesmus obliquus. Sci Rep 2022; 12:7156. [PMID: 35504903 PMCID: PMC9065141 DOI: 10.1038/s41598-022-11069-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/08/2022] [Indexed: 11/08/2022] Open
Abstract
Microalgae are a diverse group of microorganisms, the majority of which are photosynthetic in nature. Microalgae have different applications, the most important of which is the biological treatment of wastewater. Microalgae grow in various types of wastewater, such as wastewater polluted by Azo dyes, due to microalgae using wastewater as a culture medium, which contains many nutrients like nitrogen, phosphate, and carbon sources. Microalgae grow in various types of wastewater, such as wastewater polluted by Azo dyes, due to microalgae using wastewater as a culture medium, which contains many nutrients like nitrogen, phosphate, and carbon sources. So, microalgae are used for bioremediation of wastewater due to the efficiency of growing in wastewater and for the high production of lipids followed by trans-esterification to biodiesel. Face-centered central composite design (FCCCD) was used to determine the factors that have the most significant impact on the simultaneous decolorization of methyl red and lipid production by the fresh green alga Scenedesmus obliquus. The predicted results indicated that the alga decolorized 70.15% methyl red and produced 20.91% lipids by using 1 g/L nitrogen, an incubation time of 10 days, a pH of 8, and the concentration of methyl red is 17.65 mg/L. The dry biomasses of S. obliquus were also examined by SEM and FTIR before and after treatment with methyl red. SEM and FTIR showed that the properties of dry S. obliquus were altered after the biosorption of methyl red. According to GC-MS analysis of hexane extracts of S. obliquus, the lipid profile differed before and after methyl red decolorization. The results proved that it is possible to use S. obliquus to remove dyes and produce renewable fuels such as biodiesel. The novelty of this study is that this is the first time in which the effect of nitrogen concentrations in the medium used for algal growth on the removal of dye has been studied.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El‑Arab City, 21934, Alexandria, Egypt.
| | - Ragaa A Hamouda
- Department of Biology, College of Sciences and Arts Khulis, University of Jeddah, Jeddah, Saudi Arabia
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City, Egypt
| | - Ghada W Abou-El-Souod
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibīn al-Kawm, Menoufia, Egypt
| |
Collapse
|
8
|
Kamradgi S, Babanagare S, Gunagambhire V. Characterization of Talaromyces islandicus-mediated silver nanoparticles and evaluation of their antibacterial and anticancer potential. Microsc Res Tech 2022; 85:1825-1836. [PMID: 34978364 DOI: 10.1002/jemt.24044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 11/19/2021] [Accepted: 12/12/2021] [Indexed: 11/10/2022]
Abstract
The biosynthesized silver nanoparticles (AgNPs) have been reported to possess several therapeutic applications. Silver is one of the important metals known for its bioactive properties not only as macromolecule but also as nanoparticle (NP). The current research focused on the eco-friendly synthesis of Talaromyces islandicus VSGF1(Lab code) -mediated AgNPs. The aqueous culture filtrate of T. islandicus VSGF1 was used as a reducing agent. The formation of AgNPs was confirmed by observing the color change from colorless to colloidal earthy-colored and a sharp absorption peak of ultraviolet-visible (UV-vis) spectroscopy at 400 nm. Fourier-transform infrared spectroscopy revealed the involvement of various functional groups for the formation and stabilization of AgNPs. The structure, size, and shape of mycosynthesized AgNPs were identified by X-ray diffraction (XRD), scanning electron microscopy, and atomic force microscopy (AFM) analysis. The XRD analysis exhibited crystalline nature of NPs whereas AFM analysis revealed the spherical shape of AgNP with average size range between 13 and 66 nm. The antibacterial activity of AgNPs (50 μg/ml) investigated against gram-positive and gram-negative bacteria revealed maximum zone of inhibition (ZOI) against drug-resistant Enterococcus faecalis MTCC439 (18.66 ± 0.57 mm) and Pseudomonas aeruginosa MTCC96 (16 ± 0 mm) followed by Staphylococcus aureus MTCC96 (15.33 ± 0.57 mm), Bacillus subtilis MTCC441 (14.66 ± 0.57 mm), and Escherichia coli MTCC45 (14.66 ± 0.57 mm). Further, the AgNPs evaluated for antitumor activity against human hepatocellular carcinoma (HepG2) cell line exhibited promising result with half-maximal inhibitory concentration (MIC) value at 38.17 μg/ml concentration through MTT (methylthiazolyl tetrazolium assay) assay. Apparently, this is the first report from T. islandicus to the best of our knowledge.
Collapse
Affiliation(s)
- Sangeeta Kamradgi
- Department of PG Studies and Research in Botany, Gulbarga University, Kalaburagi, India
| | | | | |
Collapse
|
9
|
Chandraker SK, Ghosh MK, Lal M, Shukla R. A review on plant-mediated synthesis of silver nanoparticles, their characterization and applications. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/ac0355] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
For decades, silver has been used as a non-toxic inorganic antimicrobial agent. Silver has a lot of potential in a variety of biological/chemical applications, particularly in the form of nanoparticles (NPs). Eco-friendly synthesis approach for NPs are becoming more common in nanobiotechnology, and the demand for biological synthesis methods is growing, with the goal of eliminating hazardous and polluting agents. Cultures of bacteria, fungi, and algae, plant extracts, and other biomaterials are commonly used for NP synthesis in the ‘green synthesis’ process. Plant-based green synthesis is a simple, fast, dependable, cost-effective, environmentally sustainable, and one-step method that has a significant advantage over microbial synthesis due to the lengthy process of microbial isolation and pure culture maintenance. In this report, we focussed on phytosynthesis of silver nanoparticles (AgNPs) and their characterization using various techniques such as spectroscopy (UV–vis, FTIR), microscopy (TEM, SEM), X-Ray diffraction (XRD), and other particle analysis. The potential applications of AgNPs in a variety of biological and chemical fields are discussed.
Collapse
|
10
|
Copperpod Plant Synthesized AgNPs Enhance Cytotoxic and Apoptotic Effect in Cancer Cell Lines. Processes (Basel) 2021. [DOI: 10.3390/pr9050888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The utilization of biological resources on the manufacture of nano silver has attracted the interest of researchers to develop an eco-friendly, cost-effective technology in nanomaterials production. In the present study, plant-mediated silver nanoparticles (AgNPs) were synthesized using aqueous leaf extracts of the Copperpod plant, which was well characterized. The ultraviolet-visible spectrophotometric study showed a maximum absorbance peak at 425 nm, and the observation of transmission electron microscopic features revealed that the nanoparticles size ranged between 20 and 70 nm. The synthesized AgNPs were tested for in vitro cytotoxic effects against cancerous cells, such as HepG2, A549 and MCF-7 cells. The findings showed that the IC50 values of AgNPs against cancerous cells viz., HepG2, MCF-7 and A549 cells, were observed to be 69 µg/mL, 62 µg/mL and 53 µg/mL, respectively. In addition, the apoptosis property was analysed using propidium iodide and acridine orange-ethidium bromide via the DNA fragmentation technique. Thus, the outcomes of the current analysis presume that the plant mediated AgNPs obtained from a synthesized Copperpod plant possess significant anti-cancer properties against various cancerous cells.
Collapse
|
11
|
Korcan SE, Kahraman T, Acikbas Y, Liman R, Ciğerci İH, Konuk M, Ocak İ. Cyto-genotoxicity, antibacterial, and antibiofilm properties of green synthesized silver nanoparticles using Penicillium toxicarium. Microsc Res Tech 2021; 84:2530-2543. [PMID: 33908149 DOI: 10.1002/jemt.23802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/14/2021] [Accepted: 04/16/2021] [Indexed: 11/09/2022]
Abstract
The fungi are becoming the distinguished organisms utilized in the biological synthesis of metallic nanoparticles because of their metal bioaccumulation ability. Addressed herein, the extracellular synthesis of silver nanoparticles (AgNPs) was carried out by using the cell-free filtrate of Penicillium toxicarium KJ173540.1. P. toxicarium was locally isolated and identified using both classical and molecular methods according to ribosomal internal transcribed spacer area of 18S rDNA. The optimum conditions for the AgNPs synthesis were found as 0.25 mM AgNO3 concentrations with pH 12 values at 45°C after 64 hr incubation in dark. Biosynthesized AgNPs were characterized via microscopic and spectroscopic techniques such as transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray analysis, Fourier transform infrared spectrophotometer, and ultraviolet-visible spectroscopy. Zetasizer measurements presented that the high negative potential value (-18.1 mV) and PDI (0.495) supported the excellent colloidal nature of AgNPs with long-range stability and high dispersity. AgNPs exhibited cyto-genotoxicity in Allium cepa root meristem cells by decreasing mitotic index and increasing chromosome aberrations in a dose-dependent manner. Then, 100 and 50% concentration of biosynthesized AgNPs showed antibacterial activity on Staphylococcus aureus and Bacillus subtilis. A decreasing biofilm formation of Pseudomonas aeruginosa 80.69, 48.32, and 28.41% was also observed at 100, 50, and 25% of mycosynthesized AgNP, respectively.
Collapse
Affiliation(s)
- Safiye Elif Korcan
- Health Services Vocational School Medical Laboratory Program, Uşak University, Uşak, Turkey
| | - Tuğba Kahraman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, Uşak, Turkey
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology, Faculty of Engineering, Usak University, Usak, Turkey
| | - Recep Liman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, Uşak, Turkey
| | - İbrahim Hakkı Ciğerci
- Molecular Biology and Genetics Department, Faculty of Science and Literatures, Afyon Kocatepe University, Afyonkarahisar, Turkey
| | - Muhsin Konuk
- Biotechnology Research and Application Center, University of Üsküdar, Istanbul, Turkey
| | - İjlal Ocak
- Department of Science Education, Faculty of Education, Afyon Kocatepe University, Afyonkarahisar, Turkey
| |
Collapse
|
12
|
Guilger-Casagrande M, Germano-Costa T, Bilesky-José N, Pasquoto-Stigliani T, Carvalho L, Fraceto LF, de Lima R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J Nanobiotechnology 2021; 19:53. [PMID: 33627148 PMCID: PMC7903788 DOI: 10.1186/s12951-021-00797-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biogenic nanoparticles possess a capping of biomolecules derived from the organism employed in the synthesis, which contributes to their stability and biological activity. These nanoparticles have been highlighted for the control of phytopathogens, so there is a need to understand their composition, mechanisms of action, and toxicity. This study aimed to investigate the importance of the capping and compare the effects of capped and uncapped biogenic silver nanoparticles synthesized using the filtrate of Trichoderma harzianum against the phytopathogenic fungus Sclerotinia sclerotiorum. Capping removal, investigation of the composition of the capping and physico-chemical characterization of the capped and uncapped nanoparticles were performed. The effects of the nanoparticles on S. sclerotiorum were evaluated in vitro. Cytotoxicity and genotoxicity of the nanoparticles on different cell lines and its effects on nontarget microorganisms were also investigated. RESULTS The capped and uncapped nanoparticles showed spherical morphology, with greater diameter of the uncapped ones. Functional groups of biomolecules, protein bands and the hydrolytic enzymes NAGase, β-1,3-glucanase, chitinase and acid protease from T. harzianum were detected in the capping. The capped nanoparticles showed great inhibitory potential against S. sclerotiorum, while the uncapped nanoparticles were ineffective. There was no difference in cytotoxicity comparing capped and uncapped nanoparticles, however higher genotoxicity of the uncapped nanoparticles was observed towards the cell lines. Regarding the effects on nontarget microorganisms, in the minimal inhibitory concentration assay only the capped nanoparticles inhibited microorganisms of agricultural importance, while in the molecular analysis of the soil microbiota there were major changes in the soils exposed to the uncapped nanoparticles. CONCLUSIONS The results suggest that the capping played an important role in controlling nanoparticle size and contributed to the biological activity of the nanoparticles against S. sclerotiorum. This study opens perspectives for investigations concerning the application of these nanoparticles for the control of phytopathogens.
Collapse
Affiliation(s)
- Mariana Guilger-Casagrande
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil
- Laboratory of Environmental Nanotechnology, São Paulo State University, Sorocaba, São Paulo, Brazil
| | - Taís Germano-Costa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Natália Bilesky-José
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Tatiane Pasquoto-Stigliani
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Lucas Carvalho
- Laboratory of Environmental Nanotechnology, São Paulo State University, Sorocaba, São Paulo, Brazil
| | - Leonardo F Fraceto
- Laboratory of Environmental Nanotechnology, São Paulo State University, Sorocaba, São Paulo, Brazil
| | - Renata de Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil.
| |
Collapse
|
13
|
Han J, Wu C, Wu Y, Deng H, Gao J, Han H, Xue X. Comparative study of imaging and pathological evaluation of pneumonic mucinous adenocarcinoma. Oncol Lett 2021; 21:125. [PMID: 33552246 PMCID: PMC7798099 DOI: 10.3892/ol.2020.12386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/12/2020] [Indexed: 01/15/2023] Open
Abstract
Patients with pneumonia-type lung cancer (PTLC) do not exhibit specific clinical features, which makes imaging diagnosis difficult. Therefore, the aetiology of the pathological changes occurring during PTLC remains unclear. The current study aimed to explore the possible mechanism of PTLC formation by CT scans and pathological analysis of the lungs. A retrospective analysis was conducted on the CT and pathological data of 17 cases of PTLC. The diagnosis of lung cancer was confirmed by pathology. The CT scans of nine patients indicated diffuse distribution of lesions in the lungs, whereas those of three patients indicated single-lung multi-leaf distribution, and those of the remaining five patients included single-leaf distribution. All patients demonstrated increased plaque or patchy density in the majority of the lesions located near the heart. The pathological types of the identified tumours were mucinous adenocarcinoma with adherent growth as the main sub-type. A large number of mucus lakes were observed, containing floating tumour cells, as determined by optical microscopy. In addition, a number of tumour cells were located in the residual alveolar wall of the observed mucus lakes. The results of the present study suggested that the mucinous adenocarcinoma tumour cells produced substantial quantities of mucus, and that the cells were scattered and planted along with the mucus through the airway, which led to possible development of pneumonia-type mucinous adenocarcinoma.
Collapse
Affiliation(s)
- Jun Han
- Department of Radiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Chongchong Wu
- Department of Radiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yuxin Wu
- Department of Radiology, The Traditional Chinese Medicine Hospital of Changshou District, Chongqing 401220, P.R. China
| | - Hui Deng
- Department of Respiratory Diseases, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jie Gao
- Department of Pathology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hua Han
- Department of Radiology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xinying Xue
- Department of Respiratory Diseases, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
14
|
Chandraker SK, Lal M, Dhruve P, Singh RP, Shukla R. Cytotoxic, Antimitotic, DNA Binding, Photocatalytic, H 2O 2 Sensing, and Antioxidant Properties of Biofabricated Silver Nanoparticles Using Leaf Extract of Bryophyllum pinnatum (Lam.) Oken. Front Mol Biosci 2021; 7:593040. [PMID: 33585553 PMCID: PMC7876318 DOI: 10.3389/fmolb.2020.593040] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/08/2020] [Indexed: 01/04/2023] Open
Abstract
Bryophyllum pinnatum is a perennial herb traditionally used in ethnomedicine. In the present report, silver nanoparticles (AgNPs) were synthesized using B. pinnatum leaf extract. BP-AgNPs were confirmed following UV-Vis spectroscopy with SPR peak at 412 nm and further characterized by FTIR, XRD, SEM-EDX, and TEM. Microscopic images confirmed the spherical shape and ~15 nm average size of nanostructures. BP-AgNPs were evaluated for photocatalytic degradation of hazardous dyes (methylene blue and Rhodamine-B) and showed their complete reduction within 100 and 110 min., respectively. BP-AgNPs have emerged as a unique SPR-based novel sensor for the detection of H2O2, which may deliver exciting prospects in clinical and industrial areas. DPPH and ABTS free radical scavenging activity were studied with respective IC50 values of 89 and 259 μg/mL. A strong intercalating interaction of CT-DNA with BP-AgNPs was investigated. Observed chromosomal abnormalities confirm the antimitotic potential of BP-AgNPs in the meristematic root tip. The cytotoxicity of BP-AgNPs against B16F10 (melanoma cell line) and A431 (squamous cell carcinoma cell line), was assessed with respective IC50 values of 59.5 and 96.61 μg/ml after 24 h of treatment. The presented green synthetic approach provides a novel and new door for environmental, industrial, and biomedical applications.
Collapse
Affiliation(s)
- Sandip Kumar Chandraker
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| | - Mishri Lal
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| | - Preeti Dhruve
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ravindra Shukla
- Laboratory of Bio-Resource Technology, Department of Botany, Indira Gandhi National Tribal University, Amarkantak, India
| |
Collapse
|
15
|
Kollur S, Daphedar A, Kakkalameli S, Melappa G, Taranath T, Srinivasa C, Shivamallu C, Syed A, Marraiki N, Elgorban A, Veerapur R, Patil S. Genotoxic assay of silver and zinc oxide nanoparticles synthesized by leaf extract of Garcinia livingstonei T. Anderson: A comparative study. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_536_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Xu LB, Bo BX, Xiong J, Ren YJ, Han D, Wei SH, Ren XP. Long non-coding RNA LINC00887 promotes progression of lung carcinoma by targeting the microRNA-206/NRP1 axis. Oncol Lett 2020; 21:87. [PMID: 33376520 PMCID: PMC7751375 DOI: 10.3892/ol.2020.12348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/05/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to participate in multiple biological processes, including tumorigenesis. In the current study, the function of a novel lncRNA LINC00887 was investigated in lung carcinoma. For this purpose, LINC00887 expression was assessed by reverse-transcription quantitative PCR. Cell viability was determined by the CCK-8 and EdU assays. Cell invasion, migration were assessed by the transwell and wound healing assays, respectively. A dual luciferase assay was used for analysis of the interaction between LINC00887 and miR-206, as well as the relationship of miR-206 with NRP1. A tumor xenograft study was performed to investigate the LINC00887-miR-206-NRP1 axis in vivo. The expression levels of LINC00887 were upregulated in lung carcinoma tissues and cells compared with adjacent tissues or normal cells (BEAS-2B). Knockdown LINC00887 significantly inhibited the proliferation, migration and invasion of lung carcinoma A549 and NCI-H460 cells. Furthermore, LINC00887 was identified as a competing endogenous RNA and to directly interact with miR-206. Mechanistically, miR-206 was demonstrated to regulate neuropilin-1 (NRP1) expression by targeting the NRP1 3'-untranslated region. The results of the present study suggested that the LINC00887-miR-206-NRP1 axis served a critical role in regulating lung carcinoma cell proliferation, migration and invasion. In addition, xenograft tumor model experiments revealed that silencing LINC00887 suppressed lung carcinoma tumor growth of in vivo. In summary, our results suggest that LINC00887 may serve an oncogenic role in lung carcinoma by targeting the miR-206/NRP1 axis, providing a potential therapeutic target for patients with lung carcinoma.
Collapse
Affiliation(s)
- Ling-Bin Xu
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Bian-Xin Bo
- Department of Critical Care Medicine, Zhouzhi Country People's Hospital, Xi'an, Shaanxi 710407, P.R. China
| | - Jie Xiong
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ya-Juan Ren
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Dong Han
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Sheng-Hong Wei
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao-Ping Ren
- The Second Department of Pulmonary and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| |
Collapse
|
17
|
Nayaka S, Chakraborty B, Bhat MP, Nagaraja SK, Airodagi D, Swamy PS, Rudrappa M, Hiremath H, Basavarajappa DS, Kanakannanavar B. Biosynthesis, characterization, and in vitro assessment on cytotoxicity of actinomycete-synthesized silver nanoparticles on Allium cepa root tip cells. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2020. [DOI: 10.1186/s43088-020-00074-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The industrial production of silver nanoparticles (AgNPs) and its commercial applications are being considerably increased in recent times, resulting in the release of AgNPs in the environment and enhanced probability of contaminations and their adverse effects on living systems. Based on this, the present study was conducted to evaluate the in vitro cytotoxicity of actinomycete-synthesized AgNPs on Allium cepa (A. cepa) root tip cells. A green synthesis method was employed for biosynthesis of AgNPs from Streptomyces sp. NS-33. However, morphological, physiological, biochemical, and molecular analysis were carried out to characterize the strain NS-33. Later, the synthesized AgNPs were characterized and antibacterial activity was also carried out against pathogenic bacteria. Finally, cytotoxic activity was evaluated on A. cepa root tip cells.
Results
Results showed the synthesis of spherical and polydispersed AgNPs with a characteristic UV-visible (UV-Vis.) spectral peak at 397 nm and average size was 32.40 nm. Energy dispersive spectroscopy (EDS) depicted the presence of silver, whereas Fourier transform infrared (FTIR) studies indicated the presence of various functional groups. The phylogenetic relatedness of Streptomyces sp. NS-33 was found with Streptomyces luteosporeus through gene sequencing. A good antibacterial potential of AgNPs was observed against two pathogenic bacteria. Concerning cytotoxicity, a gradually decreased mitotic index (MI) and increased chromosomal aberrations were observed along with the successive increase of AgNPs concentration.
Conclusions
Therefore, the release of AgNPs into the environment must be prevented, so that it cannot harm plants and other beneficial microorganisms.
Collapse
|
18
|
Naguib M, Mahmoud UM, Mekkawy IA, Sayed AEDH. Hepatotoxic effects of silver nanoparticles on Clarias gariepinus; Biochemical, histopathological, and histochemical studies. Toxicol Rep 2020; 7:133-141. [PMID: 31956514 PMCID: PMC6962648 DOI: 10.1016/j.toxrep.2020.01.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/28/2019] [Accepted: 01/04/2020] [Indexed: 02/07/2023] Open
Abstract
The current study investigates the hepatotoxic effects of two acute doses of silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on African catfish (Clarias garepinus) using biochemical, histopathological, and histochemical changes and the determination of silver in liver tissue as biomarkers. AgNPs-induced impacts were recorded in some of these characteristics based on their size (20 and 40 nm) and their concentration (10 and 100 μg/L). Concentrations of liver enzymes (Aspartic aminotransferase; AST, Alanine aminotransferase; ALT), alkaline phosphatase (ALP), total lipids (Tl), Glucose (Glu) and Ag-concentration in liver tissue exhibited a significant increase under stress in all exposed groups compared to the control group. The total proteins (Tp), albumin (Al), and globulin (Gl) concentrations exhibited significantly decrease in all treated groups compared to the control group. At tissue and cell levels, histopathological changes were observed. These changes include proliferation of hepatocytes, infiltrations of inflammatory cells, pyknotic nuclei, cytoplasmic vaculation, melanomacrophages aggregation, dilation in the blood vessel, hepatic necrosis, rupture of the wall of the central vein, and apoptotic cells in the liver of AgNPs-exposed fish. As well as the depletion of glycogen content in the liver (feeble magenta coloration) was observed. The size and number of melanomacrophage centers (MMCs) in liver tissue showed highly significant difference in all exposed groups compared to the control group. Recovery period for 15 days led to improved most alterations in the biochemical, histopathological, and histochemical parameters induced by AgNPs and AgNO3. In conclusion, one can assume liver sensitivity of C. garepinus for AgNPs and the recovery period is a must.
Collapse
Affiliation(s)
| | | | | | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
19
|
Guilger-Casagrande M, Germano-Costa T, Pasquoto-Stigliani T, Fraceto LF, Lima RD. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Sci Rep 2019; 9:14351. [PMID: 31586116 PMCID: PMC6778091 DOI: 10.1038/s41598-019-50871-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Biogenic synthesis of silver nanoparticles employing fungi offers advantages, including the formation of a capping from fungal biomolecules, which provides stability and can contribute to biological activity. In this work, silver nanoparticles were synthesized using Trichoderma harzianum cultivated with (AgNP-TS) and without enzymatic stimulation (AgNP-T) by the cell wall of Sclerotinia sclerotiorum. The nanoparticles were evaluated for the control of S. sclerotiorum. The specific activity of the T. harzianum hydrolytic enzymes were determined in the filtrates and nanoparticles. Cytotoxicity and genotoxicity were also evaluated. Both the nanoparticles exhibited inhibitory activity towards S. sclerotiorum, with no new sclerotia development, however AgNP-TS was more effective against mycelial growth. Both the filtrates and the nanoparticles showed specific enzymatic activity. Low levels of cytotoxicity and genotoxicity were observed. This study opens perspectives for further exploration of fungal biogenic nanoparticles, indicating their use for the control of S. sclerotiorum and other agricultural pests.
Collapse
Affiliation(s)
- Mariana Guilger-Casagrande
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Tais Germano-Costa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Tatiane Pasquoto-Stigliani
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Leonardo Fernandes Fraceto
- Laboratory of Environmental Nanotechnology, State University of São Paulo (UNESP), Sorocaba, São Paulo, Brazil
| | - Renata de Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
20
|
Pulmonary and hepatic effects after low dose exposure to nanosilver: Early and long-lasting histological and ultrastructural alterations in rat. Toxicol Rep 2019; 6:1047-1060. [PMID: 31673507 PMCID: PMC6816130 DOI: 10.1016/j.toxrep.2019.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 01/28/2023] Open
Abstract
Low AgNPs dose caused in vivo toxic effects both at portal entry and distant organ. Lung and liver tissues were damaged in Nanosilver-instilled rat. Early and long-lasting histological and ultrastructural alterations were detected. Overall pulmonary injury was more striking compared to hepatic outcomes.
Although environmental airborne silver nanoparticles (AgNPs) levels in occupational and environmental settings are harmful to humans, the precise toxic effects at the portal entry of exposure and after translocation to distant organs are still to be deeply clarified. To this aim, the present study assessed histopathological and ultrastructural alterations (by means of H&E and TEM, respectively) in rat lung and liver, 7 and 28 days after a single intratracheal instillation (i.t) of a low AgNP dose (50 microg/rat), compared to those induced by an equivalent dose of ionic silver (7 microg AgNO3/rat). Lung parenchyma injury was observed acutely after either AgNPs or AgNO3, with the latter compound causing more pronounced effects. Specifically, alveolar collapse accompanied by inflammatory alterations and parenchymal fibrosis were revealed. These effects lasted until the 28th day, a partial pulmonary structure recovery occurred, nevertheless a persistence of slight inflammatory/fibrotic response and apoptotic phenomena were still detected after AgNPs and AgNO3, respectively. Concerning the liver, a diffuse hepatocyte injury was observed, characterized by cytoplasmic damage and dilation of sinusoids, engulfed by degraded material, paralleled by inflammation onset. These effects already detectable at day 7, persisting at the 28th day with some attenuations, were more marked after AgNO3 compared to AgNPs, with the latter able to induce a ductular reaction. Altogether the present findings indicate toxic effects induced by AgNPs both at the portal entry (i.e. lung) and distant tissue (i.e. liver), although the overall pulmonary damage were more striking compared to the hepatic outcomes.
Collapse
|
21
|
Saratale RG, Saratale GD, Cho SK, Ghodake G, Kadam A, Kumar S, Mulla SI, Kim DS, Jeon BH, Chang JS, Shin HS. Phyto-fabrication of silver nanoparticles by Acacia nilotica leaves: Investigating their antineoplastic, free radical scavenging potential and application in H2O2 sensing. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|